
11

Logistic Regression

11.1 Modeling Conditional Probabilities

So far, we either looked at estimating the conditional expectations of continu-
ous variables (as in regression), or at estimating distributions. There are many
situations where however we are interested in input-output relationships, as in
regression, but the output variable is discrete rather than continuous. In par-
ticular there are many situations where we have binary outcomes (it snows in
Pittsburgh on a given day, or it doesn’t; this squirrel carries plague, or it doesn’t;
this loan will be paid back, or it won’t; this person will get heart disease in the
next five years, or they won’t). In addition to the binary outcome, we have some
input variables, which may or may not be continuous. How could we model and
analyze such data?

We could try to come up with a rule which guesses the binary output from
the input variables. This is called classification, and is an important topic in
statistics and machine learning. However, guessing “yes” or “no” is pretty crude
— especially if there is no perfect rule. (Why should there be a perfect rule?)
Something which takes noise into account, and doesn’t just give a binary answer,
will often be useful. In short, we want probabilities — which means we need to
fit a stochastic model.

What would be nice, in fact, would be to have conditional distribution of the
response Y , given the input variables, Pr (Y |X). This would tell us about how
precise our predictions should be. If our model says that there’s a 51% chance
of snow and it doesn’t snow, that’s better than if it had said there was a 99%
chance of snow (though even a 99% chance is not a sure thing). We will see,
in Chapter 14, general approaches to estimating conditional probabilities non-
parametrically, which can use the kernels for discrete variables from Chapter 4.
While there are a lot of merits to this approach, it does involve coming up with
a model for the joint distribution of outputs Y and inputs X, which can be quite
time-consuming.

Let’s pick one of the classes and call it “1” and the other “0”. (It doesn’t matter
which is which.) Then Y becomes an indicator variable, and you can convince
yourself that Pr (Y = 1) = E [Y]. Similarly, Pr (Y = 1|X = x) = E [Y |X = x]. (In
a phrase, “conditional probability is the conditional expectation of the indica-
tor”.) This helps us because by this point we know all about estimating condi-
tional expectations. The most straightforward thing for us to do at this point

257

11:43 Friday 23rd February, 2024
Copyright c�Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

258 Logistic Regression

would be to pick out our favorite smoother and estimate the regression function
for the indicator variable; this will be an estimate of the conditional probability
function.

There are two reasons not to just plunge ahead with that idea. One is that
probabilities must be between 0 and 1, but our smoothers will not necessarily
respect that, even if all the observed yi they get are either 0 or 1. The other is
that we might be better o↵ making more use of the fact that we are trying to
estimate probabilities, by more explicitly modeling the probability.

Assume that Pr (Y = 1|X = x) = p(x; ✓), for some function p parameterized
by ✓. parameterized function ✓, and further assume that observations are inde-
pendent of each other. The the (conditional) likelihood function is

nY

i=1

Pr (Y = yi|X = xi) =
nY

i=1

p(xi; ✓)
yi(1� p(xi; ✓))

1�yi (11.1)

Recall that in a sequence of Bernoulli trials y1, . . . yn, where there is a constant
probability of success p, the likelihood is

nY

i=1

pyi(1� p)1�yi (11.2)

As you learned in basic statistics, this likelihood is maximized when p = p̂ =
n�1

Pn
i=1 yi. If each trial had its own success probability pi, this likelihood be-

comes
nY

i=1

pyi

i (1� pi)
1�yi (11.3)

Without some constraints, estimating the “inhomogeneous Bernoulli” model by
maximum likelihood doesn’t work; we’d get p̂i = 1 when yi = 1, p̂i = 0 when
yi = 0, and learn nothing. If on the other hand we assume that the pi aren’t just
arbitrary numbers but are linked together, if we model the probabilities, those
constraints give non-trivial parameter estimates, and let us generalize. In the
kind of model we are talking about, the constraint, pi = p(xi; ✓), tells us that
pi must be the same whenever xi is the same, and if p is a continuous function,
then similar values of xi must lead to similar values of pi. Assuming p is known
(up to parameters), the likelihood is a function of ✓, and we can estimate ✓ by
maximizing the likelihood. This chapter will be about this approach.

11.2 Logistic Regression

To sum up: we have a binary output variable Y , and we want to model the condi-
tional probability Pr (Y = 1|X = x) as a function of x; any unknown parameters
in the function are to be estimated by maximum likelihood. By now, it will not
surprise you to learn that statisticians have approached this problem by asking
themselves “how can we use linear regression to solve this?”

11.2 Logistic Regression 259

1. The most obvious idea is to let p(x) be a linear function of x. Every increment
of a component of x would add or subtract so much to the probability. This
is called a “linear probability model”. The conceptual problem here is that p
must be between 0 and 1, and linear functions are unbounded. Moreover, in
many situations we empirically see “diminishing returns” — changing p by the
same amount requires a bigger change in x when p is already large (or small)
than when p is close to 1/2. Linear models can’t do this.

2. The next most obvious idea is to let log p(x) be a linear function of x, so
that changing an input variable multiplies the probability by a fixed amount.
The problem is that logarithms of probabilities are unbounded in only one
direction, and linear functions are not.

3. Finally, the easiest modification of log p which has an unbounded range is
the logistic transformation (or logit) , log p

1�p
. We can make this a linear

function of x without fear of nonsensical results. (Of course the results could
still happen to be wrong, but they’re not guaranteed to be wrong.)

This last alternative is logistic regression.
Formally, the logistic regression model is that

log
p(x)

1� p(x)
= �0 + x · � (11.4)

Solving for p, this gives

p(x;�) =
e�0+x·�

1 + e�0+x·� =
1

1 + e�(�0+x·�) (11.5)

Notice that the overall specification is a lot easier to grasp in terms of the trans-
formed probability that in terms of the untransformed probability.1

To minimize the mis-classification rate, we should predict Y = 1 when p � 0.5
and Y = 0 when p < 0.5 (Exercise 11.1). This means guessing 1 whenever �0+x·�
is non-negative, and 0 otherwise. So logistic regression gives us a linear classifier.
The decision boundary separating the two predicted classes is the solution of
�0+x·� = 0, which is a point if x is one dimensional, a line if it is two dimensional,
etc. One can show (exercise!) that the distance from the decision boundary is
�0/k�k+x ·�/k�k. Logistic regression not only says where the boundary between
the classes is, but also says (via Eq. 11.5) that the class probabilities depend on
distance from the boundary, in a particular way, and that they go towards the
extremes (0 and 1) more rapidly when k�k is larger. It’s these statements about
probabilities which make logistic regression more than just a classifier. It makes
stronger, more detailed predictions, and can be fit in a di↵erent way; but those
strong predictions could be wrong.

Using logistic regression to predict class probabilities is a modeling choice, just
like it’s a modeling choice to predict quantitative variables with linear regression.
In neither case is the appropriateness of the model guaranteed by the gods, nature,

1 Unless you’ve taken thermodynamics or physical chemistry, in which case you recognize that this is

the Boltzmann distribution for a system with two states, which di↵er in energy by �0 + x · �.

260 Logistic Regression

x1

x 2

 0.4

 0.42

 0.44

 0.46
 0.48

 0.5

 0.52

 0.54

 0.56

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

+

−

+

−

−
−−

−
−−

+

+
+

+ + +

+

+

−
−

+

+

−
+

−

−

+

−

−

+

−

+
−

+

+

−

+

−

+

−

+
+

+

+ − −

+

+

−
+

x1

x 2

 0.1

 0.2
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

−

−

+

−

+
++

+
++

−

−
+

+ − −

−

−

+
+

−

+

+
+

−

−

−

−

−

+

+

+
−

+

−

+

+

−

+

−

+
−

−

+ + −

+

−

−
−

x1

x 2

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

−

−

+

−

+
−+

+
−+

−

−
−

+ − −

−

+

+
−

−

+

−
+

−

−

−

−

−

+

−

−
−

+

−

−

+

+

+

−

+
+

−

+ − −

+

−

−
−

x1

x 2

 0.1

 0.2

 0.3

 0.4

 0.5
 0.6

 0.7 0
.8

 0.9

 1

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

−

−

+

−

+
−+

+
−−

−

−
−

+ − −

−

−

+
−

−

+

+
+

−

+

−

−

−

+

−

−
−

−

−

−

+

+

−

−

+
−

−

+ − −

−

−
−

x <- matrix(runif(n = 50 * 2, min = -1, max = 1), ncol = 2)
par(mfrow = c(2, 2))
plot.logistic.sim(x, beta.0 = -0.1, beta = c(-0.2, 0.2))
y.1 <- plot.logistic.sim(x, beta.0 = -0.5, beta = c(-1, 1))
plot.logistic.sim(x, beta.0 = -2.5, beta = c(-5, 5))
plot.logistic.sim(x, beta.0 = -250, beta = c(-500, 500))

Figure 11.1 E↵ects of scaling logistic regression parameters. Values of x1

and x2 are the same in all plots (⇠ Unif(�1, 1) for both coordinates), but
labels were generated randomly from logistic regressions with �0 = �0.1,
� = (�0.2, 0.2) (top left); from �0 = �0.5, � = (�1, 1) (top right); from
�0 = �2.5, � = (�5, 5) (bottom left); and from �0 = 2.5⇥ 102,
� = (�5⇥ 102, 5⇥ 102). Notice how as the parameters get increased in
constant ratio to each other, we approach a deterministic relation between Y
and x, with a linear boundary between the classes. (We save one set of the
random binary responses for use later, as the imaginatively-named y.1.)

11.2 Logistic Regression 261

sim.logistic <- function(x, beta.0, beta, bind = FALSE) {
require(faraway)
linear.parts <- beta.0 + (x %*% beta)
y <- rbinom(nrow(x), size = 1, prob = ilogit(linear.parts))
if (bind) {

return(cbind(x, y))
}
else {

return(y)
}

}

plot.logistic.sim <- function(x, beta.0, beta, n.grid = 50, labcex = 0.3, col = "grey",
...) {
grid.seq <- seq(from = -1, to = 1, length.out = n.grid)
plot.grid <- as.matrix(expand.grid(grid.seq, grid.seq))
require(faraway)
p <- matrix(ilogit(beta.0 + (plot.grid %*% beta)), nrow = n.grid)
contour(x = grid.seq, y = grid.seq, z = p, xlab = expression(x[1]), ylab = expression(x[2]),

main = "", labcex = labcex, col = col)
y <- sim.logistic(x, beta.0, beta, bind = FALSE)
points(x[, 1], x[, 2], pch = ifelse(y == 1, "+", "-"), col = ifelse(y == 1, "blue",

"red"))
invisible(y)

}

Code Example 26: Code to simulate binary responses from a logistic regression model, and to
plot a 2D logistic regression’s probability contours and simulated binary values. (How would you
modify this to take the responses from a data frame?

mathematical necessity, etc. We begin by positing the model, to get something
to work with, and we end (if we know what we’re doing) by checking whether it
really does match the data, or whether it has systematic flaws.

Logistic regression is one of the most commonly used tools for applied statistics
and discrete data analysis. There are basically four reasons for this.

1. Tradition.
2. In addition to the heuristic approach above, the quantity log p/(1� p) plays

an important role in the analysis of contingency tables (the “log odds”). Clas-
sification is a bit like having a contingency table with two columns (classes)
and infinitely many rows (values of x). With a finite contingency table, we can
estimate the log-odds for each row empirically, by just taking counts in the
table. With infinitely many rows, we need some sort of interpolation scheme;
logistic regression is linear interpolation for the log-odds.

3. It’s closely related to “exponential family” distributions, where the probability

of some vector v is proportional to exp
n
�0 +

Pm
j=1 fj(v)�j

o
. If one of the

components of v is binary, and the functions fj are all the identity function,
then we get a logistic regression. Exponential families arise in many contexts
in statistical theory (and in physics!), so there are lots of problems which can
be turned into logistic regression.

262 Logistic Regression

4. It often works surprisingly well as a classifier. But, many simple techniques
often work surprisingly well as classifiers, and this doesn’t really testify to
logistic regression getting the probabilities right.

11.2 Logistic Regression 263

11.2.1 Likelihood Function for Logistic Regression

[[TODO: Standardize notation here for likelihood function compared to theory
appendix]]

Because logistic regression predicts probabilities, rather than just classes, we
can fit it using likelihood. For each training data-point, we have a vector of
features, xi, and an observed class, yi. The probability of that class was either p,
if yi = 1, or 1� p, if yi = 0. The likelihood is then

L(�0,�) =
nY

i=1

p(xi)
yi(1� p(xi))

1�yi (11.6)

(I could substitute in the actual equation for p, but things will be clearer in a
moment if I don’t.) The log-likelihood turns products into sums:

`(�0,�) =
nX

i=1

yi log p(xi) + (1� yi) log (1� p(xi)) (11.7)

=
nX

i=1

log (1� p(xi)) +
nX

i=1

yi log
p(xi)

1� p(xi)
(11.8)

=
nX

i=1

log (1� p(xi)) +
nX

i=1

yi(�0 + xi · �) (11.9)

=
nX

i=1

� log
�
1 + e�0+xi·�

�
+

nX

i=1

yi(�0 + xi · �) (11.10)

where in the next-to-last step we finally use equation 11.4.
Typically, to find the maximum likelihood estimates we’d di↵erentiate the log

likelihood with respect to the parameters, set the derivatives equal to zero, and
solve. To start that, take the derivative with respect to one component of �, say
�j.

@`

@�j
= �

nX

i=1

1

1 + e�0+xi·�
e�0+xi·�xij +

nX

i=1

yixij (11.11)

=
nX

i=1

(yi � p(xi;�0,�))xij (11.12)

We are not going to be able to set this to zero and solve exactly. (That’s a
transcendental equation, and there is no closed-form solution.) We can however
approximately solve it numerically.

264 Logistic Regression

11.3 Numerical Optimization of the Likelihood

While our likelihood isn’t nice enough that we have an explicit expression for
the maximum (the way we do in OLS or WLS), it is a pretty well-behaved func-
tion, and one which is amenable to lots of the usual numerical methods for op-
timization. In particular, like most log-likelihood functions, it’s suitable for an
application of Newton’s method. Briefly (see Appendix D.2 for details), New-
ton’s method starts with an initial guess about the optimal parameters, and then
calculates the gradient of the log-likelihood with respect to those parameters. It
then adds an amount proportional to the gradient to the parameters, moving up
the surface of the log-likelihood function. The size of the step in the gradient
direction is dictated by the second derivatives — it takes bigger steps when the
second derivatives are small (so the gradient is a good guide to what the function
looks like), and small steps when the curvature is large.

11.3.1 Iteratively Re-Weighted Least Squares

Remarkably enough, in the case of logistic regression, each step of Newton’s
method ends up looking like a good, old-fashioned linear regression problem.

Fundamentally, this is because logistic regression is a linear model for a trans-
formation of the probability. Let’s call this transformation g:

g(p) ⌘ log
p

1� p
(11.13)

So the model is

g(p) = �0 + x · � (11.14)

and Y |X = x ⇠ Binom(1, g�1(�0 + x · �)). It seems that what we should want
to do is take g(y) and regress it linearly on x. Of course, the variance of Y ,
according to the model, is going to change depending on x — it will be (g�1(�0+
x ·�))(1�g�1(�0+x ·�)) — so we really ought to do a weighted linear regression,
with weights inversely proportional to that variance. (We learned about weighted
linear regression in Chapter 10.) Since writing g�1(�0+x ·�) is getting annoying,
let’s abbreviate it by p(x) or just p, and let’s abbreviate that variance as V (p).

The problem is that y is either 0 or 1, so g(y) is either �1 or +1. We will
evade this by using first-order Taylor expansion (App. B).

g(y) ⇡ g(p) + (y � p)g0(p) ⌘ z (11.15)

The right hand side, z will be our e↵ective response variable, which we will regress
on x. To see why this should give us the right coe�cients, substitute for g(p) in
the definition of z,

z = �0 + x · � + (y � p)g0(p) (11.16)

and notice that, if we’ve got the coe�cients right, E [Y |X = x] = p, so (y � p)
should be mean-zero noise. In other words, when we have the right coe�cients,
z is a linear function of x plus mean-zero noise. (This is our excuse for throwing

11.3 Numerical Optimization of the Likelihood 265

away the rest of the Taylor expansion, even though we know the discarded terms
are infinitely large!) That noise doesn’t have constant variance, but we can work
it out,

V [Z|X = x] = V [(Y � p)g0(p)|X = x] = (g0(p))2V (p) , (11.17)

and so use that variance in weighted least squares to recover �.
Notice that z and the weights both involve the parameters of our logistic re-

gression, through p(x). So having done this once, we should really use the new
parameters to update z and the weights, and do it again. Eventually, we come
to a fixed point, where the parameter estimates no longer change. This loop —
start with a guess about the parameters, use it to calculate the zi and their
weights, regress on the xi to get new parameters, and repeat — is known as iter-
ative reweighted least squares (IRLS or IRWLS), iterative weighted least
squares (IWLS), etc.

The treatment above is rather heuristic2, but it turns out to be equivalent
to using Newton’s method, only with the expected second derivative of the log
likelihood, instead of its actual value. This takes a reasonable amount of algebra
to show, so we’ll skip it (but see Exercise 11.3)3. Since, with a large number
of observations, the observed second derivative should be close to the expected
second derivative, this is only a small approximation.

Perfect Classification

One caution about using maximum likelihood to fit logistic regression is that it
can seem to work badly when the training data can be linearly separated. The
reason is that, to make the likelihood large, p(xi) should be large when yi = 1,
and p should be small when yi = 0. If �0,�0 is a set of parameters which perfectly
classifies the training data, then c�0, c� is too, for any c > 1, but in a logistic
regression the second set of parameters will have more extreme probabilities, and
so a higher likelihood. For linearly separable data, then, there is no parameter
vector which maximizes the likelihood, since ` can always be increased by making
the vector larger but keeping it pointed in the same direction.

You should, of course, be so lucky as to have this problem.

2 That is, mathematically incorrect.
3 The two key points are as follows. First, the gradient of the log-likelihood turns out to be the sum of

the zixi. (Cf. Eq. 11.12.) Second, take a single Bernoulli observation with success probability p. The

log-likelihood is Y log p+ (1� Y) log 1� p. The first derivative with respect to p is

Y/p� (1� Y)/(1� p), and the second derivative is �Y/p2 � (1� Y)/(1� p)2. Taking expectations

of the second derivative gives �1/p� 1/(1� p) = �1/p(1� p). In other words, V (p) = �1/E [`00].

Using weights inversely proportional to the variance thus turns out to be equivalent to dividing by

the expected second derivative. But gradient divided by second derivative is the increment we use in

Newton’s method, QED.

266 Logistic Regression

11.4 Generalized Linear and Generalized Additive Models

Logistic regression is part of a broader family of generalized linear models
(GLMs), where the conditional distribution of the response falls in some para-
metric family, and the parameters are set by the linear predictor. Ordinary, least-
squares regression is the case where response is Gaussian, with mean equal to the
linear predictor, and constant variance. Logistic regression is the case where the
response is binomial, with n equal to the number of data-points with the given
x (usually but not always 1), and p is given by Equation 11.5. Changing the
relationship between the parameters and the linear predictor is called changing
the link function. For computational reasons, the link function is actually the
function you apply to the mean response to get back the linear predictor, rather
than the other way around — (11.4) rather than (11.5). There are thus other
forms of binomial regression besides logistic regression.4 There is also Poisson re-
gression (appropriate when the data are counts without any upper limit), gamma
regression, etc.; we will say more about these in Chapter 12.

In R, any standard GLM can be fit using the (base) glm function, whose syntax
is very similar to that of lm. The major wrinkle is that, of course, you need to
specify the family of probability distributions to use, by the family option —
family=binomial defaults to logistic regression. (See help(glm) for the gory
details on how to do, say, probit regression.) All of these are fit by the same sort
of numerical likelihood maximization.

11.4.1 Generalized Additive Models

A natural step beyond generalized linear models is generalized additive mod-
els (GAMs), where instead of making the transformed mean response a linear
function of the inputs, we make it an additive function of the inputs. This means
combining a function for fitting additive models with likelihood maximization.
This is actually done in R with the same gam function we used for additive mod-
els (hence the name). We will look at how this works in some detail in Chapter 12.
For now, the basic idea is that the iteratively re-weighted least squares procedure
of §11.3.1 doesn’t really require the model for the log odds to be linear. We get
a GAM when we fit an additive model to the zi; we could even fit an arbitrary
non-parametric model, like a kernel regression, though that’s not often done.

GAMs can be used to check GLMs in much the same way that smoothers can
be used to check parametric regressions: fit a GAM and a GLM to the same
data, then simulate from the GLM, and re-fit both models to the simulated data.
Repeated many times, this gives a distribution for how much better the GAM
will seem to fit than the GLM does, even when the GLM is true. You can then
read a p-value o↵ of this distribution. This is illustrated in §11.6 below.

4 My experience is that these tend to give similar error rates as classifiers, but have rather di↵erent

guesses about the underlying probabilities.

11.5 Model Checking 267

11.5 Model Checking

The validity of the logistic regression model is no more a fact of mathematics or
nature than is the validity of the linear regression model. Both are sometimes
convenient assumptions, but neither is guaranteed to be correct, nor even some
sort of generally-correct default. In either case, if we want to use the model, the
proper scientific (and statistical) procedure is to check the validity of the modeling
assumptions.

11.5.1 Residuals

In your linear models course, you learned a lot of checks based on the residuals of
the model (see Chapter 2). Many of these ideas translates to logistic regression,
but we need to re-define residuals. Sometimes people work with the “response”
residuals,

yi � p(xi) (11.18)

which should have mean zero (why?), but are heteroskedastic even when the
model is true (why?). Others work with standardized or Pearson residuals,

yi � p(xi)p
V (p(xi))

(11.19)

and there are yet other notions of residuals for logistic models. Still, both the
response and the Pearson residuals should be unpredictable from the covariates,
and the latter should have constant variance.

268 Logistic Regression

11.5.2 Non-parametric Alternatives

Chapter 9 discussed how non-parametric regression models can be used to check
whether parametric regressions are well-specified. The same ideas apply to logistic
regressions, with the minor modification that in place of the di↵erence in MSEs,
one should use the di↵erence in log-likelihoods, or (what comes to the same thing,
up to a factor of 2) the di↵erence in deviances. The use of generalized additive
models (§11.4.1) as the alternative model class is illustrated in §11.6 below.

11.5.3 Calibration

Because logistic regression predicts actual probabilities, we can check its predic-
tions in a more stringent way than an ordinary regression, which just tells us
the mean value of Y , but is otherwise silent about its distribution. If we’ve got
a model which tells us that the probability of rain on a certain class of days is
50%, it had better rain on half of those days, or there model is just wrong about
the probability of rain. More generally, we’ll say that the model is calibrated
(or well-calibrated) when

Pr (Y = 1|p̂(X) = p) = p (11.20)

That is, the actual probabilities should match the predicted probabilities. If we
have a large sample, by the law of large numbers, observed relative frequencies
will converge on true probabilities. Thus, the observed relative frequencies should
be close to the predicted probabilities, or else the model is making systematic
mistakes.

In practice, each case often has its own unique predicted probability p, so
we can’t really accumulate many cases with the same p and check the relative
frequency among those cases. When that happens, one option is to look at all
the cases where the predicted probability is in some small range [p, p + ✏); the
observed relative frequency had then better be in that range too. §11.7 below
illustrates some of the relevant calculations.

A second option is to use what is called a proper scoring rule, which is a
function of the outcome variables and the predicted probabilities that attains its
minimum when, and only when, the predicted are calibrated. For binary out-
comes, one proper scoring rule (historically the oldest) is the Brier score,

n�1
nX

i=1

(yi � pi)
2 (11.21)

Another however is simply the (normalized) negative log-likelihood,

� n�1
nX

i=1

yi log pi + (1� yi) log (1� pi) (11.22)

Of course, proper scoring rules are better evaluated out-of-sample, or, failing
that, through cross-validation, than in-sample. Even an in-sample evaluation is
better than nothing, however, which is too often what happens.

11.6 A Toy Example 269

11.6 A Toy Example

Here’s a worked R example, using the data from the upper right panel of Fig-
ure 11.1. The 50 ⇥ 2 matrix x holds the input variables (the coordinates are
independently and uniformly distributed on [�1, 1]), and y.1 the correspond-
ing class labels, themselves generated from a logistic regression with �0 = �0.5,
� = (�1, 1).

df <- data.frame(y = y.1, x1 = x[, 1], x2 = x[, 2])
logr <- glm(y ~ x1 + x2, data = df, family = "binomial")

The deviance of a model fitted by maximum likelihood is twice the di↵erence
between its log likelihood and the maximum log likelihood for a saturatedmodel,
i.e., a model with one parameter per observation. Hopefully, the saturated model
can give a perfect fit.5 Here the saturated model would assign probability 1 to
the observed outcomes6, and the logarithm of 1 is zero, so D = 2`(c�0, b�). The
null deviance is what’s achievable by using just a constant bias �0 and setting
the rest of � to 0. The fitted model definitely improves on that.7

If we’re interested in inferential statistics on the estimated model, we can see
those with summary, as with lm:

summary(logr, digits = 2, signif.stars = FALSE)
##
Call:
glm(formula = y ~ x1 + x2, family = "binomial", data = df)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.34521 -0.82798 0.01499 0.83880 2.07197
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.5091 0.3793 -1.342 0.17957
x1 -2.2365 0.7293 -3.067 0.00216 **
x2 2.4894 0.8556 2.909 0.00362 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 69.315 on 49 degrees of freedom
Residual deviance: 48.929 on 47 degrees of freedom
AIC: 54.929
##
Number of Fisher Scoring iterations: 5

5 The factor of two is so that the deviance will have a �2 distribution. Specifically, if the model with p

parameters is right, as n ! 1 the deviance will approach a �2 distribution with n� p degrees of

freedom.
6 This is not possible when there are multiple observations with the same input features, but di↵erent

classes.
7 AIC is of course the Akaike information criterion, �2`+ 2p, with p being the number of parameters

(here, p = 3). (Some people divide this through by n.) See §D.5.5.5 for more on AIC, and why I

mostly ignore it in this book.

270 Logistic Regression

simulate.from.logr <- function(df, mdl) {
probs <- predict(mdl, newdata = df, type = "response")
df$y <- rbinom(n = nrow(df), size = 1, prob = probs)
return(df)

}

Code Example 27: Code for simulating from an estimated logistic regression model. By default
(type="link"), predict for logistic regressions returns predictions for the log odds; changing
the type to "response" returns a probability.

The fitted values of the logistic regression are the class probabilities; this next
line gives us the (in-sample) mis-classification rate.

mean(ifelse(fitted(logr) < 0.5, 0, 1) != df$y)
[1] 0.16

An error rate of 16% may sound bad, but notice from the contour lines in
Figure 11.1 that lots of the probabilities are near 0.5, meaning that the classes
are just genuinely hard to predict.

To see how well the logistic regression assumption holds up, let’s compare this
to a GAM. We’ll use the same package for estimating the GAM, mgcv, that we
used to fit the additive models in Chapter 8.

library(mgcv)
(gam.1 <- gam(y ~ s(x1) + s(x2), data = df, family = "binomial"))
##
Family: binomial
Link function: logit
##
Formula:
y ~ s(x1) + s(x2)
##
Estimated degrees of freedom:
1.00 2.09 total = 4.09
##
UBRE score: 0.03774858

This fits a GAM to the same data, using spline smoothing of both input vari-
ables. (Figure 11.2 shows the partial response functions.) The (in-sample) de-
viance is

signif(gam.1$deviance, 3)
[1] 43.7

which is lower than the logistic regression, so the GAM gives the data higher
likelihood. We expect this; the question is whether the di↵erence is significant, or
within the range of what we should expect when logistic regression is valid. To
test this, we need to simulate from the logistic regression model.

Now we simulate from our fitted model, and re-fit both the logistic regression
and the GAM.

delta.deviance.sim <- function(df, mdl) {
sim.df <- simulate.from.logr(df, mdl)

11.6 A Toy Example 271

−1.0 −0.5 0.0 0.5 1.0

−8
−6

−4
−2

0
2

x1

s(
x1
,1
)

−1.0 −0.5 0.0 0.5 1.0

−8
−6

−4
−2

0
2

x2

s(
x2
,2
.0
9)

plot(gam.1, residuals = TRUE, pages = 0)

Figure 11.2 Partial response functions estimated when we fit a GAM to
the data simulated from a logistic regression. Notice that the vertical axes
are on the logit scale.

GLM.dev <- glm(y ~ x1 + x2, data = sim.df, family = "binomial")$deviance
GAM.dev <- gam(y ~ s(x1) + s(x2), data = sim.df, family = "binomial")$deviance
return(GLM.dev - GAM.dev)

}

Notice that in this simulation we are not generating new ~X values. The logistic
regression and the GAM are both models for the response conditional on the
inputs, and are agnostic about how the inputs are distributed, or even whether
it’s meaningful to talk about their distribution.

272 Logistic Regression

Finally, we repeat the simulation a bunch of times, and see where the observed
di↵erence in deviances falls in the sampling distribution.

(delta.dev.observed <- logr$deviance - gam.1$deviance)
[1] 5.212441
delta.dev <- replicate(100, delta.deviance.sim(df, logr))
mean(delta.dev.observed <= delta.dev)
[1] 0.41

In other words, the amount by which a GAM fits the data better than logistic
regression is pretty near the middle of the null distribution. Since the example
data really did come from a logistic regression, this is a relief.

11.6 A Toy Example 273

Amount by which GAM fits better than logistic regression

Fr
eq

ue
nc

y

0 10 20 30 40 50

0
10

20
30

40
50

60

hist(delta.dev, main = "", xlab = "Amount by which GAM fits better than logistic regression")
abline(v = delta.dev.observed, col = "grey", lwd = 4)

Figure 11.3 Sampling distribution for the di↵erence in deviance between a
GAM and a logistic regression, on data generated from a logistic regression.
The observed di↵erence in deviances is shown by the grey vertical line.

274 Logistic Regression

snoqualmie <- scan("http://www.stat.washington.edu/peter/book.data/set1", skip = 1)
snoq <- data.frame(tomorrow = c(tail(snoqualmie, -1), NA), today = snoqualmie)
years <- 1948:1983
days.per.year <- rep(c(366, 365, 365, 365), length.out = length(years))
snoq$year <- rep(years, times = days.per.year)
snoq$day <- rep(c(1:366, 1:365, 1:365, 1:365), times = length(years)/4)
snoq <- snoq[-nrow(snoq),]

Code Example 28: Read in and re-shape the Snoqualmie data set. Prof. Guttorp, who has
kindly provided the data, formatted it so that each year was a di↵erent row, which is rather
inconvenient for R.

11.7 Weather Forecasting in Snoqualmie Falls

For our worked data example, we are going to build a simple weather forecaster.
Our data consist of daily records, from the start of 1948 to the end of 1983, of
precipitation at Snoqualmie Falls, Washington (Figure 11.4)8. Each row of the
data file is a di↵erent year; each column records, for that day of the year, the
day’s precipitation (rain or snow), in units of 1

100
inch. Because of leap-days, there

are 366 columns, with the last column having an NA value for three out of four
years.

What we want to do is predict tomorrow’s weather from today’s. This would
be of interest if we lived in Snoqualmie Falls, or if we operated one of the local
hydroelectric power plants, or the tourist attraction of the Falls themselves. Ex-
amining the distribution of the data (Figures 11.5 and 11.6) shows that there is a
big spike in the distribution at zero precipitation, and that days of no precipita-
tion can follow days of any amount of precipitation but seem to be less common
after heavy precipitation.

8 I learned of this data set from Guttorp (1995); the data file is available from

http://www.stat.washington.edu/peter/stoch.mod.data.html. See Code Example 28 for the

commands used to read it in, and to reshape it into a form more convenient for R.

11.7 Weather Forecasting in Snoqualmie Falls 275

Figure 11.4 Snoqualmie Falls, Washington, on a low-precipitation day.
Photo by Jeannine Hall Gailey, from http://myblog.webbish6.com/2011/
07/17-years-and-hoping-for-another-17.html. [[TODO: Get
permission for photo use!]]

276 Logistic Regression

Histogram of snoqualmie

Precipitation (1/100 inch)

D
en

si
ty

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

hist(snoqualmie, n = 50, probability = TRUE, xlab = "Precipitation (1/100 inch)")
rug(snoqualmie, col = "grey")

Figure 11.5 Histogram of the amount of daily precipitation at Snoqualmie
Falls

11.7 Weather Forecasting in Snoqualmie Falls 277

0 100 200 300 400

0
10

0
20

0
30

0
40

0

Precipitation today (1/100 inch)

Pr
ec

ip
ita

tio
n

to
m

or
ro

w
 (1

/1
00

 in
ch

)

plot(tomorrow ~ today, data = snoq, xlab = "Precipitation today (1/100 inch)", ylab = "Precipitation tomorrow (1/100 inch)",
cex = 0.1)

rug(snoq$today, side = 1, col = "grey")
rug(snoq$tomorrow, side = 2, col = "grey")

Figure 11.6 Scatterplot showing relationship between amount of
precipitation on successive days. Notice that days of no precipitation can
follow days of any amount of precipitation, but seem to be more common
when there is little or no precipitation to start with.

278 Logistic Regression

These facts suggest that “no precipitation” is a special sort of event which
would be worth predicting in its own right (as opposed to just being when the
precipitation happens to be zero), so we will attempt to do so with logistic re-
gression. Specifically, the input variable Xi will be the amount of precipitation on
the ith day, and the response Yi will be the indicator variable for whether there
was any precipitation on day i + 1 — that is, Yi = 1 if Xi+1 > 0, an Yi = 0 if
Xi+1 = 0. We expect from Figure 11.6, as well as common experience, that the
coe�cient on X should be positive.9

The estimation is straightforward:

snoq.logistic <- glm((tomorrow > 0) ~ today, data = snoq, family = binomial)

To see what came from the fitting, run summary:

print(summary(snoq.logistic), digits = 3, signif.stars = FALSE)
##
Call:
glm(formula = (tomorrow > 0) ~ today, family = binomial, data = snoq)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-4.525 -0.999 0.167 1.170 1.367
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.43520 0.02163 -20.1 <2e-16
today 0.04523 0.00131 34.6 <2e-16
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 18191 on 13147 degrees of freedom
Residual deviance: 15896 on 13146 degrees of freedom
AIC: 15900
##
Number of Fisher Scoring iterations: 5

The coe�cient on the amount of precipitation today is indeed positive, and
(if we can trust R’s assumptions) highly significant. There is also an intercept
term, which is slightly positive. We can see what the intercept term means by
considering what happens on days of no precipitation. The linear predictor is
then just the intercept, �0.435, and the predicted probability of precipitation is
0.393. That is, even when there is no precipitation today, it’s almost as likely as
not that there will be some precipitation tomorrow.10

We can get a more global view of what the model is doing by plotting the data
and the predictions (Figure 11.7). This shows a steady increase in the probability
of precipitation tomorrow as the precipitation today increases, though with the
leveling o↵ characteristic of logistic regression. The (approximate) 95% confidence
limits for the predicted probability are (on close inspection) asymmetric.

9 This does not attempt to model how much precipitation there will be tomorrow, if there is any. We

could make that a separate model, if we can get this part right.
10 For western Washington State, this is plausible — but see below.

11.7 Weather Forecasting in Snoqualmie Falls 279

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

Po
si

tiv
e

pr
ec

ip
ita

tio
n

to
m

or
ro

w
?

plot((tomorrow > 0) ~ today, data = snoq, xlab = "Precipitation today (1/100 inch)",
ylab = "Positive precipitation tomorrow?")

rug(snoq$today, side = 1, col = "grey")
data.plot <- data.frame(today = (0:500))
pred.bands <- function(mdl, data, col = "black", mult = 1.96) {

preds <- predict(mdl, newdata = data, se.fit = TRUE)
lines(data[, 1], ilogit(preds$fit), col = col)
lines(data[, 1], ilogit(preds$fit + mult * preds$se.fit), col = col, lty = "dashed")
lines(data[, 1], ilogit(preds$fit - mult * preds$se.fit), col = col, lty = "dashed")

}
pred.bands(snoq.logistic, data.plot)

Figure 11.7 Data (dots), plus predicted probabilities (solid line) and
approximate 95% confidence intervals from the logistic regression model
(dashed lines). Note that calculating standard errors for predictions on the
logit scale, and then transforming, is better practice than getting standard
errors directly on the probability scale.

280 Logistic Regression

How well does this work? We can get a first sense of this by comparing it
to a simple nonparametric smoothing of the data. Remembering that when Y
is binary, Pr (Y = 1|X = x) = E [Y |X = x], we can use a smoothing spline to
estimate E [Y |X = x] (Figure 11.8). This would not be so great as a model — it
ignores the fact that the response is a binary event and we’re trying to estimate
a probability, the fact that the variance of Y therefore depends on its mean, etc.
— but it’s at least suggestive.

The result starts out notably above the logistic regression, then levels out and
climbs much more slowly. It also has a bunch of dubious-looking wiggles, despite
the cross-validation.

We can try to do better by fitting a generalized additive model. In this case,
with only one predictor variable, this means using non-parametric smoothing to
estimate the log odds — we’re still using the logistic transformation, but only
requiring that the log odds change smoothly with X, not that they be linear in
X. The result (Figure 11.9) is initially similar to the spline, but has some more
exaggerated undulations, and has confidence intervals. At the largest values of
X, the latter span nearly the whole range from 0 to 1, which is not unreasonable
considering the sheer lack of data there.

Visually, the logistic regression curve is hardly ever within the confidence limits
of the non-parametric predictor. What can we say about the di↵erence between
the two models more quantiatively?

Numerically, the deviance is 1.59⇥104 for the logistic regression, and 1.51⇥104

for the GAM. We can go through the testing procedure outlined in §11.6. We need
a simulator (which presumes that the logistic regression model is true), and we
need to calculate the di↵erence in deviance on simulated data many times.

snoq.sim <- function(model = snoq.logistic) {
fitted.probs = fitted(model)
return(rbinom(n = length(fitted.probs), size = 1, prob = fitted.probs))

}

A quick check of the simulator against the observed values:

summary(ifelse(snoq[, 1] > 0, 1, 0))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 1.0000 0.5262 1.0000 1.0000
summary(snoq.sim())
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 1.0000 0.5241 1.0000 1.0000

This suggests that the simulator is not acting crazily.
Now for the di↵erence in deviances:

diff.dev <- function(model = snoq.logistic, x = snoq[, "today"]) {
y.new <- snoq.sim(model)
GLM.dev <- glm(y.new ~ x, family = binomial)$deviance
GAM.dev <- gam(y.new ~ s(x), family = binomial)$deviance
return(GLM.dev - GAM.dev)

}

11.7 Weather Forecasting in Snoqualmie Falls 281

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

Po
si

tiv
e

pr
ec

ip
ita

tio
n

to
m

or
ro

w
?

plot((tomorrow > 0) ~ today, data = snoq, xlab = "Precipitation today (1/100 inch)",
ylab = "Positive precipitation tomorrow?")

rug(snoq$today, side = 1, col = "grey")
data.plot <- data.frame(today = (0:500))
pred.bands(snoq.logistic, data.plot)
snoq.spline <- smooth.spline(x = snoq$today, y = (snoq$tomorrow > 0))
lines(snoq.spline, col = "red")

Figure 11.8 As Figure 11.7, plus a smoothing spline (red).

A single run of this takes about 0.6 seconds on my computer.
Finally, we calculate the distribution of di↵erence in deviances under the null

(that the logistic regression is properly specified), and the corresponding p-value:

282 Logistic Regression

diff.dev.obs <- snoq.logistic$deviance - snoq.gam$deviance
null.dist.of.diff.dev <- replicate(100, diff.dev())
p.value <- (1 + sum(null.dist.of.diff.dev > diff.dev.obs))/(1 + length(null.dist.of.diff.dev))

Using a thousand replicates takes about 67 seconds, or a bit over a minute; it
gives a p-value of < 1/101. (A longer run of 1000 replicates, not shown, gives a
p-values of < 10�3.)

Having detected that there is a problem with the logistic model, we can ask
where it lies. We could just use the GAM, but it’s more interesting to try to
diagnose what’s going on.

In this respect Figure 11.9 is actually a little misleading, because it leads the
eye to emphasize the disagreement between the models at large X, when actually
there are very few data points there, and so even large di↵erences in predicted
probabilities there contribute little to the over-all likelihood di↵erence. What is
actually more important is what happens at X = 0, which contains a very large
number of observations (about 47% of all observations), and which we have reason
to think is a special value anyway.

Let’s try introducing a dummy variable for X = 0 into the logistic regression,
and see what happens. It will be convenient to augment the data frame with an
extra column, recording 1 whenever X = 0 and 0 otherwise.

snoq2 <- data.frame(snoq, dry = ifelse(snoq$today == 0, 1, 0))
snoq2.logistic <- glm((tomorrow > 0) ~ today + dry, data = snoq2, family = binomial)
snoq2.gam <- gam((tomorrow > 0) ~ s(today) + dry, data = snoq2, family = binomial)

Notice that I allow the GAM to treat zero as a special value as well, by giving
it access to that dummy variable. In principle, with enough data it can decide
whether or not that is useful on its own, but since we have guessed that it is, we
might as well include it. The new GLM has a deviance of 1.5 ⇥ 104, lower than
even the GAM before, and the new GAM has a deviance of 1.48⇥104. I will leave
repeating the specification test as an exercise. Figure 11.10 shows the data and
the two new models. These are extremely close to each other at low percipitation,
and diverge thereafter. The new GAM is the smoothest model we’ve seen yet,
which suggests that before the it was being under-smoothed to help capture the
special value at zero.

Let’s turn now to looking at calibration. The actual fraction of no-precipitation
days which are followed by precipitation is

signif(mean(snoq$tomorrow[snoq$today == 0] > 0), 3)
[1] 0.287

What does the new logistic model predict?

signif(predict(snoq2.logistic, newdata = data.frame(today = 0, dry = 1), type = "response"),
3)

1
0.287

This should not be surprising — we’ve given the model a special parameter

11.7 Weather Forecasting in Snoqualmie Falls 283

dedicated to getting this one probability exactly right! The hope however is that
this will change the predictions made on days with precipitation so that they are
better.

Looking at a histogram of fitted values (hist(fitted(snoq2.logistic)))
shows a gap in the distribution of predicted probabilities below 0.63, so we’ll
look first at days where the predicted probability is between 0.63 and 0.64.

signif(mean(snoq$tomorrow[(fitted(snoq2.logistic) >= 0.63) & (fitted(snoq2.logistic) <
0.64)] > 0), 3)

[1] 0.526

Not bad — but a bit painful to write out. Let’s write a function:

frequency.vs.probability <- function(p.lower, p.upper = p.lower + 0.01, model = snoq2.logistic,
events = (snoq$tomorrow > 0)) {
fitted.probs <- fitted(model)
indices <- (fitted.probs >= p.lower) & (fitted.probs < p.upper)
ave.prob <- mean(fitted.probs[indices])
frequency <- mean(events[indices])
se <- sqrt(ave.prob * (1 - ave.prob)/sum(indices))
return(c(frequency = frequency, ave.prob = ave.prob, se = se))

}

I have added a calculation of the average predicted probability, and a crude
estimate of the standard error we should expect if the observations really are
binomial with the predicted probabilities11. Try the function out before doing
anything rash:

frequency.vs.probability(0.63)
frequency ave.prob se
0.52603037 0.63414568 0.01586292

This agrees with our previous calculation.
Now we can do this for a lot of probability brackets:

f.vs.p <- sapply(c(0.28, (63:100)/100), frequency.vs.probability)

This comes with some unfortunate R cruft, removable thus

f.vs.p <- data.frame(frequency = f.vs.p["frequency",], ave.prob = f.vs.p["ave.prob",
], se = f.vs.p["se",])

and we’re ready to plot (Figure 11.11). The observed frequencies are generally
reasonably near the predicted probabilities. While I wouldn’t want to say this
was the last word in weather forecasting12, it’s surprisingly good for such a simple
model. I will leave calibration checking for the GAM as another exercise.

11 This could be improved by averaging predicted variances for each point, but using probability

ranges of 0.01 makes it hardly worth the e↵ort.
12 There is an extensive discussion of this data in Guttorp (1995, ch. 2), including many significant

refinements, such as dependence across multiple days.

284 Logistic Regression

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

Po
si

tiv
e

pr
ec

ip
ita

tio
n

to
m

or
ro

w
?

library(mgcv)
plot((tomorrow > 0) ~ today, data = snoq, xlab = "Precipitation today (1/100 inch)",

ylab = "Positive precipitation tomorrow?")
rug(snoq$today, side = 1, col = "grey")
pred.bands(snoq.logistic, data.plot)
lines(snoq.spline, col = "red")
snoq.gam <- gam((tomorrow > 0) ~ s(today), data = snoq, family = binomial)
pred.bands(snoq.gam, data.plot, "blue")

Figure 11.9 As Figure 11.8, but with the addition of a generalized additive
model (blue line) and its confidence limits (dashed blue lines).

11.7 Weather Forecasting in Snoqualmie Falls 285

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

Po
si

tiv
e

pr
ec

ip
ita

tio
n

to
m

or
ro

w
?

plot((tomorrow > 0) ~ today, data = snoq, xlab = "Precipitation today (1/100 inch)",
ylab = "Positive precipitation tomorrow?")

rug(snoq$today, side = 1, col = "grey")
data.plot = data.frame(data.plot, dry = ifelse(data.plot$today == 0, 1, 0))
lines(snoq.spline, col = "red")
pred.bands(snoq2.logistic, data.plot)
pred.bands(snoq2.gam, data.plot, "blue")

Figure 11.10 As Figure 11.9, but allowing the two models to use a dummy
variable indicating when today is completely dry (X = 0).

286 Logistic Regression

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probabilities

O
bs

er
ve

d
fre

qu
en

ci
es

plot(frequency ~ ave.prob, data = f.vs.p, xlim = c(0, 1), ylim = c(0, 1), xlab = "Predicted probabilities",
ylab = "Observed frequencies")

rug(fitted(snoq2.logistic), col = "grey")
abline(0, 1, col = "grey")
segments(x0 = f.vs.p$ave.prob, y0 = f.vs.p$ave.prob - 1.96 * f.vs.p$se, y1 = f.vs.p$ave.prob +

1.96 * f.vs.p$se)

Figure 11.11 Calibration plot for the modified logistic regression model
snoq2.logistic. Points show the actual frequency of precipitation for each
level of predicted probability. Vertical lines are (approximate) 95% sampling
intervals for the frequency, given the predicted probability and the number
of observations.

11.8 Logistic Regression with More Than Two Classes 287

11.8 Logistic Regression with More Than Two Classes

If Y can take on more than two values, say k of them, we can still use logistic
regression. Instead of having one set of parameters �0,�, each class c in 0 :
(k� 1) will have its own o↵set �(c)

0 and vector �(c), and the predicted conditional
probabilities will be

Pr
⇣
Y = c| ~X = x

⌘
=

e�
(c)
0 +x·�(c)

P
c e

�(c)
0 +x·�(c)

(11.23)

You can check that when there are only two classes (say, 0 and 1), equation
11.23 reduces to equation 11.5, with �0 = �(1)

0 � �(0)
0 and � = �(1) � �(0). In fact,

no matter how many classes there are, we can always pick one of them, say c = 0,
and fix its parameters at exactly zero, without any loss of generality (Exercise
11.2)13.

Calculation of the likelihood now proceeds as before (only with more book-
keeping), and so does maximum likelihood estimation.

As for R implementations, for am long time the easiest way to do this was
actually to use the nnet package for neural networks (Venables and Ripley, 2002).
More recently, the multiclass function from the mgcv package does the same
sort of job, with an interface closer to what you will be familiar with from glm
and gam.

13 Since we can arbitrarily chose which class’s parameters to “zero out” without a↵ecting the predicted

probabilities, strictly speaking the model in Eq. 11.23 is unidentified. That is, di↵erent parameter

settings lead to exactly the same outcome, so we can’t use the data to tell which one is right. The

usual response here is to deal with this by a convention: we decide to zero out the parameters of the

first class, and then estimate the contrasting parameters for the others.

288 Logistic Regression

Exercises

11.1 “We minimize the mis-classification rate by predicting the most likely class”: Let bµ(x)
be our predicted class, either 0 or 1. Our error rate is then Pr (Y 6= bµ). Show that

Pr (Y 6= bµ) = E
⇥
(Y � bµ)2

⇤
. Further show that E

⇥
(Y � bµ)2 | X = x

⇤
= Pr (Y = 1|X = x) (1�

2bµ(x)) + bµ2(x). Conclude by showing that if Pr (Y = 1|X = x) > 0.5, the risk of mis-

classification is minimized by taking bµ = 1, that if Pr (Y = 1|X = x) < 0.5 the risk is

minimized by taking bµ = 0, and that when Pr (Y = 1|X = x) = 0.5 both predictions are

equally risky.

11.2 A multiclass logistic regression, as in Eq. 11.23, has parameters �
(c)
0 and �

(c) for each class

c. Show that we can always get the same predicted probabilities by setting �
(c)
0 = 0, �(c) =

0 for any one class c, and adjusting the parameters for the other classes appropriately.

11.3 Find the first and second derivatives of the log-likelihood for logistic regression with one

predictor variable. Explicitly write out the formula for doing one step of Newton’s method.

Explain how this relates to re-weighted least squares.

11.4 Intuition-building with logistic regression

+

+
+ ++

++

+
+

+
+
++
+

++ +

+ +++

+
+

+
+++ +++
+

+
+

+++
+
+ +
+

+
+
+

+++++

+

+
+ +

+

+
++

+
+++ +

+

+

++++
+

+

++
++

+

+

+

+

+

++

+
++++

+
+ ++
+ +
+

++

+

+

+
+

+
+

−

−
−− −
−

−
−

−
−
−−
− −
−

− −
−−−

− −

−−
−

−

−
−

−

−

−
−−−
−

−−−−− −
−

−
−
−−−

−
−

−
−−
−
−−− −−−
−−−

−−−−
−

−−

−

−
−
−−
− −

−−−

−

−

− −−
−
−−−

−
− −−−

−

−

−

−
− −
−

−15 −10 −5 0 5 10 15

−1
5

−1
0

−5
0

5
10

15

x1

x 2

A

B

C

D

In a classification problem, we get data like that shown above, with the two classes in-

dicated by whether a point is plotted with + or �. We decide to use a logistic regression

model. We estimate �̂0 = 0, �̂1 = 1 and �̂2 = 1.

Exercises 289

1. Draw the line where the log-odds = 0, and so where p = 1/2. Does this separate most

of the + points from the � points? Does it separate all of them?

2. Explain why the points marked A and B will have exactly the same probability of

Y = 1, and why that probability will be > 1/2.

3. Explain why the point marked C will have nearly the same probability for Y = 1 as

A and B do, while point D will have a much lower probability, even though D is much

closer than C to both A and B.

