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Generalized Linear Models and Generalized
Additive Models

12.1 Generalized Linear Models and Iterative Least Squares

Logistic regression is a particular instance of a broader kind of model, called
a generalized linear model (GLM). You are familiar, of course, from your
regression class with the idea of transforming the response variable, what we’ve
been calling Y , and then predicting the transformed variable from X. This was
not what we did in logistic regression. Rather, we transformed the conditional
expected value, and made that a linear function of X. This seems odd, because it
is odd, but it turns out to be useful.

Let’s be specific. Our usual focus in regression modeling has been the condi-
tional expectation function, µ(x) = E [Y |X = x]. In plain linear regression, we
try to approximate µ(x) by �0+x ·�. In logistic regression, µ(x) = E [Y |X = x] =
Pr (Y = 1|X = x), and it is a transformation of µ(x) which is linear. The usual
notation says

⌘(x) = �0 + x · � (12.1)

⌘(x) = log
µ(x)

1� µ(x)
(12.2)

= g(µ(x)) (12.3)

defining the logistic link function by g(m) = logm/(1�m). The function ⌘(x)
is called the linear predictor.

Now, the first impulse for estimating this model would be to apply the trans-
formation g to the response. But Y is always zero or one, so g(Y ) = ±1, and
regression will not be helpful here. The standard strategy is instead to use (what
else?) Taylor expansion. Specifically, we try expanding g(Y ) around µ(x), and
stop at first order:

g(Y ) ⇡ g(µ(x)) + (Y � µ(x))g0(µ(x)) (12.4)

= ⌘(x) + (Y � µ(x))g0(µ(x)) ⌘ z (12.5)

We define this to be our e↵ective response after transformation. Notice that if
there were no noise, so that y was always equal to its conditional mean µ(x),
then regressing z on x would give us back exactly the coe�cients �0,�. What
this suggests is that we can estimate those parameters by regressing z on x.

The term Y � µ(x) has expectation zero, so it acts like the noise, with the
factor of g0 telling us about how the noise is scaled by the transformation. This
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lets us work out the variance of z:

V [Z|X = x] = V [⌘(x)|X = x] + V [(Y � µ(x))g0(µ(x))|X = x] (12.6)

= 0 + (g0(µ(x)))
2 V [Y |X = x] (12.7)

For logistic regression, with Y binary, V [Y |X = x] = µ(x)(1�µ(x)). On the other
hand, with the logistic link function, g0(µ(x)) = 1

µ(x)(1�µ(x))
. Thus, for logistic

regression, V [Z|X = x] = [µ(x)(1� µ(x))]�1.
Because the variance of Z changes with X, this is a heteroskedastic regression

problem. As we saw in chapter 10, the appropriate way of dealing with such a
problem is to use weighted least squares, with weights inversely proportional to
the variances. This means that, in logistic regression, the weight at x should be
proportional to µ(x)(1 � µ(x)). Notice two things about this. First, the weights
depend on the current guess about the parameters. Second, we give lots of weight
to cases where µ(x) ⇡ 0 or where µ(x) ⇡ 1, and little weight to those where
µ(x) = 0.5. This focuses our attention on places where we have a lot of potential
information — the distinction between a probability of 0.499 and 0.501 is just a
lot harder to discern than that between 0.001 and 0.003!

We can now put all this together into an estimation strategy for logistic regres-
sion.

1. Get the data (x1, y1), . . . (xn, yn), and some initial guesses �0,�.
2. until �0,� converge

1. Calculate ⌘(xi) = �0 + xi · � and the corresponding bµ(xi)
2. Find the e↵ective transformed responses zi = ⌘(xi) +

yi�bµ(xi)
bµ(xi)(1�bµ(xi))

3. Calculate the weights wi = bµ(xi)(1� bµ(xi))
4. Do a weighted linear regression of zi on xi with weights wi, and set �0,�

to the intercept and slopes of this regression

Our initial guess about the parameters tells us about the heteroskedastic-
ity, which we use to improve our guess about the parameters, which we use
to improve our guess about the variance, and so on, until the parameters stabi-
lize. This is called iterative reweighted least squares (or “iterative weighted
least squares”, “iteratively weighted least squares”, “iteratived reweighted least
squares”, etc.), abbreviated IRLS, IRWLS, IWLS, etc. As mentioned in the last
chapter, this turns out to be almost equivalent to Newton’s method, at least for
this problem.

12.1.1 GLMs in General

The set-up for an arbitrary GLM is a generalization of that for logistic regression.
We need

• A linear predictor, ⌘(x) = �0 + x · �
• A link function g, so that ⌘(x) = g(µ(x)). For logistic regression, we had

g(µ) = log µ/(1� µ).
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• A dispersion scale function V , so that V [Y |X = x] = �2V (µ(x)). For logis-
tic regression, we had V (µ) = µ(1� µ), and �2 = 1.

With these, we know the conditional mean and conditional variance of the re-
sponse for each value of the input variables x.

As for estimation, basically everything in the IRWLS set up carries over un-
changed. In fact, we can go through this algorithm:

1. Get the data (x1, y1), . . . (xn, yn), fix link function g(µ) and dispersion scale
function V (µ), and make some initial guesses �0,�.

2. Until �0,� converge:

1. Calculate ⌘(xi) = �0 + xi · � and the corresponding bµ(xi)
2. Find the e↵ective transformed responses zi = ⌘(xi) + (yi � bµ(xi))g0(bµ(xi))

3. Calculate the weights wi = [(g0(bµ(xi))2V (bµ(xi))]
�1

4. Do a weighted linear regression of zi on xi with weights wi, and set �0,�
to the intercept and slopes of this regression

Notice that even if we don’t know the over-all variance scale �2, that’s OK,
because the weights just have to be proportional to the inverse variance.

12.1.2 Examples of GLMs

12.1.2.1 Vanilla Linear Models

To re-assure ourselves that we are not doing anything crazy, let’s see what
happens when g(µ) = µ (the “identity link”), and V [Y |X = x] = �2, so that
V (µ) = 1. Then g0 = 1, all weights wi = 1, and the e↵ective transformed re-
sponse zi = yi. So we just end up regressing yi on xi with no weighting at all
— we do ordinary least squares. Since neither the weights nor the transformed
response will change, IRWLS will converge exactly after one step. So if we get
rid of all this nonlinearity and heteroskedasticity and go all the way back to our
very first days of doing regression, we get the OLS answers we know and love.

12.1.2.2 Binomial Regression

In many situations, our response variable yi will be an integer count running
between 0 and some pre-determined upper limit ni. (Think: number of patients
in a hospital ward with some condition, number of children in a classroom passing
a test, number of widgets produced by a factory which are defective, number of
people in a village with some genetic mutation.) One way to model this would be
as a binomial random variable, with ni trials, and a success probability pi which
is a logistic function of predictors x. The logistic regression we have done so far
is the special case where ni = 1 always. I will leave it as an Exercise (12.1) for
you to work out the link function and the weights for general binomial regression,
where the ni are treated as known.

One implication of this model is that each of the ni “trials” aggregated together
in yi is independent of all the others, at least once we condition on the predictors



12.1 Generalized Linear Models and Iterative Least Squares 293

x. (So, e.g., whether any student passes the test is independent of whether any
of their classmates pass, once we have conditioned on, say, teacher quality and
average previous knowledge.) This may or may not be a reasonable assumption.
When the successes or failures are dependent, even after conditioning on the
predictors, the binomial model will be mis-specified. We can either try to get
more information, and hope that conditioning on a richer set of predictors makes
the dependence go away, or we can just try to account for the dependence by
modifying the variance (“overdispersion” or “underdispersion”); we’ll return to
both topics in §12.1.4.

12.1.2.3 Poisson Regression

Recall that the Poisson distribution has probability mass function

p(y) =
e�µµy

y!
(12.8)

with E [Y ] = V [Y ] = µ. As you remember from basic probability, a Poisson
distribution is what we get from a binomial if the probability of success per trial
shrinks towards zero but the number of trials grows to infinity, so that we keep
the mean number of successes the same:

Binom(n, µ/n) Pois(µ) (12.9)

This makes the Poisson distribution suitable for modeling counts with no fixed
upper limit, but where the probability that any one of the many individual trials
is a success is fairly low. If µ is allowed to change with the predictor variables, we
get Poisson regression. Since the variance is equal to the mean, Poisson regression
is always going to be heteroskedastic.

Since µ has to be non-negative, a natural link function is g(µ) = log µ. This
produces g0(µ) = 1/µ, and so weights w = µ. When the expected count is large,
so is the variance, which normally would reduce the weight put on an observation
in regression, but in this case large expected counts also provide more information
about the coe�cients, so they end up getting increasing weight.

12.1.3 Uncertainty

Standard errors for coe�cients can be worked out as in the case of weighted
least squares for linear regression. Confidence intervals for the coe�cients will
be approximately Gaussian in large samples, for the usual likelihood-theory rea-
sons, when the model is properly specified. One can, of course, also use either a
parametric bootstrap, or resampling of cases/data-points to assess uncertainty.

Resampling of residuals can be trickier, because it is not so clear what counts as
a residual. When the response variable is continuous, we can get “standardized”
or “Pearson” residuals, ✏̂i = yi�bµ(xi)p

\V (µ(xi))
, resample them to get ✏̃i, and then add

✏̃i

q
\V (µ(xi)) to the fitted values. This does not really work when the response is

discrete-valued, however. [[ATTN:
Look up
if anyone
has a good
trick for
this]]
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12.1.4 Modeling Dispersion

When we pick a family for the conditional distribution of Y , we get a pre-
dicted conditional variance function, V (µ(x)). The actual conditional variance
V [Y |X = x] may however not track this. When the variances are larger, the
process is over-dispersed; when they are smaller, under-dispersed. Over-
dispersion is more common and more worrisome. In many cases, it arises from
some un-modeled aspect of the process — some unobserved heterogeneity, or some
missed dependence. For instance, if we observe count data with an upper limit
and use a binomial model, we’re assuming that each “trial” within a data point
is independent; positive correlation between the trials will give larger variance
around the mean that the mp(1� p) we’d expect1.

The most satisfying solution to over-dispersion is to actually figure out where
it comes from, and model its origin. Failing that, however, we can fall back on
more “phenomenological” modeling. One strategy is to say that

V [Y |X = x] = �(x)V (µ(x)) (12.10)

and try to estimate the function � — a modification of the variance-estimation
idea we saw in §10.3. In doing so, we need a separate estimate of V [Y |X = xi].
This can come from repeated measurements at the same value of x, or from the
squared residuals at each data point. Once we have some noisy but independent
estimate of V [Y |X = xi], the ratio V [Y |X = xi] /V (µ(xi)) can be regressed on
xi to estimate �. Some people recommend doing this step, itself, through a gen-
eralized linear or generalized additive model, with a gamma distribution for the
response, so that the response is guaranteed to be positive.

12.1.5 Likelihood and Deviance

When dealing with GLMs, it is conventional to report not the log-likelihood, but
the deviance. The deviance of a model with parameters (�0,�) is defined as

D(�0,�) = 2[`(saturated)� `(�0,�)] (12.11)

Here, `(�0,�) is the log-likelihood of our model, and `(saturated) is the log-
likelihood of a saturated model which has one parameter per data point. Thus,
models with high likelihoods will have low deviances, and vice versa. If our model
is correct and has p + 1 parameters in all (including the intercept), then the
deviance will generally approach a �2 distribution asymptotically, with n�(p+1)
degrees of freedom; the factor of 2 in the definition is to ensure this.

For discrete response variables, the saturated model can usually ensure that
Pr (Y = yi|X = xi) = 1, so `(saturated) = 0, and deviance is just twice the
negative log-likelihood. If there are multiple data points with the same value of
x but di↵erent values of y, then `(saturated) < 0. In any case, even for repeated
values of x or even continuous response variables, di↵erences in deviance are

1 If (for simplicity) all the trials have the same covariance ⇢, then the variance of their sum is

mp(1� p) +m(m� 1)⇢ (why?).
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just twice di↵erences in log-likelihood: D(model1)�D(model2) = 2[`(model2)�
`(model1)].

12.1.5.1 Maximum Likelihood and the Choice of Link Function

Having chosen a family of conditional distributions, it may happen that when we
write out the log-likelihood, the latter depends on the both the response variables
yi and the coe�cients only through the product of yi with some transformation
of the conditional mean bµ:

` =
nX

i=1

f(yi, xi) + yig(bµi) + h(✓) (12.12)

In the case of logistic regression, examining Eq. 11.8 (§11.2.1, p. 263) shows that
the log-likelihood can be put in this form with g(bµi) = log bµi/(1� bµi). In the
case of a Gaussian conditional distribution for Y , we would have f = �y2

i /2,
g(bµi) = bµi, and h(✓) = �bµ2

i . When the log-likelihood can be written in this form,
g(·) is the “natural” transformation to apply to the conditional mean, i.e., the
natural link function, and assures us that the solution to iterative least squares
will converge on the maximum likelihood estimate.2 Of course we are free to
nonetheless use other transformations of the conditional expectation.

12.1.6 R: glm

As with logistic regression, the workhorse R function for all manner of GLMs is,
simply, glm. The syntax is strongly parallel to that of lm, with the addition of a
family argument that specifies the intended distribution of the response variable
(binomial, gaussian, poisson, etc.), and, optionally, a link function appropriate
to the family. (See help(family) for the details.) With family="gaussian" and
an identity link function, its intended behavior is the same as lm.

2 To be more technical, we say that a distribution with parameters ✓ is an exponential family if its

probability density function at x is exp f(x) + T (x) · g(✓)/z(✓), for some vector of statistics T and

some transformation g of the parameters. (To ensure normalization,

z(✓) =
R
exp (f(x) + T (x) · g(✓))dx. Of course, if the sample space x is discrete, replace this integral

with a sum.) We then say that T (·) are the “natural” or “canonical” su�cient statistics, and g(✓)

are the “natural” parameters. Eq. 12.12 is picking out the natural parameters, presuming the

response variable is itself the natural su�cient statistic. Many of the familiar families of

distributions, like Gaussians, exponentials, gammas, Paretos, binomials and Poissons are

exponential families. Exponential families are very important in classical statistical theory, and have

deep connections to thermodynamics and statistical mechanics (where they’re called “canonical

ensembles”, “Boltzmann distributions” or “Gibbs distributions” (Mandelbrot, 1962)), and to

information theory (where they’re “maximum entropy distributions”, or “minimax codes”

(Grünwald, 2007)). Despite their coolness, they are a rather peripheral topic for our sort of data

analysis — though see Guttorp (1995) for examples of using them in modeling discrete processes.

Any good book on statistical theory (e.g., Casella and Berger 2002) will have a fairly extensive

discussion; Barndor↵-Nielsen (1978) and Brown (1986) are comprehensive treatments.
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12.2 Generalized Additive Models

In the development of generalized linear models, we use the link function g to
relate the conditional mean bµ(x) to the linear predictor ⌘(x). But really nothing
in what we were doing required ⌘ to be linear in x. In particular, it all works
perfectly well if ⌘ is an additive function of x. We form the e↵ective responses
zi as before, and the weights wi, but now instead of doing a linear regression on
xi we do an additive regression, using backfitting (or whatever). This gives us a
generalized additive model (GAM).

Essentially everything we know about the relationship between linear models
and additive models carries over. GAMs converge somewhat more slowly as n
grows than do GLMs, but the former have less bias, and strictly include GLMs
as special cases. The transformed (mean) response is related to the predictor vari-
ables not just through coe�cients, but through whole partial response functions.
If we want to test whether a GLM is well-specified, we can do so by comparing
it to a GAM, and so forth.

In fact, one could even make ⌘(x) an arbitrary smooth function of x, to be
estimated through (say) kernel smoothing of zi on xi. This is rarely done, however,
partly because of curse-of-dimensionality issues, but also because, if one is going to
go that far, one might as well just use kernels to estimate conditional distributions,
as we will see in Chapter 14.

12.3 Further Reading

At our level of theory, good references on generalized linear and generalized ad-
ditive models include Faraway (2006) and Wood (2006), both of which include
extensive examples in R. Tutz (2012) o↵ers an extensive treatment of GLMs with
categorical response distributions, along with comparisons to other models for
that task.

Overdispersion is the subject of a large literature of its own. All of the refer-
ences just named discuss methods for it. Lambert and Roeder (1995) is worth
mentioning for introducing some simple-to-calculate ways of detecting and de-
scribing over-dispersion which give some information about why the response is
over-dispersed. One of these (the “relative variance curve”) is closely related to
the idea sketched above about estimating the dispersion factor.

Exercises

12.1 In binomial regression, we have Y |X = x ⇠ Binom(n, p(x)), where p(x) follows a logistic

model. Work out the link function g(µ), the variance function V (µ), and the weights w,

assuming that n is known and not random.

12.2 Problem set 12, on predicting the death rate in Chicago, is a good candidate for using

Poisson regression. Repeat the exercises in that problem set with Poisson-response GAMs.

How do the estimated functions change? Why is this any di↵erent from just taking the

log of the death counts, as suggested in that problem set?


