
14

Estimating Distributions and Densities

We have spent a lot of time looking at how to estimate expectations (which
is regression). We have also seen how to estimate variances, by turning it into
a problem about expectations. We could extend the same methods to looking
at higher moments — if you need to find the conditional skewness or kurtosis
functions1, you can tackle that in the same way as finding the conditional variance.
But what if we want to look at the whole distribution?

You’ve already seen one solution to this problem in earlier statistics courses:
posit a parametric model for the density (Gaussian, Student’s t, exponential,
gamma, beta, Pareto, . . . ) and estimate the parameters. Maximum likelihood
estimates are generally consistent and e�cient for such problems. None of this
changes when the distributions are multivariate. But suppose you don’t have any
particular parametric density family in mind, or want to check one — how could
we estimate a probability distribution non-parametrically?

14.1 Histograms Revisited

For most of you, making a histogram was probably one of the first things you
learned how to do in intro stats (if not before). This is a simple way of estimating
a distribution: we split the sample space up into bins, count how many samples
fall into each bin, and then divide the counts by the total number of samples. If
we hold the bins fixed and take more and more data, then by the law of large
numbers we anticipate that the relative frequency for each bin will converge on
the bin’s probability.

So far so good. But one of the things you learned in intro stats was also to work
with probability density functions, not just probability mass functions. Where do
we get pdfs? Well, one thing we could do is to take our histogram estimate, and
then say that the probability density is uniform within each bin. This gives us a
piecewise-constant estimate of the density.

Unfortunately, this isn’t going to work — isn’t going to converge on the true pdf
— unless we can shrink the bins of the histogram as we get more and more data.
To see this, think about estimating the pdf when the data comes from any of the
standard distributions, like an exponential or a Gaussian. We can approximate
the true pdf f(x) to arbitrary accuracy by a piecewise-constant density (indeed,

1 When you find out what the kurtosis is good for, be sure to tell the world.
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324 Density Estimation

that’s what happens every time we plot it on our screens), but, for a fixed set of
bins, we can only come so close to the true, continuous density.

This reminds us of our old friend the bias-variance trade-o↵, and rightly so. If
we use a large number of very small bins, the minimum bias in our estimate of
any density becomes small, but the variance in our estimates grows. (Why does
variance increase?) To make some use of this insight, though, there are some
things we need to establish first.

• Is learning the whole distribution non-parametrically even feasible?
• How can we measure error so deal with the bias-variance trade-o↵?

14.2 “The Fundamental Theorem of Statistics”

Let’s deal with the first point first. In principle, something even dumber than
shrinking histograms will work to learn the whole distribution. Suppose we have
one-dimensional samples x1, x2, . . . xn with a common cumulative distribution
function F . The empirical cumulative distribution function on n samples,
F̃n(a) is

F̃n(a) ⌘
1

n

nX

i=1

1(�1,a])(xi) (14.1)

In words, this is just the fraction of the samples which are  a. Then the
Glivenko-Cantelli theorem says

max
a

|F̃n(a)� F (a)| ! 0 (14.2)

So the empirical CDF converges to the true CDF everywhere; the maximum
gap between the two of them goes to zero. Pitman (1979) calls this the “fun-
damental theorem of statistics”, because it says we can learn distributions just
by collecting enough data.2 The same kind of result also holds for the CDFs of
higher-dimensional vectors.

If the Glivenko-Cantelli theorem is so great, why aren’t we just content with

2 There are some interesting aspects to the theorem which are tangential to what we’ll need, so I will

stick them in this footnote. These hinge on the max in the statement of the theorem. For any one,

fixed value of a, that |F̃n(a)� F (a)| ! 0 is just an application of the law of large numbers. The

extra work Glivenko and Cantelli did was to show that this held for infinitely many values of a at

once, so that even if we focus on the biggest gap between the estimate and the truth, that still

shrinks with n. Here’s a sketch, with no details. Fix an ✏ > 0; first show that there is some finite set

of points on the line, call them b1, . . . bm(✏), such that, for any a, |F̃n(a)� F̃n(bi)| < ✏ and

|F (a)� F (bi)| < ✏ for some bi. Next, show that, for large enough n, |F (bi)� F̃n(bi)| < ✏ for all the

bi simultaneously. (This follows from the law of large numbers and the fact that m(✏) is finite.)

Finally, use the triangle inequality to conclude that, for large enough n, maxa |F̃n(a)� F (a)| < 3✏.

Since ✏ can be made arbitrarily small, the Glivenko-Cantelli theorem follows. This general strategy

— combining pointwise convergence theorems with approximation arguments — forms the core of

what’s called empirical process theory, which underlies the consistency of basically all the

non-parametric procedures we’ve seen. If this line of thought is at all intriguing, the closest thing to

a gentle introduction is Pollard (1989). (If you know enough to object that I should have been

writing sup instead of max, you know enough to make the substitution for yourself.)
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the empirical CDF? Sometimes we are, but it inconveniently doesn’t give us a
probability density. Suppose that x1, x2, . . . xn are sorted into increasing order.
What probability does the empirical CDF put on the interval (xi, xi+1)? Clearly,
zero. (Whereas the interval [xi, xi+1] gets probability 2/n.) This could be right,
but we have centuries of experience now with probability distributions, and this
tells us that pretty often we can expect to find some new samples between our
old ones. So we’d like to get a non-zero density between our observations.

Using a uniform distribution within each bin of a histogram doesn’t have this
issue, but it does leave us with the problem of picking where the bins go and how
many of them we should use. Of course, there’s nothing magic about keeping the
bin size the same and letting the number of points in the bins vary; we could
equally well pick bins so they had equal counts.3 So what should we do?

14.3 Error for Density Estimates

Our first step is to get clear on what we mean by a “good” density estimate.
There are three leading ideas:

1.
R
(f(x)� f̂(x))

2
dx should be small: the squared deviation from the true den-

sity should be small, averaging evenly over all space.
2.
R
|f(x)� f̂(x)|dx should be small: minimize the average absolute, rather than

squared, deviation.
3.
R
f(x) log f(x)

bf(x)
dx should be small: the average log-likelihood ratio should be

kept low.

Option (1) is reminiscent of the MSE criterion we’ve used in regression. Option
(2) looks at what’s called the L1 or total variation distance between the true and
the estimated density. It has the nice property that 1

2

R
|f(x)� f̂(x)|dx is exactly

the maximum error in our estimate of the probability of any set. Unfortunately
it’s a bit tricky to work with, so we’ll skip it here. (But see Devroye and Lugosi
(2001)). Finally, minimizing the log-likelihood ratio is intimately connected to
maximizing the likelihood. We will come back to this (§14.6), but, like most texts
on density estimation, we will give more attention to minimizing (1), because it’s
mathematically tractable.

Notice that
Z

(f(x)� f̂(x))
2
dx =

Z
f2(x)dx� 2

Z
f̂(x)f(x)dx+

Z
f̂2(x)dx (14.3)

3 A specific idea for how to do this is sometimes called a k � d tree. We have d random variables and

want a joint density for all of them. Fix an ordering of the variables Start with the first variable,

and find the thresholds which divide it into k parts with equal counts. (Usually but not always

k = 2.) Then sub-divide each part into k equal-count parts on the second variable, then sub-divide

each of those on the third variable, etc. After splitting on the dth variable, go back to splitting on

the first, until no further splits are possible. With n data points, it takes about logk n splits before

coming down to individual data points. Each of these will occupy a cell of some volume. Estimate

the density on that cell as one over that volume. Of course it’s not strictly necessary to keep refining

all the way down to single points.
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The first term on the right hand side doesn’t depend on the estimate f̂(x) at all,
so we can ignore it for purposes of optimization. The third one only involves f̂ ,
and is just an integral, which we can do numerically. That leaves the middle term,
which involves both the true and the estimated density; we can approximate it
by

� 2

n

nX

i=1

f̂(xi) (14.4)

The reason we can do this is that, by the Glivenko-Cantelli theorem, integrals over
the true density are approximately equal to sums over the empirical distribution.

So our final error measure is

� 2

n

nX

i=1

f̂(xi) +
Z

f̂2(x)dx (14.5)

In fact, this error measure does not depend on having one-dimension data; we
can use it in any number of dimensions.4 For purposes of cross-validation (you
knew that was coming, right?), we can estimate f̂ on the training set, and then
restrict the sum to points in the testing set.

14.3.1 Error Analysis for Histogram Density Estimates

We now have the tools to do most of the analysis of histogram density estimation.
(We’ll do it in one dimension for simplicity.) Choose our favorite location x, which
lies in a bin whose boundaries are x0 and x0+h. We want to estimate the density
at x, and this is

f̂n(x) =
1

h

1

n

nX

i=1

1(x0,x0+h](xi) (14.6)

Let’s call the sum, the number of points in the bin, b. It’s a random quantity,
B ⇠ Binomial(n, p), where p is the true probability of falling into the bin, p =
F (x0 + h)� F (x0). The mean of B is np, and the variance is np(1� p), so

E
h
f̂n(x)

i
=

1

nh
E [B] (14.7)

=
n[F (x0 + h)� F (x0)]

nh
(14.8)

=
F (x0 + h)� F (x0)

h
(14.9)

4 Admittedly, in high-dimensional spaces, doing the final integral can become numerically challenging.
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and the variance is

V
h
f̂n(x)

i
=

1

n2h2
V [B] (14.10)

=
n[F (x0 + h)� F (x0)][1� F (x0 + h) + F (x0)]

n2h2
(14.11)

= E
h
f̂n(x)

i 1� F (x0 + h) + F (x0)

nh
(14.12)

If we let h ! 0 as n ! 1, then

E
h
f̂h(x)

i
! lim

h!0

F (x0 + h)� F (x0)

h
= f(x0) (14.13)

since the pdf is the derivative of the CDF. But since x is between x0 and x0 + h,
f(x0) ! f(x). So if we use smaller and smaller bins as we get more data, the
histogram density estimate is unbiased. We’d also like its variance to shrink as
the same grows. Since 1� F (x0 + h) + F (x0) ! 1 as h ! 0, to get the variance
to go away we need nh ! 1.

To put this together, then, our first conclusion is that histogram density esti-
mates will be consistent when h ! 0 but nh ! 1 as n ! 1. The bin-width h
needs to shrink, but slower than n�1.

At what rate should it shrink? Small h gives us low bias but (as you can
verify from the algebra above) high variance, so we want to find the trade-o↵

between the two. One can calculate the bias at x from our formula for E
h
f̂h(x)

i

through a somewhat lengthy calculus exercise, analogous to what we did for kernel
smoothing in Chapter 45; the upshot is that the integrated squared bias is

Z ⇣
f(x)� E

h
f̂h(x)

i⌘2
dx =

h2

12

Z
(f 0(x))

2
dx+ o(h2) (14.14)

We already got the variance at x, and when we integrate that over x we find
Z

V
h
f̂h(x)

i
dx =

1

nh
+ o(n�1) (14.15)

So the total integrated squared error is

ISE =
h2

12

Z
(f 0(x))

2
dx+

1

nh
+ o(h2) + o(n�1) (14.16)

Di↵erentiating this with respect to h and setting it equal to zero, we get

hopt

6

Z
(f 0(x))

2
dx =

1

nh2
opt

(14.17)

hopt =

 
6

R
(f 0(x))2dx

!1/3

n�1/3 = O(n�1/3) (14.18)

5 You need to use the intermediate value theorem multiple times; see for instance Wasserman (2006,

sec. 6.8).



328 Density Estimation

So we need narrow bins if the density changes rapidly (
R
(f 0(x))2dx is large), and

wide bins if the density is relatively flat. No matter how rough the density, the
bin width should shrink like O(n�1/3). Plugging that rate back into the equation
for the ISE, we see that it is O(n�2/3).

It turns out that if we pick h by cross-validation, then we attain this optimal
rate in the large-sample limit. By contrast, if we knew the correct parametric
form and just had to estimate the parameters, we’d typically get an error decay
of O(n�1). This is substantially faster than histograms, so it would be nice if we
could make up some of the gap, without having to rely on parametric assumptions.

14.4 Kernel Density Estimates

It turns out that one can improve the convergence rate, as well as getting smoother
estimates, by using kernels. The kernel density estimate is

bfh(x) =
1

n

nX

i=1

1

h
K

✓
x� xi

h

◆
(14.19)

where K is a kernel function such as we encountered when looking at kernel
regression. (The factor of 1/h inside the sum is so that bfh will integrate to 1;
we could have included it in both the numerator and denominator of the kernel
regression formulae, but then it would’ve just canceled out.) As before, h is the
bandwdith of the kernel. We’ve seen typical kernels in things like the Gaussian.
One advantage of using them is that they give us a smooth density everywhere,
unlike histograms, and in fact we can even use them to estimate the derivatives
of the density, should that be necessary.6

14.4.1 Analysis of Kernel Density Estimates

How do we know that kernels will in fact work? Well, let’s look at the mean and
variance of the kernel density estimate at a particular point x, and use Taylor’s

6 The advantage of histograms is that they’re computationally and mathematically simpler.
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theorem on the density.

E
h
bfh(x)

i
=

1

n

nX

i=1

E

1

h
K

✓
x�Xi

h

◆�
(14.20)

= E

1

h
K

✓
x�X

h

◆�
(14.21)

=
Z

1

h
K

✓
x� t

h

◆
f(t)dt (14.22)

=
Z

K(u)f(x� hu)du (14.23)

=
Z

K(u)


f(x)� huf 0(x) +

h2u2

2
f 00(x) + o(h2)

�
du (14.24)

= f(x) +
h2f 00(x)

2

Z
K(u)u2du+ o(h2) (14.25)

(14.26)

because, by definition,
R
K(u)du = 1 and

R
uK(u)du = 0. If we call

R
K(u)u2du =

�2
K , then the bias of the kernel density estimate is

E
h
bfh(x)

i
� f(x) =

h2�2
Kf

00(x)

2
+ o(h2) (14.27)

So the bias will go to zero if the bandwidth h shrinks to zero. What about the
variance? Use Taylor’s theorem again:

V
h
bfh(x)

i
=

1

n
V

1

h
K

✓
x�X

h

◆�
(14.28)

=
1

n

"

E

1

h2
K2

✓
x�X

h

◆�
�
✓
E

1

h
K

✓
x�X

h

◆�◆2
#

(14.29)

=
1

n

Z
1

h2
K2

✓
x� t

h

◆
dt�

⇥
f(x) +O(h2)

⇤2
�

(14.30)

=
1

n

Z
1

h
K2(u)f(x� hu)du� f2(x) +O(h2)

�
(14.31)

=
1

n

Z
1

h
K2(u) (f(x)� huf 0(x)) du� f2(x) +O(h)

�
(14.32)

=
f(x)

hn

Z
K2(u)du+O(1/n) (14.33)

This will go to zero if nh ! 1 as n ! 1. So the conclusion is the same as for
histograms: h has to go to zero, but slower than 1/n.

Since the expected squared error at x is the bias squared plus the variance,

h4�4
K(f

00(x))2

4
+

f(x)

hn

Z
K2(u)du+ small (14.34)
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the expected integrated squared error is

ISE ⇡ h4�4
K

4

Z
(f 00(x))2dx+

R
K2(u)du

nh
(14.35)

Di↵erentiating with respect to h for the optimal bandwidth hopt, we find

h3
opt�

4
K

Z
(f 00(x))2dx =

R
K2(u)du

nh2
opt

(14.36)

hopt =

✓ R
K2(u)du

�4
K

R
(f 00(x))2dx

◆1/5

n�1/5 = O(n�1/5) (14.37)

That is, the best bandwidth goes to zero like one over the fifth root of the number
of sample points. Plugging this into Eq. 14.35, the best ISE = O(n�4/5). This
is better than the O(n�2/3) rate of histograms, but still includes a penalty for
having to figure out what kind of distribution we’re dealing with. Remarkably
enough, using cross-validation to pick the bandwidth gives near-optimal results.7

As an alternative to cross-validation, or at least a starting point, one can use Eq.
14.37 to show that the optimal bandwidth for using a Gaussian kernel to estimate
a Gaussian distribution is 1.06�n�1/5, with � being the standard deviation of the
Gaussian. This is sometimes called the Gaussian reference rule or the rule-
of-thumb bandwidth. When you call density in R, this is basically what it
does.

Yet another technique is the plug-in method. Eq. 14.37 calculates the optimal
bandwidth from the second derivative of the true density. This doesn’t help if we
don’t know the density, but it becomes useful if we have an initial density estimate
which isn’t too bad. In the plug-in method, we start with an initial bandwidth
(say from the Gaussian reference rule) and use it to get a preliminary estimate of
the density. Taking that crude estimate and “plugging it in” to Eq. 14.37 gives
us a new bandwidth, and we re-do the kernel estimate with that new bandwidth.
Iterating this a few times is optional but not uncommon.

14.4.2 Joint Density Estimates

The discussion and analysis so far has been focused on estimating the distribution
of a one-dimensional variable. Just as kernel regression can be done with multiple
input variables (§4.3), we can make kernel density estimates of joint distributions.
We simply need a kernel for the vector:

bf(~x) =
1

n

nX

i=1

K(~x� ~xi) (14.38)

7 Substituting Eq. 14.37 into Eq. 14.35 gives a squared error of

1.25n�4/5�
4/5
K

�R
(f 00(x))2dx

�1/5�R
K2(u)du

�4/5
. The only two parts of this which depend on the

kernel are �K and
R
K2(u)du. This is the source of the (correct) folklore that the choice of kernel is

less important than the choice of bandwidth.
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One could use any multivariate distribution as the kernel (provided it is centered
and has finite covariance). Typically, however, just as in smoothing, one uses a
product kernel, i.e., a product of one-dimensional kernels,

K(~x� ~xi) = K1(x
1 � x1

i )K2(x
2 � x2

i ) . . .Kp(x
p � xp

i ) , (14.39)

Doing this requires a bandwidth for each coordinate, so the over-all form of the
joint PDF estimate is

bf(~x) =
1

n
Qp

j=1 hj

nX

i=1

dY

j=1

Kj

 
xj � xj

i

hj

!

(14.40)

Going through a similar analysis for p-dimensional data shows that the ISE
goes to zero like O(n�4/(4+p)), and again, if we use cross-validation to pick the
bandwidths, asymptotically we attain this rate. Unfortunately, if p is large, this
rate becomes very slow — for instance, if p = 24, the rate is O(n�1/7). There is
simply no universally good way to learn arbitrary high-dimensional distributions.
This is the same “curse of dimensionality” we saw in regression (§8.3). The fun-
damental problem is that in high dimensions, there are just too di↵erent possible
distributions which are too hard to tell apart.

Evading the curse of dimensionality for density estimation needs some special
assumptions. Parametric models make the very strong assumption that we know
exactly what the distribution function looks like, and we just need to fill in a few
constants. It’s potentially less drastic to hope the distribution has some sort of
special structure we can exploit, and most of the rest of Part II will be about
searching for various sorts of useful structure8. If none of these options sound
appealing, or plausible, we’ve got little alternative but to accept a very slow
convergence of density estimates.

14.4.3 Categorical and Ordered Variables

Estimating probability mass functions with discrete variables can be straightfor-
ward: there are only a finite number of values, and so one just counts how often
they occur and takes the relative frequency. If one has a discrete variable X and
a continuous variable Y and one wants a joint distribution, one could just get a
separate density for Y for each value of x, and tabulate the probabilities for x.

In principle, this will work, but it can be practically awkward if the number
of levels for the discrete variable is large compared to the number of samples.
Moreover, for the joint distribution problem, it has us estimating completely sep-
arate distributions for Y for every x, without any sharing of information between
them. It would seem more plausible to smooth those distributions towards each
others. To do this, we need kernels for discrete variables.

Several sets of such kernels have been proposed. The most straightforward,

8 As explained long ago by Wiener (1956), the reason nonparametric estimation doesn’t make

scientific theories redundant is that good theories usefully constrain the distributions we’re

searching for, and tell us what structures to look for.
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however, are the following. IfX is a categorical, unordered variable with c possible
values, then, for 0  h < 1,

K(x1, x2) =

⇢
1� h x1 = x2

h/(c� 1) x1 6= x2
(14.41)

is a valid kernel. For an ordered x,

K(x1, x2) =

 
c

|x1 � x2|

!

h|x1�x2|(1� h)c�|x1�x2| (14.42)

where |x1 � x2| should be understood as just how many levels apart x1 and x2

are. As h ! 0, both of these become indicators, and return us to simple relative
frequency counting. Both of these are implemented in np.

14.4.4 Practicalities

The standard R function density implements one-dimensional kernel density
estimation, defaulting to Gaussian kernels with the rule-of-thumb bandwidth.
There are some options for doing cleverer bandwidth selection, including a plug-
in rule. (See the help file.)

For more sophisticated methods, and especially for more dimensions, you’ll
need to use other packages. The np package estimates joint densities using the
npudens function. (The u is for “unconditional”.) This has the same sort of
automatic bandwidth selection as npreg, using cross-validation. Other packages
which do kernel density estimation include KernSmooth and sm.

14.4.5 Kernel Density Estimation in R: An Economic Example

The data set oecdpanel, in the np library, contains information about much
the same sort of variables at the Penn World Tables data you worked with in
the homework, over much the same countries and years, but with some of the
variables pre-transformed, with identifying country information removed, and
slightly di↵erent data sources. See help(oecdpanel) for details.

Here’s an example of using npudens with variables from the oecdpanel data
set, from problem set 11. We’ll look at the joint density of popgro (the logarithm
of the population growth rate) and inv (the logarithm of the investment rate).
Figure 14.1 illustrates how to call the command, and a useful trick where we get
np’s plotting function to do our calculations for us, but then pass the results to
a di↵erent graphics routine. (See help(npplot).) The distribution we get has
two big modes, one at a comparatively low population growth rate (⇡ �2.9 —
remember this is logged so it’s not actually a shrinking population) and high
investment (⇡ �1.5), and the other at a lower rate of investment (⇡ �2) and
higher population growth (⇡ �2.6). There is a third, much smaller mode at high
population growth (⇡ �2.7) and very low investment (⇡ �4).
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popgro
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2.2

data(oecdpanel)
popinv <- npudens(~popgro + inv, data = oecdpanel)
fhat <- plot(popinv, plot.behavior = "data")$d1
library(lattice)
contourplot(fhat$dens ~ fhat$eval$Var1 * fhat$eval$Var2, cuts = 20, xlab = "popgro",

ylab = "inv", labels = list(cex = 0.5))

Figure 14.1 Gaussian kernel estimate of the joint distribution of logged
population growth rate (popgro) and investment rate (inv). Notice that
npudens takes a formula, but that there is no dependent variable on the
left-hand side of the ⇠. With objects produced by the np library, one can
give the plotting function the argument plot.behavior — the default is
plot, but if it’s set to data (as here), it calculates all the information needed
to plot and returns a separate set of objects, which can be plotted in other
functions. (The value plot-data does both.) See help(npplot) for more.
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14.5 Conditional Density Estimation

In addition to estimating marginal and joint densities, we will often want to get
conditional densities. The most straightforward way to get the density of Y given
X, fY |X(y | x), is

bfY |X(y | x) =
bfX,Y (x, y)
bfX(x)

(14.43)

i.e., to estimate the joint and marginal densities and divide one by the other.
To be concrete, let’s suppose that we are using a product kernel to estimate

the joint density, and that the marginal density is consistent with it:

bfX,Y (x, y) =
1

nhXhY

nX

i=1

KX

✓
x� xi

hX

◆
KY

✓
y � yi
hY

◆
(14.44)

bfX(x) =
1

nhX

nX

i=1

KX

✓
x� xi

hX

◆
(14.45)

Thus we need to pick two bandwidths, hX and hY , one for each variable.
This might seem like a solved problem — we just use cross-validation to find

hX and hY so as to minimize the integrated squared error for bfX,Y , and then
plug in to Equation 14.43. However, this is a bit hasty, because the optimal
bandwidths for the joint density are not necessarily the optimal bandwidths for
the conditional density. An extreme but easy to understand example is when Y
is actually independent of X. Since the density of Y given X is just the density
of Y , we’d be best o↵ just ignoring X by taking hX = 1. (In practice, we’d just
use a very big bandwidth.) But if we want to find the joint density, we would not
want to smooth X away completely like this.

The appropriate integrated squared error measure for the conditional density
is

Z
dxfX(x)

Z
dy
⇣
fY |X(y | x)� bfY |X(y | x)

⌘2
(14.46)

and this is what we want to minimize by picking hX and hY . The cross-validation
goes as usual.

One nice, and quite remarkable, property of cross-validation for conditional
density estimation is that it can detect and exploit conditional independence.
Say that X = (U, V ), and that Y is independent of U given V — symbolically,
Y ?? U | V . Then fY |U,V (y | u, v) = fY |V (y | v), and we should just ignore U in
our estimation of the conditional density. It turns out that when cross-validation
is used to pick bandwidths for conditional density estimation, chU ! 1 when
Y ?? U | V , but not otherwise (Hall et al., 2004). In other words, cross-validation
will automatically detect which variables are irrelevant, and smooth them away.
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14.5.1 Practicalities and a Second Example

The np package implements kernel conditional density estimation through the
function npcdens. The syntax is pretty much exactly like that of npreg, and
indeed we can think of estimating the conditional density as a sort of regression,
where the dependent variable is actually a distribution.

To give a concrete example, let’s look at how the distribution of countries’
population growth rates has changed over time, using the oecdpanel data (Figure
14.2). The selected bandwidth for year is 10, while that for popgro is 0.048. (Note
that year is being treated as a continuous variable.)

You can see from the figure that the mode for population growth rates is
towards the high end of observed values, but the mode is shrinking and becoming
less pronounced over time. The distribution in fact begins as clearly bimodal, but
the smaller mode at the lower growth rate turns into a continuous “shoulder”.
Over time, Figure 14.2 population growth rates tend to shrink, and the dispersion
of growth rates narrows.

Let’s expand on this point. One of the variables in oecdpanel is oecd, which is
1 for countries which are members of the Organization for Economic Cooperation
and Development, and 0 otherwise. The OECD countries are basically the “devel-
oped” ones (stable capitalist democracies). We can include OECD membership
as a conditioning variable for population growth (we need to use a categorical-
variable kernel), and look at the combined e↵ect of time and development (Figure
14.3).

What the figure shows is that OECD and non-OECD countries both have
unimodal distributions of growth rates. The mode for the OECD countries has
become sharper, but the value has decreased. The mode for non-OECD countries
has also decreased, while the distribution has become more spread out, mostly
by having more probability of lower growth rates. (These trends have continued
since 1995.) In words, despite the widespread contrary impression, population
growth has actually been slowing for decades in both rich and poor countries.
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pop.cdens <- npcdens(popgro ~ year, data = oecdpanel)
plotting.grid <- expand.grid(year = seq(from = 1965, to = 1995, by = 1), popgro = seq(from = -3.5,

to = -2.4, length.out = 300))
fhat <- predict(pop.cdens, newdata = plotting.grid)
wireframe(fhat ~ plotting.grid$year * plotting.grid$popgro, scales = list(arrows = FALSE),

xlab = "year", ylab = "popgro", zlab = "pdf")

Figure 14.2 Conditional density of logarithmic population growth rates as
a function of time.
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pop.cdens.o <- npcdens(popgro ~ year + factor(oecd), data = oecdpanel)
oecd.grid <- expand.grid(year = seq(from = 1965, to = 1995, by = 1), popgro = seq(from = -3.4,

to = -2.4, length.out = 300), oecd = unique(oecdpanel$oecd))
fhat <- predict(pop.cdens.o, newdata = oecd.grid)
wireframe(fhat ~ oecd.grid$year * oecd.grid$popgro | oecd.grid$oecd, scales = list(arrows = FALSE),

xlab = "year", ylab = "popgro", zlab = "pdf")

Figure 14.3 Conditional density of population growth rates given year and
OECD membership. The left panel is countries not in the OECD, the right
is ones which are.
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14.6 More on the Expected Log-Likelihood Ratio

I want to say just a bit more about the expected log-likelihood ratio
R
f(x) log f(x)

bf(x)
dx.

More formally, this is called the Kullback-Leibler divergence or relative en-
tropy of bf from f , and is also written D(fk bf). Let’s expand the log ratio:

D(fk bf) = �
Z

f(x) log bf(x)dx+
Z

f(x) log f(x)dx (14.47)

The second term does not involve the density estimate, so it’s irrelevant for
purposes of optimizing over bf . (In fact, we’re just subtracting o↵ the entropy of
the true density.) Just as with the squared error, we could try approximating the
integral with a sum:

Z
f(x) log bf(x)dx ⇡ 1

n

nX

i=1

log bf(xi) (14.48)

which is just the log-likelihood per observation. Since we know and like maximum
likelihood methods, why not just use this?

Well, let’s think about what’s going to happen if we plug in the kernel density
estimate:

1

n

nX

i=1

log

 
1

nh

nX

j=1

K

✓
xj � xi

h

◆!

= � log nh+
1

n

nX

i=1

log

 
nX

j=1

K

✓
xj � xi

h

◆!

(14.49)
If we take h to be very small, K(xj�xi

h
) ⇡ 0 unless xj = xi, so the over-all

likelihood becomes

⇡ � log nh+ logK(0) (14.50)

which goes to +1 as h ! 0. So if we want to maximize the likelihood of a kernel
density estimate, we always want to make the bandwidth as small as possible. In
fact, the limit is to say that the density is

f̃(x) =
1

n

nX

i=1

�(x� xi) (14.51)

where � is the Dirac delta function.9 Of course, this is just the same distribution
as the empirical CDF.

Why is maximum likelihood failing us here? Well, it’s doing exactly what we
asked it to: to find the distribution where the observed sample is as probable as
possible. Giving any probability to values of x we didn’t see can only come at

9 Recall that the delta function is defined by how it integrates with other functions:R
�(x)f(x)dx = f(0). You can imagine �(x) as zero everywhere except at the origin, where it has an

infinitely tall, infinitely narrow spike, the area under the spike being one. If you are suspicious that

this is really a bona fide function, you’re right; strictly speaking it’s just a linear operator on

functions. We can however approximate it as the limit of well-behaved functions. For instance, take

�h(x) = 1/h when x 2 [�h/2, h/2] with �h(x) = 0 elsewhere, and let h go to zero. But this is where

we came in. . .
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the expense of the probability of observed values, so Eq. 14.51 really is the unre-
stricted maximum likelihood estimate of the distribution. Anything else imposes
some restrictions or constraints which don’t, strictly speaking, come from the
data. However, those restrictions are what let us generalize to new data, rather
than just memorizing the training sample.

One way out of this is to use the cross-validated log-likelihood to pick a band-
width, i.e., to restrict the sum in Eq. 14.48 to running over the testing set only.
This way, very small bandwidths don’t get an unfair advantage for concentrat-
ing around the training set. (If the test points are in fact all very close to the
training points, then small bandwidths get a fair advantage.) This is in fact the
default procedure in the np package, through the bwmethod option ("cv.ml" vs.
"cv.ls").

14.7 Simulating from Density Estimates

14.7.1 Simulating from Kernel Density Estimates

There are times when one wants to draw random values from the estimated
distribution. This is easy with kernel density estimates, because each kernel is
itself a probability density, generally a very tractable one. The pattern goes like so.
Suppose the kernel is Gaussian, that we have scalar observations x1, x2, . . . xn, and
the selected bandwidth is h. Then we pick an integer i uniformly at random from
1 to n, and invoke rnorm(1,x[i],h).10 Using a di↵erent kernel, we’d just need
to use the random number generator function for the corresponding distribution.

To see that this gives the right distribution needs just a little math. A kernel
K(x, xi, h) with bandwidth h and center xi is a probability density function. The
probability the KDE gives to any set A is just an integral:

bF (A) =
Z

A

bf(x)dx (14.52)

=
Z

A

1

n

nX

i=1

K(x, xi, h)dx (14.53)

=
1

n

nX

i=1

Z

A

K(x, xi, h)dx (14.54)

=
1

n

nX

i=1

C(A, xi, h) (14.55)

introducing C to stand for the probability distribution corresponding to the ker-
nel. The simulation procedure works if the probability that the simulated value
X̃ falls into A matches this. To generate X̃, we first pick a random data point,

10 In fact, if we want to draw a sample of size q, rnorm(q,sample(x,q,replace=TRUE),h) will work in

R — it’s important though that sampling be done with replacement.
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which really means picking a random integer J , uniformly from 1 to n. Then

Pr
⇣
X̃ 2 A

⌘
= E

h
1A(X̃)

i
(14.56)

= E
h
E
h
1A(X̃) | J

ii
(14.57)

= E [C(A, xJ , h)] (14.58)

=
1

n

nX

i=1

C(A, xi, h) (14.59)

The first step uses the fact that a probability is the expectation of an indica-
tor function; the second uses the law of total expectation; the last steps us the
definitions of C and J , and the distribution of J .

14.7.1.1 Sampling from a Joint Density

The procedure given above works with only trivial modification for sampling
from a joint, multivariate distribution. If we’re using a product kernel, we pick a
random data point, and then draw each coordinate independently from the kernel
distribution centered on our random point. (See Code Example 29 below.) The
argument for correctness actually goes exactly as before.

14.7.1.2 Sampling from a Conditional Density

Sampling from a conditional density estimate with product kernels is again straight-
forward. The one trick is that one needs to do a weighted sample of data points.
To see why, look at the conditional distribution (not density) function:

bF (Y 2 A | X = x) (14.60)

=
Z

A

bfY |X(y | x)dy

=
Z

A

1
nhXhY
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dy (14.61)
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CY (A, yi, hY ) (14.64)

If we select the data point i with a weight proportional to KX

⇣
x�xi

hX

⌘
, and

then generate Ỹ from the KY distribution centered at yi, then, Ỹ will follow the
appropriate probability density function.
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14.7.2 Drawing from Histogram Estimates

Sampling from a histogram estimate is also simple, but in a sense goes in the
opposite order from kernel simulation. We first randomly pick a bin by drawing
from a multinomial distribution, with weights proportional to the bin counts.
Once we have a bin, we draw from a uniform distribution over its range.

14.7.3 Examples of Simulating from Kernel Density Estimates

To make all this more concrete, let’s continue working with the oecdpanel data.
Section 14.4.5 shows the joint pdf estimate for the variables popgro and inv
in that data set. These are the logarithms of the population growth rate and
investment rate. Undoing the logarithms and taking the density gives Figure
14.4.

Let’s abbreviate the actual (not logged) population growth rate as X and the
actual (not logged) investment rate as Y in what follows.

Since this is a joint distribution, it implies a certain expected value for Y/X,
the ratio of investment rate to population growth rate11. Extracting this by direct
calculation from popinv2 would not be easy; we’d need to do the integral

Z 1

x=0

Z 1

y=0

y

x
bfX,Y (x, y)dydx (14.65)

To find E [Y/X] by simulation, however, we just need to generate samples from
the joint distribution, say (X̃1, Ỹ1), (X̃2, Ỹ2), . . . (X̃T , ỸT ), and average:

1

T

TX

i=1

Ỹi

X̃i

= g̃T
T!1�! E


Y

X

�
(14.66)

where the convergence happens because that’s the law of large numbers. If the
number of simulation points T is big, then g̃T ⇡ E [Y/X]. How big do we need to
make T? Use the central limit theorem:

g̃T  N (E [Y/X] ,V [g̃1] /
p
T ) (14.67)

How do we find the variance V [g̃1]? We approximate it by simulating.
Code Example 29 is a function which draws from the fitted kernel density

estimate. First let’s check that it works, by giving it something easy to do, namely
reproducing the means, which we can work out:

signif(mean(exp(oecdpanel$popgro)), 3)
## [1] 0.0693
signif(mean(exp(oecdpanel$inv)), 3)
## [1] 0.172
signif(colMeans(rpopinv(200)), 3)
## pop.growth.rate invest.rate
## 0.0697 0.1660

11 Economically, we might want to know this because it would tell us about how quickly the capital

stock per person grows.
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popinv2 <- npudens(~exp(popgro) + exp(inv), data = oecdpanel)

Figure 14.4 Gaussian kernel density estimate for the un-logged population
growth rate and investment rate. (Plotting code omitted — can you re-make
the figure?)

This is pretty satisfactory for only 200 samples, so the simulator seems to be
working. Now we just use it:

z <- rpopinv(2000)
signif(mean(z[, "invest.rate"]/z[, "pop.growth.rate"]), 3)
## [1] 2.61
signif(sd(z[, "invest.rate"]/z[, "pop.growth.rate"])/sqrt(2000), 3)
## [1] 0.0349
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rpopinv <- function(n) {
n.train <- length(popinv2$dens)
ndim <- popinv2$ndim
points <- sample(1:n.train, size = n, replace = TRUE)
z <- matrix(0, nrow = n, ncol = ndim)
for (i in 1:ndim) {

coordinates <- popinv2$eval[points, i]
z[, i] <- rnorm(n, coordinates, popinv2$bw[i])

}
colnames(z) <- c("pop.growth.rate", "invest.rate")
return(z)

}

Code Example 29: Simulating from the fitted kernel density estimate popinv2. Can you see
how to modify it to draw from other bivariate density estimates produced by npudens? From
higher-dimensional distributions? Can you replace the for loop with less iterative code?

This tells us that E [Y/X] ⇡ 2.61 ± 0.035.
Suppose we want not the mean of Y/X but the median?

signif(median(z[, "invest.rate"]/z[, "pop.growth.rate"]), 3)
## [1] 2.31

Getting the whole distribution of Y/X is not much harder (Figure 14.5). Of
course complicated things like distributions converge more slowly than simple
things like means or medians, so we want might want to use more than 2000
simulated values for the distribution. Alternately, we could repeat the simulation
many times, and look at how much variation there is from one realization to the
next (Figure 14.6).

Of course, if we are going to do multiple simulations, we could just average
them together. Say that g̃(1)T , g̃(2)T , . . . g̃(s)T are estimates of our statistic of interest
from s independent realizations of the model, each of size T . We can just combine
them into one grand average:

g̃s,T =
1

s

sX

i=1

g̃(1)T (14.68)

As an average of IID quantities, the variance of g̃s,T is 1/s times the variance of

g̃(1)T .
By this point, we are getting the sampling distribution of the density of a

nonlinear transformation of the variables in our model, with no more e↵ort than
calculating a mean.
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YoverX <- z[, "invest.rate"]/z[, "pop.growth.rate"]
plot(density(YoverX), xlab = "Y/X", ylab = "Probability density", main = "")
rug(YoverX, side = 1)

Figure 14.5 Distribution of Y/X implied by the joint density estimate
popinv2.
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plot(0, xlab = "Y/X", ylab = "Probability density", type = "n", xlim = c(-1, 10),
ylim = c(0, 0.3))

one.plot <- function() {
zprime <- rpopinv(2000)
YoverXprime <- zprime[, "invest.rate"]/zprime[, "pop.growth.rate"]
density.prime <- density(YoverXprime)
lines(density.prime, col = "grey")

}
invisible(replicate(50, one.plot()))

Figure 14.6 Showing the sampling variability in the distribution of Y/X
by “over-plotting”. Each line is a distribution from an estimated sample of
size 2000, as in Figure 14.5; here 50 of them are plotted on top of each other.
The thickness of the bands indicates how much variation there is from
simulation to simulation at any given value of Y/X. (Setting the type of the
initial plot to n, for “null”, creates the plotting window, axes, legends, etc.,
but doesn’t actually plot anything.)
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14.8 Further Reading

Good introductory treatments of density estimation can be found in Simono↵
(1996) and Wasserman (2006). My treatment of conditional density estimation is
based on Hall et al. (2004).

The Glivenko-Cantelli theorem has a more “quantitative” version, the “Dvoretzky-
Kiefer-Wolfowitz inequality”, which asserts that with IID samples from a one-
dimensional CDF F ,

Pr

✓
sup
x

|F̂n(x)� F (x)| > ✏

◆
 2e�2n✏2 (14.69)

and the constants appearing here are known to be the best that hold over all
distributions (Wasserman, 2006, §2.2); this can be inverted to get confidence
bands for the CDF.

On empirical process theory, see Pollard (1989, 1990); van de Geer (2000);
Pollard (1989) is especially good as an introduction. Devroye and Lugosi (2001)
applies empirical process theory to density estimation, as well as forcefully advo-
cating measuring error using the L1 distance,

R
|f̂(x)� f(x)|dx. In this chapter

I have stuck to L2, partly out of tradition and partly out of desire to keep the
algebra simple (which in turn helps explain the tradition).

Historical notes

I do not know of a good history of the Glivenko-Cantelli theorem (but would like
to read one).

Histogram estimates are very old; the word “histogram” was apparently coined
by Karl Pearson in the 1890s12, but as a convenient name for an already-common
type of graphic. Kernel density estimation seems to have first been proposed by
Rosenblatt (1956) (see especially section 4 of that paper). It was re-introduced,
independently, by Parzen (1962), and some of the analysis of the error in KDEs
that we saw above goes back to this paper.

Exercises

14.1 Reproduce Figure 14.4?

14.2 Qualitatively, is this compatible with Figure 14.1?

14.3 How could we use popinv2 to calculate a joint density for popgro and inv (not exp(popgro)

and exp(inv))?

14.4 Should the density popinv2 implies for those variables be the same as what we’d get from

directly estimating their density with kernels?

14.5 You are given a kernel K which satisfies K(u) � 0,
R
K(u)du = 1,

R
uK(u)du = 0,R

u
2
K(u)du = �

2
K < 1. You are also given a bandwidth h > 0, and a collection of n

univariate observations x1, x2, . . . xn. Assume that the data are independent samples from

some unknown density f .

12 See Je↵ Miller (ed.), “Earliest Known Uses of Some of the Words of Mathematics”, s.v.

“Histogram”, http://jeff560.tripod.com/h.html. I have not verified the references cited there,

but have found the site to be generally reliable.
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1. Give the formula for f̂h, the kernel density estimate corresponding to these data, this

bandwidth, and this kernel.

2. Find the expectation of a random variable whose density is f̂h, in terms of the sample

moments, h, and the properties of the kernel function.

3. Find the variance of a random variable whose density is f̂h, in terms of the sample

moments, h, and the properties of the kernel function.

4. How must h change as n grows to ensure that the expectation and variance of f̂h will

converge on the expectation and variance of f?

14.6 The transformation method Many variables have natural range restrictions, like being non-

negative, or lie in some interval. Kernel density estimators don’t respect these restrictions,

so they can give positive probability density to impossible values. One way around this is

the transformation method (or “trick”): use an invertible function q to map the limited

range of X to the whole real line, find the density of the transformed variable, and then

undo the transformation.

In what follows, X is a random variable with pdf f , Y is a random variable with pdf g, and

Y = q(X), for a known function q. You may assume that q is continuous, di↵erentiable

and monotonically increasing, inverse q�1 exists, and is also continuous, di↵erentiable and

monotonically increasing.

1. Find g(y) in terms of f and q.

2. Find f(x) in terms of g and q.

3. Suppose X is confined to the unit interval [0, 1] and q(x) = log x
1�x . Find f(x) in terms

of g and this particular q.

4. The beta distribution is confined to [0, 1]. Draw 1000 random values from the beta

distribution with both shape parameters equal to 1/2. Call this sample x, and plot its

histogram. (Hint: ?rbeta.)

5. Fit a Gaussian kernel density estimate to x , using density, npudens, or any other

existing one-dimensional density estimator you like.

6. Find a Gaussian kernel density estimate for logit(x).

7. Using your previous results, convert the KDE for logit(x) into a density estimate for

x .

8. Make a plot showing (i) the true beta density, (ii) the “raw” kernel density estimate

from 35, and (iii) the transformed KDE from 37. Make sure that the plotting region

shows all three curves adequately, and that the three curves are visually distinct. [[TODO:
Fix exer-
cise cross-
reference
numbers
here!]]


