
10

Moving Beyond Conditional Expectations:
Weighted Least Squares, Heteroskedasticity,

Local Polynomial Regression

So far, all our estimates have been based on the mean squared error, giving equal
importance to all observations, as is generally appropriate when looking at con-
ditional expectations. In this chapter, we’ll start to work with giving more or
less weight to di↵erent observations, through weighted least squares. The oldest
reason to want to use weighted least squares is to deal with non-constant vari-
ance, or heteroskedasticity, by giving more weight to lower-variance observations.
This leads us naturally to estimating the conditional variance function, just as
we’ve been estimating conditional expectations. On the other hand, weighted
least squares lets us general kernel regression to locally polynomial regression.

10.1 Weighted Least Squares

When we use ordinary least squares to estimate linear regression, we (naturally)
minimize the mean squared error:

MSE(�) =
1

n

nX

i=1

(yi � ~xi · �)2 (10.1)

The solution is of course
b�OLS = (xTx)�1xTy (10.2)

We could instead minimize the weighted mean squared error,

WMSE(�, ~w) =
1

n

nX

i=1

wi(yi � ~xi · �)2 (10.3)

This includes ordinary least squares as the special case where all the weights
wi = 1. We can solve it by the same kind of linear algebra we used to solve the
ordinary linear least squares problem. If we write w for the matrix with the wi

on the diagonal and zeroes everywhere else, the solution is

b�WLS = (xTwx)�1xTwy (10.4)

But why would we want to minimize Eq. 10.3?

1. Focusing accuracy. We may care very strongly about predicting the response
for certain values of the input — ones we expect to see often again, ones where
mistakes are especially costly or embarrassing or painful, etc. — than others.

225

22:54 Thursday 15th February, 2024
Copyright c�Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/



226 Weighting and Variance

If we give the points ~xi near that region big weights wi, and points elsewhere
smaller weights, the regression will be pulled towards matching the data in
that region.

2. Discounting imprecision. Ordinary least squares is the maximum likelihood
estimate when the ✏ in Y = ~X · �+ ✏ is IID Gaussian white noise. This means
that the variance of ✏ has to be constant, and we measure the regression curve
with the same precision elsewhere. This situation, of constant noise variance,
is called homoskedasticity. Often however the magnitude of the noise is not
constant, and the data are heteroskedastic.

When we have heteroskedasticity, even if each noise term is still Gaussian,
ordinary least squares is no longer the maximum likelihood estimate, and so no
longer e�cient. If however we know the noise variance �2

i at each measurement
i, and set wi = 1/�2

i , we get the heteroskedastic MLE, and recover e�ciency.
(See below.)

To say the same thing slightly di↵erently, there’s just no way that we can
estimate the regression function as accurately where the noise is large as we
can where the noise is small. Trying to give equal attention to all parts of the
input space is a waste of time; we should be more concerned about fitting well
where the noise is small, and expect to fit poorly where the noise is big.

3. Sampling bias. In many situations, our data comes from a survey, and some
members of the population may be more likely to be included in the sample
than others. When this happens, the sample is a biased representation of the
population. If we want to draw inferences about the population, it can help
to give more weight to the kinds of data points which we’ve under-sampled,
and less to those which were over-sampled. In fact, typically the weight put
on data point i would be inversely proportional to the probability of i being
included in the sample (exercise 10.1). Strictly speaking, if we are willing to
believe that linear model is exactly correct, that there are no omitted variables,
and that the inclusion probabilities pi do not vary with yi, then this sort of
survey weighting is redundant (DuMouchel and Duncan, 1983). When those
assumptions are not met — when there’re non-linearities, omitted variables,
or “selection on the dependent variable” — survey weighting is advisable, if
we know the inclusion probabilities fairly well.

The same trick works under the same conditions when we deal with “co-
variate shift”, a change in the distribution of X. If the old probability density
function was p(x) and the new one is q(x), the weight we’d want to use is
wi = q(xi)/p(xi) (Quiñonero-Candela et al., 2009). This can involve estimat-
ing both densities, or their ratio (chapter 14).

4. Doing something else. There are a number of other optimization problems
which can be transformed into, or approximated by, weighted least squares.
The most important of these arises from generalized linear models, where the
mean response is some nonlinear function of a linear predictor; we will look at
them in Chapters 11 and 12.

In the first case, we decide on the weights to reflect our priorities. In the



10.1 Weighted Least Squares 227

third case, the weights come from the optimization problem we’d really rather be
solving. What about the second case, of heteroskedasticity?



228 Weighting and Variance

−4 −2 0 2 4

−1
5

−1
0

−5
0

5

Index

0

Figure 10.1 Black line: Linear response function (y = 3� 2x). Grey curve:
standard deviation as a function of x (�(x) = 1 + x2/2). (Code deliberately
omitted; can you reproduce this figure?)

10.2 Heteroskedasticity

Suppose the noise variance is itself variable. For example, the figure shows a
simple linear relationship between the input X and the response Y , but also a
nonlinear relationship between X and V [Y ].

In this particular case, the ordinary least squares estimate of the regression line
is 3.63 � �1.46x, with R reporting standard errors in the coe�cients of ±0.59
and 0.22, respectively. Those are however calculated under the assumption that
the noise is homoskedastic, which it isn’t. And in fact we can see, pretty much,



10.2 Heteroskedasticity 229

−8 −6 −4 −2 0 2 4 6

−1
0

0
10

20
30

40

x

y

plot(x, y)
abline(a = 3, b = -2, col = "grey")
fit.ols = lm(y ~ x)
abline(fit.ols, lty = "dashed")

Figure 10.2 Scatter-plot of n = 100 data points from the above model.
(Here X is Gaussian with mean 0 and variance 9.) Grey: True regression
line. Dashed: ordinary least squares regression line.

that there is heteroskedasticity — if looking at the scatter-plot didn’t convince
us, we could always plot the residuals against x, which we should do anyway.

To see whether that makes a di↵erence, let’s re-do this many times with dif-
ferent draws from the same model (Example 24).



230 Weighting and Variance

−8 −4 0 2 4 6

−1
0

0
10

20
30

x

re
si
du
al
s(
fit
.o
ls
)

−8 −4 0 2 4 6

0
20
0

40
0

60
0

80
0

x

(re
si
du
al
s(
fit
.o
ls
))^
2

par(mfrow = c(1, 2))
plot(x, residuals(fit.ols))
plot(x, (residuals(fit.ols))^2)
par(mfrow = c(1, 1))

Figure 10.3 Residuals (left) and squared residuals (right) of the ordinary
least squares regression as a function of x. Note the much greater range of
the residuals at large absolute values of x than towards the center; this
changing dispersion is a sign of heteroskedasticity.

Running ols.heterosked.error.stats(1e4) produces 104 random simulated
data sets, which all have the same x values as the first one, but di↵erent values
of y, generated however from the same model. It then uses those samples to get



10.2 Heteroskedasticity 231

ols.heterosked.example = function(n) {
y = 3 - 2 * x + rnorm(n, 0, sapply(x, function(x) {

1 + 0.5 * x^2
}))
fit.ols = lm(y ~ x)
return(fit.ols$coefficients - c(3, -2))

}

ols.heterosked.error.stats = function(n, m = 10000) {
ols.errors.raw = t(replicate(m, ols.heterosked.example(n)))
intercept.se = sd(ols.errors.raw[, "(Intercept)"])
slope.se = sd(ols.errors.raw[, "x"])
return(c(intercept.se = intercept.se, slope.se = slope.se))

}

Code Example 24: Functions to generate heteroskedastic data and fit OLS regression to it, and
to collect error statistics on the results.

the standard error of the ordinary least squares estimates. (Bias remains a non-
issue.) What we find is the standard error of the intercept is only a little inflated
(simulation value of 0.7 versus o�cial value of 0.59), but the standard error of the
slope is much larger than what R reports, 0.52 versus 0.22. Since the intercept
is fixed by the need to make the regression line go through the center of the
data (Chapter 2), the real issue here is that our estimate of the slope is much
less precise than ordinary least squares makes it out to be. Our estimate is still
consistent, but not as good as it was when things were homoskedastic. Can we
get back some of that e�ciency?

10.2.1 Weighted Least Squares as a Solution to Heteroskedasticity

Suppose we visit the Oracle of Regression (Figure 10.4), who tells us that the
noise has a standard deviation that goes as 1 + x2/2. We can then use this to
improve our regression, by solving the weighted least squares problem rather than
ordinary least squares (Figure 10.5).

This not only looks better, it is better: the estimated line is now 2.95� 1.53x,
with reported standard errors of 0.32 and 0.2. This checks check out with sim-
ulation (Example 25): the standard errors from the simulation are 0.23 for the
intercept and 0.23 for the slope, so R’s internal calculations are working very
well.

Why does putting these weights into WLS improve things?



232 Weighting and Variance

Figure 10.4 Statistician (right) consulting the Oracle of Regression (left)
about the proper weights to use to overcome heteroskedasticity. (Image from
http://en.wikipedia.org/wiki/Image:Pythia1.jpg.)

wls.heterosked.example = function(n) {
y = 3 - 2 * x + rnorm(n, 0, sapply(x, function(x) {

1 + 0.5 * x^2
}))
fit.wls = lm(y ~ x, weights = 1/(1 + 0.5 * x^2))
return(fit.wls$coefficients - c(3, -2))

}

wls.heterosked.error.stats = function(n, m = 10000) {
wls.errors.raw = t(replicate(m, wls.heterosked.example(n)))
intercept.se = sd(wls.errors.raw[, "(Intercept)"])
slope.se = sd(wls.errors.raw[, "x"])
return(c(intercept.se = intercept.se, slope.se = slope.se))

}

Code Example 25: Linear regression of heteroskedastic data, using weighted least-squared re-
gression.



10.2 Heteroskedasticity 233

−8 −6 −4 −2 0 2 4 6

−1
0

0
10

20
30

40

x

y

plot(x, y)
abline(a = 3, b = -2, col = "grey")
fit.ols = lm(y ~ x)
abline(fit.ols, lty = "dashed")
fit.wls = lm(y ~ x, weights = 1/(1 + 0.5 * x^2))
abline(fit.wls, lty = "dotted")

Figure 10.5 Figure 10.2, plus the weighted least squares regression line
(dotted).



234 Weighting and Variance

10.2.2 Some Explanations for Weighted Least Squares

Qualitatively, the reason WLS with inverse variance weights works is the follow-
ing. OLS tries equally hard to match observations at each data point.1 Weighted
least squares, naturally enough, tries harder to match observations where the
weights are big, and less hard to match them where the weights are small. But
each yi contains not only the true regression function µ(xi) but also some noise
✏i. The noise terms have large magnitudes where the variance is large. So we
should want to have small weights where the noise variance is large, because
there the data tends to be far from the true regression. Conversely, we should
put big weights where the noise variance is small, and the data points are close
to the true regression.

The qualitative reasoning in the last paragraph doesn’t explain why the weights
should be inversely proportional to the variances, wi / 1/�2

xi
— why not wi /

1/�xi , for instance? Seeing why those are the right weights requires investigating
how well di↵erent, indeed arbitrary, choices of weights would work.

Look at the equation for the WLS estimates again:

b�WLS = (xTwx)�1xTwy (10.5)

= h(w)y (10.6)

defining the matrix h(w) = (xTwx)�1xTw for brevity. (The notation reminds us
that everything depends on the weights in w.) Imagine holding x constant, but
repeating the experiment multiple times, so that we get noisy values of y. In each
experiment, Yi = ~xi · � + ✏i, where E [✏i] = 0 and V [✏i] = �2

xi
. So

b�WLS = h(w)x� + h(w)✏ (10.7)

= � + h(w)✏ (10.8)

Since E [✏] = 0, the WLS estimator is unbiased:

E
h
b�WLS

i
= � (10.9)

In fact, for the jth coe�cient,

b�j = �j + [h(w)✏]j (10.10)

= �j +
nX

i=1

hji(w)✏i (10.11)

Since the WLS estimate is unbiased, it’s natural to want it to also have a small
variance, and

V
h
b�j

i
=

nX

i=1

hji(w)�2
xi

(10.12)

It can be shown — the result is called the Gauss-Markov theorem — that
1 Less anthropomorphically, the objective function in Eq. 10.1 has the same derivative with respect to

the squared error at each point, @MSE
@(yi�~xi·�)2

= 1
n .



10.2 Heteroskedasticity 235

picking weights to minimize the variance in the WLS estimate has the unique
solution wi = 1/�2

xi
. It does not require us to assume the noise is Gaussian2, but

the proof is a bit tricky, so I will confine it to §10.2.2.1 below.
A less general but easier-to-grasp result comes from adding the assumption

that the noise around the regression line is Gaussian — that

Y = ~x · � + ✏, ✏ ⇠ N (0,�2
x) (10.13)

The log-likelihood is then (Exercise 10.2)

� n

2
ln 2⇡ � 1

2

nX

i=1

log �2
xi
� 1

2

nX

i=1

(yi � ~xi · �)2

�2
xi

(10.14)

If we maximize this with respect to �, everything except the final sum is irrelevant,
and so we minimize

nX

i=1

(yi � ~xi · �)2

�2
xi

(10.15)

which is just weighted least squares with wi = 1/�2
xi
. So, if the probabilistic

assumption holds, WLS is the e�cient maximum likelihood estimator.

2 Despite the first part of the name! Gauss himself was much less committed to assuming Gaussian

distributions than many later statisticians.



236 Weighting and Variance

10.2.2.1 Proof of the Gauss-Markov Theorem3

We want to prove that, when we are doing weighted least squares for linear
regression, the best choice of weights wi = 1/�2

xi
. We saw that that WLS is

unbiased (Eq. 10.9), so “best” here means minimizing the variance. We have also
already seen (Eq. 10.6) that

b�WLS = h(w)y (10.16)

where the matrix h(w) is

h(w) = (xTwx)�1xTw (10.17)

It would be natural to try to write out the variance as a function of the weights
w, set the derivative equal to zero, and solve. This is tricky, partly because we
need to make sure that all the weights are positive and add up to one, but mostly
because of the matrix inversion in the definition of h(w). A slightly less direct
approach is actually much cleaner.

Write w0 for the inverse-variance weight matrix, and h0 for the hat matrix we
get with those weights. Then for any other choice of weights, we have h(w) =
h0 + c. (c is implicitly a function of the weights, but let’s suppress that in the
notation for brevity.) Since we know all WLS estimates are unbiased, we must
have

(h0 + c)x� = � (10.18)

but using the inverse-variance weights is a particular WLS estimate so

h0x� = � (10.19)

and so we can deduce that

cx = 0 (10.20)

from unbiasedness.
Now consider the covariance matrix of the estimates, V

h
�̃
i
. This will be V [(h0 + c)Y],

3 You can skip this section, without loss of continuity.



10.2 Heteroskedasticity 237

which we can expand:

V
h
�̃
i
= V [(h0 + c)Y] (10.21)

= (h0 + c)V [Y ] (h0 + c)T (10.22)

= (h0 + c)w0
�1(h0 + c)T (10.23)

= h0w0
�1h0

T + cw0
�1h0

T + h0w0
�1cT + cw0

�1cT (10.24)

= (xTw0x)
�1xTw0w0

�1w0x(x
Tw0x)

�1 (10.25)

+cw0
�1w0x(x

Tw0x)
�1

+(xTw0x)
�1xTw0w0

�1cT

+cw0
�1cT

= (xTw0x)
�1xTw0x(x

Tw0x)
�1 (10.26)

+cx(xTw0x)
�1 + (xTw0x)

�1xTcT

+cw0
�1cT

= (xTw0x)
�1 + cw0

�1cT (10.27)

where in the last step we use the fact that cx = 0 (and so xTcT = 0T = 0). Since
cw0

�1cT � 0, because w0 is a positive-definite matrix, we see that the variance
is minimized by setting c = 0, and using the inverse variance weights.

Notes:

1. If all the variances are equal, then we’ve proved the optimality of OLS.
2. The proof actually works when comparing the inverse-variance weights to any

other linear, unbiased estimator; WLS with di↵erent weights is just a special
case.

3. We can write the WLS problem as that of minimizing (y � x�)Tw(y � x�).
If we allow w to be a non-diagonal, but still positive-definite, matrix, then we
have the generalized least squares problem. This is appropriate when there
are correlations between the noise terms at di↵erent observations, i.e., when
Cov [✏i, ✏j] 6= 0 even though i 6= j. In this case, the proof is easily adapted to
show that the optimal weight matrix w is the inverse of the noise covariance
matrix. (This is why I wrote everything as a function of w.)



238 Weighting and Variance

Figure 10.6 The Oracle may be out (left), or too creepy to go visit (right).
What then? (Left, the sacred oak of the Oracle of Dodona, copyright 2006
by Flickr user “essayen”,
http://flickr.com/photos/essayen/245236125/; right, the entrace to the
cave of the Sibyl of Cumæ, copyright 2005 by Flickr user “pverdicchio”,
http://flickr.com/photos/occhio/17923096/. Both used under Creative
Commons license.) [[ATTN: Both are only licensed for non-commercial use,
so find substitutes OR obtain rights for the for-money version of the book]]

10.2.3 Finding the Variance and Weights

All of this was possible because the Oracle told us what the variance function
was. What do we do when the Oracle is not available (Figure 10.6)?

Sometimes we can work things out for ourselves, without needing an oracle.

• We know, empirically, the precision of our measurement of the response variable
— we know how precise our instruments are, or the response is really an average
of several measurements with known standard deviations, etc.

• We know how the noise in the response must depend on the input variables.
For example, when taking polls or surveys, the variance of the proportions we
find should be inversely proportional to the sample size. So we can make the
weights proportional to the sample size.

Both of these outs rely on kinds of background knowledge which are easier to
get in the natural or even the social sciences than in many industrial applications.
However, there are approaches for other situations which try to use the observed
residuals to get estimates of the heteroskedasticity; this is the topic of the next
section.



10.3 Estimating Conditional Variance Functions 239

10.3 Estimating Conditional Variance Functions

Remember that there are two equivalent ways of defining the variance:

V [X] = E
⇥
X2
⇤
� (E [X])2 = E

⇥
(X � E [X])2

⇤
(10.28)

The latter is more useful for us when it comes to estimating variance functions. We
have already figured out how to estimate means — that’s what all this previous
work on smoothing and regression is for — and the deviation of a random variable
from its mean shows up as a residual.

There are two generic ways to estimate conditional variances, which di↵er
slightly in how they use non-parametric smoothing. We can call these the squared
residuals method and the log squared residuals method. Here is how the
first one goes.

1. Estimate µ(x) with your favorite regression method, getting bµ(x).
2. Construct the squared residuals, ui = (yi � bµ(xi))

2.
3. Use your favorite non-parametric method to estimate the conditional mean of

the ui, call it bq(x).
4. Predict the variance using b�2

x = bq(x).

The log-squared residuals method goes very similarly.

1. Estimate µ(x) with your favorite regression method, getting bµ(x).
2. Construct the log squared residuals, zi = log (yi � bµ(xi))

2.
3. Use your favorite non-parametric method to estimate the conditional mean of

the zi, call it ŝ(x).
4. Predict the variance using b�2

x = exp bs(x).

The quantity yi � bµ(xi) is the ith residual. If bµ ⇡ µ, then the residuals should
have mean zero. Consequently the variance of the residuals (which is what we
want) should equal the expected squared residual. So squaring the residuals makes
sense, and the first method just smoothes these values to get at their expectations.

What about the second method — why the log? Basically, this is a conve-
nience — squares are necessarily non-negative numbers, but lots of regression
methods don’t easily include constraints like that, and we really don’t want to
predict negative variances.4 Taking the log gives us an unbounded range for the
regression.

Strictly speaking, we don’t need to use non-parametric smoothing for either
method. If we had a parametric model for �2

x, we could just fit the parametric
model to the squared residuals (or their logs). But even if you think you know
what the variance function should look like it, why not check it?

We came to estimating the variance function because of wanting to do weighted
least squares, but these methods can be used more generally. It’s often important

4 Occasionally people do things like claiming that gene di↵erences explains more than 100% of the

variance in some psychological trait, and so environment and up-bringing contribute negative

variance. Some of them — like Alford et al. (2005) — say this with a straight face.



240 Weighting and Variance

to understand variance in its own right, and this is a general method for esti-
mating it. Our estimate of the variance function depends on first having a good
estimate of the regression function



10.3 Estimating Conditional Variance Functions 241

10.3.1 Iterative Refinement of Mean and Variance: An Example

The estimate b�2
x depends on the initial estimate of the regression function bµ. But,

as we saw when we looked at weighted least squares, taking heteroskedasticity
into account can change our estimates of the regression function. This suggests an
iterative approach, where we alternate between estimating the regression function
and the variance function, using each to improve the other. That is, we take either
method above, and then, once we have estimated the variance function b�2

x, we
re-estimate bµ using weighted least squares, with weights inversely proportional to
our estimated variance. Since this will generally change our estimated regression,
it will change the residuals as well. Once the residuals have changed, we should
re-estimate the variance function. We keep going around this cycle until the
change in the regression function becomes so small that we don’t care about
further modifications. It’s hard to give a strict guarantee, but usually this sort of
iterative improvement will converge.

Let’s apply this idea to our example. Figure 10.3b already plotted the residuals
from OLS. Figure 10.7 shows those squared residuals again, along with the true
variance function and the estimated variance function.

The OLS estimate of the regression line is not especially good (b�0 = 3.63
versus �0 = 3, b�1 = �1.46 versus �1 = �2), so the residuals are systematically
o↵, but it’s clear from the figure that kernel smoothing of the squared residuals
is picking up on the heteroskedasticity, and getting a pretty reasonable picture
of the variance function.

Now we use the estimated variance function to re-estimate the regression line,
with weighted least squares.

fit.wls1 <- lm(y ~ x, weights = 1/fitted(var1))
coefficients(fit.wls1)
## (Intercept) x
## 3.212162 -1.476736
var2 <- npreg(residuals(fit.wls1)^2 ~ x)

The slope has changed substantially, and in the right direction (Figure 10.8a).
The residuals have also changed (Figure 10.8b), and the new variance function is
closer to the truth than the old one.

Since we have a new variance function, we can re-weight the data points and
re-estimate the regression:

fit.wls2 <- lm(y ~ x, weights = 1/fitted(var2))
coefficients(fit.wls2)
## (Intercept) x
## 3.203988 -1.480743
var3 <- npreg(residuals(fit.wls2)^2 ~ x)

Since we know that the true coe�cients are 3 and �2, we know that this is
moving in the right direction. If I hadn’t told you what they were, you could
still observe that the di↵erence in coe�cients between fit.wls1 and fit.wls2
is smaller than that between fit.ols and fit.wls1, which is a sign that this is
converging.



242 Weighting and Variance

−8 −6 −4 −2 0 2 4 6

0
20

0
40

0
60

0
80

0

x

sq
ua

re
d 

re
si

du
al

s

plot(x, residuals(fit.ols)^2, ylab = "squared residuals")
curve((1 + x^2/2)^2, col = "grey", add = TRUE)
require(np)
var1 <- npreg(residuals(fit.ols)^2 ~ x)
grid.x <- seq(from = min(x), to = max(x), length.out = 300)
lines(grid.x, predict(var1, exdat = grid.x))

Figure 10.7 Points: actual squared residuals from the OLS line. Grey
curve: true variance function, �2

x = (1 + x2/2)2. Black curve: kernel
smoothing of the squared residuals, using npreg.

I will spare you the plot of the new regression and of the new residuals. Let’s
iterate a few more times:



10.3 Estimating Conditional Variance Functions 243

−8 −4 0 2 4 6

−1
0

0
10

20
30

40

x

y

−8 −4 0 2 4 6

0
20

0
40

0
60

0
80

0

x

sq
ua

re
d 

re
si

du
al

s

Figure 10.8 Left: As in Figure 10.2, but with the addition of the weighted
least squares regression line (dotted), using the estimated variance from
Figure 10.7 for weights. Right: As in Figure 10.7, but with the addition of
the residuals from the WLS regression (black squares), and the new
estimated variance function (dotted curve).

fit.wls3 <- lm(y ~ x, weights = 1/fitted(var3))
coefficients(fit.wls3)
## (Intercept) x
## 3.203520 -1.481161
var4 <- npreg(residuals(fit.wls3)^2 ~ x)
fit.wls4 <- lm(y ~ x, weights = 1/fitted(var4))
coefficients(fit.wls4)
## (Intercept) x
## 3.203475 -1.481204



244 Weighting and Variance

By now, the coe�cients of the regression are changing in the fourth significant
digit, and we only have 100 data points, so the imprecision from a limited sample
surely swamps the changes we’re making, and we might as well stop.

Manually going back and forth between estimating the regression function and
estimating the variance function is tedious. We could automate it with a function,
which would look something like this:

iterative.wls <- function(x, y, tol = 0.01, max.iter = 100) {
iteration <- 1
old.coefs <- NA
regression <- lm(y ~ x)
coefs <- coefficients(regression)
while (is.na(old.coefs) || ((max(coefs - old.coefs) > tol) && (iteration < max.iter))) {

variance <- npreg(residuals(regression)^2 ~ x)
old.coefs <- coefs
iteration <- iteration + 1
regression <- lm(y ~ x, weights = 1/fitted(variance))
coefs <- coefficients(regression)

}
return(list(regression = regression, variance = variance, iterations = iteration))

}

This starts by doing an unweighted linear regression, and then alternates be-
tween WLS for the getting the regression and kernel smoothing for getting the
variance. It stops when no parameter of the regression changes by more than tol,
or when it’s gone around the cycle max.iter times.5 This code is a bit too inflex-
ible to be really “industrial strength” (what if we wanted to use a data frame, or
a more complex regression formula?), but shows the core idea.

5 The condition in the while loop is a bit complicated, to ensure that the loop is executed at least

once. Some languages have an until control structure which would simplify this.



10.3 Estimating Conditional Variance Functions 245

10.3.2 Real Data Example: Old Heteroskedastic

§5.4.2 introduced the geyser data set, which is about predicting the waiting
time between consecutive eruptions of the “Old Faithful” geyser at Yellowstone
National Park from the duration of the latest eruption. Our exploration there
showed that a simple linear model (of the kind often fit to this data in textbooks
and elementary classes) is not very good, and raised the suspicion that one im-
portant problem was heteroskedasticity. Let’s follow up on that, building on the
computational work done in that section.

The estimated variance function geyser.var does not look particularly flat,
but it comes from applying a fairly complicated procedure (kernel smoothing
with data-driven bandwidth selection) to a fairly limited amount of data (299
observations). Maybe that’s the amount of wiggliness we should expect to see due
to finite-sample fluctuations? To rule this out, we can make surrogate data from
the homoskedastic model, treat it the same way as the real data, and plot the
resulting variance functions (Figure 10.10). The conditional variance functions
estimated from the homoskedastic model are flat or gently varying, with much
less range than what’s seen in the data.

While that sort of qualitative comparison is genuinely informative, one can also
be more quantitative. One might measure heteroskedasticity by, say, evaluating
the conditional variance at all the data points, and looking at the ratio of the in-
terquartile range to the median. This would be zero for perfect homoskedasticity,
and grow as the dispersion of actual variances around the “typical” variance in-
creased. For the data, this is IQR(fitted(geyser.var))/median(fitted(geyser.var))
=. Simulations from the OLS model give values around 10�15.

There is nothing particularly special about this measure of heteroskedasticity
— after all, I just made it up. The broad point it illustrates is the one made in
§5.4.2.1: whenever we have some sort of quantitative summary statistic we can
calculate on our real data, we can also calculate the same statistic on realizations
of the model, and the di↵erence will then tell us something about how close the
simulations, and so the model, come to the data. In this case, we learn that the
linear, homoskedastic model seriously understates the variability of this data.
That leaves open the question of whether the problem is the linearity or the
homoskedasticity; I will leave that question to Exercise 10.6.



246 Weighting and Variance

1 2 3 4 5

0
20

0
40

0
60

0
80

0

Duration (minutes)

Sq
ua

re
d 

re
si

du
al

s 
of

 li
ne

ar
 m

od
el

 (m
in

ut
es

2 )

data
kernel variance
homoskedastic (OLS)

library(MASS)
data(geyser)
geyser.ols <- lm(waiting ~ duration, data = geyser)
plot(geyser$duration, residuals(geyser.ols)^2, cex = 0.5, pch = 16, xlab = "Duration (minutes)",

ylab = expression(`Squared residuals of linear model `(minutes^2)))
geyser.var <- npreg(residuals(geyser.ols)^2 ~ geyser$duration)
duration.order <- order(geyser$duration)
lines(geyser$duration[duration.order], fitted(geyser.var)[duration.order])
abline(h = summary(geyser.ols)$sigma^2, lty = "dashed")
legend("topleft", legend = c("data", "kernel variance", "homoskedastic (OLS)"), lty = c("blank",

"solid", "dashed"), pch = c(16, NA, NA))

Figure 10.9 Squared residuals from the linear model of Figure 5.1, plotted
against duration, along with the unconditional, homoskedastic variance
implicit in OLS (dashed), and a kernel-regression estimate of the conditional
variance (solid).



10.3 Estimating Conditional Variance Functions 247

1 2 3 4 5

0
50

10
0

15
0

20
0

25
0

30
0

Duration (minutes)

Sq
ua

re
d 

re
si

du
al

s 
of

 li
ne

ar
 m

od
el

 (m
in

ut
es

2 )

duration.grid <- seq(from = min(geyser$duration), to = max(geyser$duration), length.out = 300)
plot(duration.grid, predict(geyser.var, exdat = duration.grid), ylim = c(0, 300),

type = "l", xlab = "Duration (minutes)", ylab = expression(`Squared residuals of linear model `(minutes^2)))
abline(h = summary(geyser.ols)$sigma^2, lty = "dashed")
one.var.func <- function() {

fit <- lm(waiting ~ duration, data = rgeyser())
var.func <- npreg(residuals(fit)^2 ~ geyser$duration)
lines(duration.grid, predict(var.func, exdat = duration.grid), col = "grey")

}
invisible(replicate(30, one.var.func()))

Figure 10.10 The actual conditional variance function estimated from the
Old Faithful data (and the linear regression), in black, plus the results of
applying the same procedure to simulations from the homoskedastic linear
regression model (grey lines; see §5.4.2 for the rgeyser function). The fact
that the estimates from the simulations are mostly flat or gently sloped
suggests that the changes in variance found in the data are likely too large
to just be sampling noise.



248 Weighting and Variance

10.4 Re-sampling Residuals with Heteroskedasticity

Re-sampling the residuals of a regression, as described in §6.4, assumes that the
distribution of fluctuations around the regression curve is the same for all values of
the input x. Under heteroskedasticity, this is of course not the case. Nonetheless,
we can still re-sample residuals to get bootstrap confidence intervals, standard
errors, and so forth, provided we define and scale them properly. If we have a
conditional variance function �̂2(x), as well as the estimated regression function
bµ(x), we can combine them to re-sample heteroskedastic residuals.

1. Construct the standardized residuals, by dividing the actual residuals by the
conditional standard deviation:

⌘i = ✏i/�̂(xi) (10.29)

The ⌘i should now be all the same magnitude (in distribution!), no matter
where xi is in the space of predictors.

2. Re-sample the ⌘i with replacement, to get ⌘̃1, . . . ⌘̃n.
3. Set x̃i = xi.
4. Set ỹi = bµ(x̃i) + �̂(x̃i)⌘̃i.
5. Analyze the surrogate data (x̃1, ỹ1), . . . (x̃n, ỹn) like it was real data.

Of course, this still assumes that the only di↵erence in distribution for the noise
at di↵erent values of x is the scale.



10.5 Local Linear Regression 249

10.5 Local Linear Regression

Switching gears, recall from Chapter 2 that one reason it can be sensible to use
a linear approximation to the true regression function µ is that we can typically
Taylor-expand (App. B) the latter around any point x0,

µ(x) = µ(x0) +
1X

k=1

(x� x0)
k

k!

dkµ

dxk

����
x=x0

(10.30)

and similarly with all the partial derivatives in higher dimensions. Truncating
the series at first order, µ(x) ⇡ µ(x0) + (x� x0)µ0(x0), we see the first derivative
µ0(x0) is the best linear prediction coe�cient, at least if x close enough to x0. The
snag in this line of argument is that if µ(x) is nonlinear, then µ0 isn’t a constant,
and the optimal linear predictor changes depending on where we want to make
predictions.

However, statisticians are thrifty people, and having assembled all the ma-
chinery for linear regression, they are loathe to throw it away just because the
fundamental model is wrong. If we can’t fit one line, why not fit many? If each
point has a di↵erent best linear regression, why not estimate them all? Thus
the idea of local linear regression: fit a di↵erent linear regression everywhere,
weighting the data points by how close they are to the point of interest6.

The simplest approach we could take would be to divide up the range of x
into so many bins, and fit a separate linear regression for each bin. This has
at least three drawbacks. First, we get weird discontinuities at the boundaries
between bins. Second, we induce an odd sort of bias, where our predictions near
the boundaries of a bin depend strongly on data from one side of the bin, and
not at all on nearby data points just across the border. Third, we need to pick
the bins.

The next simplest approach would be to first figure out where we want to make
a prediction (say x), and do a linear regression with all the data points which
were su�ciently close, |xi � x|  h for some h. Now we are basically using a
uniform-density kernel to weight the data points. This eliminates two problems
from the binning idea — the examples we include are always centered on the x
we’re trying to get a prediction for, and we just need to pick one bandwidth h
rather than placing all the bin boundaries. But still, each example point always
has either weight 0 or weight 1, so our predictions change jerkily as training
points fall into or out of the window. It generally works nicer to have the weights
change more smoothly with the distance, starting o↵ large and then gradually
trailing to zero.

By now bells may be going o↵, as this sounds very similar to the kernel regres-
sion. In fact, kernel regression is what happens when we truncate Eq. 10.30 at
zeroth order, getting locally constant regression. We set up the problem

bµ(x) = argmin
m

1

n

nX

i=1

wi(x)(yi �m)2 (10.31)

6 Some people say “local linear” and some “locally linear”.



250 Weighting and Variance

and get the solution

bµ(x) =
nX

i=1

yi
wi(x)Pn
j=1 wj(x)

(10.32)

which just is our kernel regression, when the weights are proportional to the
kernels, wi(x) / K(xi, x). (Without loss of generality, we can take the constant
of proportionality to be 1.)

What about locally linear regression? The optimization problem is

⇣
bµ(x), b�(x)

⌘
= argmin

m,�

1

n

nX

i=1

wi(x)(yi �m� (xi � x) · �)2 (10.33)

where again we can make wi(x) proportional to some kernel function, wi(x) /
K(xi, x). To solve this, abuse notation slightly to define zi = (1, xi � x), i.e., the
displacement from x, with a 1 stuck at the beginning to (as usual) handle the
intercept. Now, by the machinery above,

⇣
bµ(x), b�(x)

⌘
= (zTw(x)z)�1zTw(x)y (10.34)

and the prediction is just the intercept, bµ(x). If you need an estimate of the first
derivatives, those are the b�(x). Eq. 10.34 guarantees that the weights given to
each training point change smoothly with x, so the predictions will also change
smoothly.7

Using a smooth kernel whose density is positive everywhere, like the Gaussian,
ensures that the weights will change smoothly. But we could also use a kernel
which goes to zero outside some finite range, so long as the kernel rises gradually
from zero inside the range. For locally linear regression, a common choice of kernel
is therefore the tri-cubic,

K(xi, x) =

 

1�
✓ |xi � x0|

h

◆3
!3

(10.35)

if |x� xi| < h, and = 0 otherwise (Figure 10.11).

7 Notice that local linear predictors are still linear smoothers as defined in Chapter 1, (i.e., the

predictions are linear in the yi), but they are not, strictly speaking, kernel smoothers, since you

can’t re-write the last equation in the form of a kernel average.



10.5 Local Linear Regression 251

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

tri
cu

bi
c 

fu
nc

tio
n

curve((1 - abs(x)^3)^3, from = -1, to = 1, ylab = "tricubic function")

Figure 10.11 The tricubic kernel, with broad plateau where |x| ⇡ 0, and
the smooth fall-o↵ to zero at |x| = 1.



252 Weighting and Variance

10.5.1 For and Against Locally Linear Regression

Why would we use locally linear regression, if we already have kernel regression?

1. You may recall that when we worked out the bias of kernel smoothers (Eq.
4.10 in Chapter 4), we got a contribution that was proportional to µ0(x). If
we do an analogous analysis for locally linear regression, the bias is the same,
except that this derivative term goes away.

2. Relatedly, that analysis we did of kernel regression tacitly assumed the point
we were looking at was in the middle of the training data (or at least rather
more than h from the border). The bias gets worse near the edges of the
training data. Suppose that the true µ(x) is decreasing in the vicinity of the
largest xi. (See the grey curve in Figure 10.12.) When we make our predictions
there, in kernel regression we can only average values of yi which tend to be
systematically larger than the value we want to predict. This means that our
kernel predictions are systematically biased upwards, and the size of the bias
grows with µ0(x). (See the black line in Figure 10.12 at the lower right.) If we
use a locally linear model, however, it can pick up that there is a trend, and
reduce the edge bias by extrapolating it (dashed line in the figure).

3. The predictions of locally linear regression tend to be smoother than those of
kernel regression, simply because we are locally fitting a smooth line rather
than a flat constant. As a consequence, estimates of the derivative dbµ

dx
tend to

be less noisy when bµ comes from a locally linear model than a kernel regression.

Of course, total prediction error depends not only on the bias but also on the
variance. Remarkably enough, the variance for kernel regression and locally linear
regression is the same, at least asymptotically. Since locally linear regression has
smaller bias, local-linear fits are often better predictors.

Despite all these advantages, local linear models have a real drawback. To make
a prediction with a kernel smoother, we have to calculate a weighted average. To
make a prediction with a local linear model, we have to solve a (weighted) linear
least squares problem for each point, or each prediction. This takes much more
computing time8.

There are several packages which implement locally linear regression. Since
we are already using np, one of the simplest is to set the regtype="ll" in

8 Let’s think this through. To find bµ(x) with a kernel smoother, we need to calculate K(xi, x) for each

xi. If we’ve got p predictor variables and use a product kernel, that takes O(pn) computational

steps. We then need to add up the kernels to get the denominator, which we could certainly do in

O(n) more steps. (Could you do it faster?) Multiplying each weight by its yi is a further O(n), and

the final adding up is at most O(n); total, O(pn). To make a prediction with a local linear model,

we need to calculate the right-hand side of Eq. 10.34. Finding (zTw(x)z) means multiplying

[(p+ 1)⇥ n][n⇥ n][n⇥ (p+ 1)] matrices, which will take O((p+ 1)2n) = O(p2n) steps. Inverting a

q ⇥ q matrix takes O(q3) steps, so our inversion takes O((p+ 1)3) = O(p3) steps. Just getting

(zTw(x)z)�1 thus requires O(p3 + p2n). Finding the (p+ 1)⇥ 1 matrix z
T
w(x)y similarly takes

O((p+ 1)n) = O(pn) steps, and the final matrix multiplication is O((p+ 1)(p+ 1)) = O(p2). Total,

O(p2n) +O(p3). The speed advantage of kernel smoothing thus gets increasingly extreme as the

number of predictor variables p grows.



10.5 Local Linear Regression 253

0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8

x

y

x <- runif(30, max = 3)
y <- 9 - x^2 + rnorm(30, sd = 0.1)
plot(x, y)
rug(x, side = 1, col = "grey")
rug(y, side = 2, col = "grey")
curve(9 - x^2, col = "grey", add = TRUE, lwd = 3)
grid.x <- seq(from = 0, to = 3, length.out = 300)
np0 <- npreg(y ~ x)
lines(grid.x, predict(np0, exdat = grid.x))
np1 <- npreg(y ~ x, regtype = "ll")
lines(grid.x, predict(np1, exdat = grid.x), lty = "dashed")

Figure 10.12 Points are samples from the true, nonlinear regression
function shown in grey. The solid black line is a kernel regression, and the
dashed line is a locally linear regression. Note that the locally linear model is
smoother than the kernel regression, and less biased when the true curve has
a non-zero bias at a boundary of the data (far right).



254 Weighting and Variance

npreg.9 There are several other packages which support it, notably KernSmooth
and locpoly.

As the name of the latter suggests, there is no reason we have to stop at
locally linear models, and we could use local polynomials of any order. The main
reason to use a higher-order local polynomial, rather than a locally-linear or
locally-constant model, is to estimate higher derivatives. Since this is a somewhat
specialized topic, I will not say more about it.

9
"ll" stands for “locally linear”, of course; the default is regtype="lc", for “locally constant”.



10.5 Local Linear Regression 255

10.5.2 Lowess

There is however one additional topic in locally linear models which is worth
mentioning. This is the variant called lowess or loess.10 The basic idea is to fit
a locally linear model, with a kernel which goes to zero outside a finite window
and rises gradually inside it, typically the tri-cubic I plotted earlier. The wrin-
kle, however, is that rather than solving a least squares problem, it minimizes a
di↵erent and more “robust” loss function,

argmin
�(x)

1

n

nX

i=1

wi(x)`(y � ~xi · �(x)) (10.36)

where `(a) doesn’t grow as rapidly for large a as a2. The idea is to make the fitting
less vulnerable to occasional large outliers, which would have very large squared
errors, unless the regression curve went far out of its way to accommodate them.
For instance, we might have `(a) = a2 if |a| < 1, and `(a) = 2|a|� 1 otherwise11.
There is a large theory of robust estimation, largely parallel to the more familiar
least-squares theory. In the interest of space, we won’t pursue it further, but
lowess is worth mentioning because it’s such a common smoothing technique,
especially for sheer visualization.

Lowess smoothing is implemented in base R through the function lowess
(rather basic), and through the function loess (more sophisticated), as well as
in the CRAN package locfit (more sophisticated still). The lowess idea can be
combined with local fitting of higher-order polynomials; the loess and locfit
commands both support this.

10 I have heard this name explained as an acronym for both “locally weighted scatterplot smoothing”

and “locally weight sum of squares”.
11 This is called the Huber loss; it continuously interpolates between looking like squared error and

looking like absolute error. This means that when errors are small, it gives results very like

least-squares, but it is resistant to outliers. See also App. J.6.1.



256 Weighting and Variance

10.6 Further Reading

Weighted least squares goes back to the 19th century, almost as far back as
ordinary least squares; see the references in chapter 1 and 2.

I am not sure who invented the use of smoothing to estimate variance functions;
I learned it from Wasserman (2006, pp. 87–88). I’ve occasionally seen it done with
a linear model for the conditional variance, which I can’t recommend.

Simono↵ (1996) is a good reference on local linear and local polynomial models,
including actually doing the bias-variance analyses where I’ve just made empty
“it can be shown” promises. Fan and Gijbels (1996) is more comprehensive, but
also a much harder read. Lowess was introduced by Cleveland (1979), but the
name evidently came later (since it doesn’t appear in that paper).

Exercises

10.1 Imagine we are trying to estimate the mean value of Y from a large population of size n0,

so y = n
�1
0

Pn
j=1 yj . We observe n ⌧ n0 members of the population, with individual i

being included in our sample with a probability proportional to ⇡i.

1. Show that
�Pn

i=1 yi/⇡i
�
/
Pn

i0=1 1/⇡i0 is a consistent estimator of y, by showing that

that it is unbiased and it has a variance that shrinks with n towards 0.

2. Is the unweighted sample mean n
�1Pn

i=1 yi a consistent estimator of y when the ⇡i

are not all equal?

10.2 Show that the model of Eq. 10.13 has the log-likelihood given by Eq. 10.14

10.3 Do the calculus to verify Eq. 10.4.

10.4 Is wi = 1 a necessary as well as a su�cient condition for Eq. 10.3 and Eq. 10.1 to have

the same minimum?

10.5 §10.2.2 showed that WLS gives better parameter estimates than OLS when there is het-

eroskedasticity, and we know and use the variance. Modify the code for to see which one

has better generalization error.

10.6 §10.3.2 looked at the residuals of the linear regression model for the Old Faithful geyser

data, and showed that they would imply lots of heteroskedasticity. This might, however, be

an artifact of inappropriately using a linear model. Use either kernel regression (cf. §6.4.2)
or local linear regression to estimate the conditional mean of waiting given duration, and

see whether the apparent heteroskedasticity goes away.

10.7 Should local linear regression do better or worse than ordinary least squares under het-

eroskedasticity? What exactly would this mean, and how might you test your ideas?


