
9

Testing Parametric Regression Specifications
with Nonparametric Regression

9.1 Testing Functional Forms

An important, if under-appreciated, use of nonparametric regression is checking
whether parametric regressions are well-specified. The typical parametric regres-
sion model is something like

Y = f(X; ✓) + ✏ (9.1)

where f is some function which is completely specified except for the finite vector
of parameters ✓, and ✏, as usual, is uncorrelated noise. Often, of course, people
use a function f that is linear in the variables in X, or perhaps includes some
interactions between them.

How can we tell if the specification is right? If, for example, it’s a linear model,
how can we check whether there might not be some nonlinearity? A common
approach is to modify the specification to allow for specific departures from the
baseline model — say, adding a quadratic term — and seeing whether the co-
e�cients that go with those terms are significantly non-zero, or whether the
improvement in fit is significant.1 For example, one might compare the model

Y = ✓1x1 + ✓2x2 + ✏ (9.2)

to the model

Y = ✓1x1 + ✓2x2 + ✓3x
2
1 + ✏ (9.3)

by checking whether the estimated ✓3 is significantly di↵erent from 0, or whether
the residuals from the second model are significantly smaller than the residuals
from the first.

This can work, if you have chosen the right nonlinearity to test. It has the
power to detect certain mis-specifications, if they exist, but not others. (What if
the departure from linearity is not quadratic but cubic?) If you have good reasons
to think that when the model is wrong, it can only be wrong in certain ways,
fine; if not, though, why only check for those errors?

Nonparametric regression e↵ectively lets you check for all kinds of systematic
errors, rather than singling out a particular one. There are three basic approaches,
which I give in order of increasing sophistication.

1 In my experience, this approach is second in popularity only to ignoring the issue.

209

22:54 Thursday 15th February, 2024
Copyright c�Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

210 Testing Regression Specifications

• If the parametric model is right, it should predict as well as, or even better than,
the non-parametric one, and we can check whether MSEp(b✓) �MSEnp(bµ) is
su�ciently small.

• If the parametric model is right, the non-parametric estimated regression curve
should be very close to the parametric one. So we can check whether f(x; b✓)�
bµ(x) is approximately zero everywhere.

• If the parametric model is right, then its residuals should be patternless and
independent of input features, because

E [Y � f(x; ✓)|X] = E [f(x; ✓) + ✏� f(x; ✓)|X] = E [✏|X] = 0 (9.4)

So we can apply non-parametric smoothing to the parametric residuals, y �
f(x; b✓), and see if their expectation is approximately zero everywhere.

We’ll stick with the first procedure, because it’s simpler for us to implement
computationally. However, it turns out to be easier to develop theory for the
other two, and especially for the third — see Li and Racine (2007, ch. 12), or
Hart (1997).

Here is the basic procedure.

1. Get data (x1, y1), (x2, y2), . . . (xn, yn).

2. Fit the parametric model, getting an estimate b✓, and in-sample mean-squared
error MSEp(b✓).

3. Fit your favorite nonparametric regression (using cross-validation to pick con-
trol settings as necessary), getting curve bµ and in-sample mean-squared error
MSEnp(bµ).

4. Calculate bd = MSEp(b✓)�MSEnp(bµ).
5. Simulate from the parametric model b✓ to get faked data (x⇤

1, y
⇤
1), . . . (x

⇤
n, y

⇤
n).

1. Fit the parametric model to the simulated data, getting estimate b✓⇤ and
MSEp(b✓⇤).

2. Fit the nonparametric model to the simulated data, getting estimate bµ⇤

and MSEnp(bµ⇤).

3. Calculate D⇤ = MSEp(b✓⇤)�MSEnp(bµ⇤).

6. Repeat step 5 b times to get an estimate of the distribution of D under the
null hypothesis.

7. The approximate p-value is
1+#{D⇤>bd}

1+b
.

Let’s step through the logic. In general, the error of the non-parametric model
will be converging to the smallest level compatible with the intrinsic noise of the
process. What about the parametric model?

Suppose on the one hand that the parametric model is correctly specified. Then
its error will also be converging to the minimum — by assumption, it’s got the
functional form right so bias will go to zero, and as b✓ ! ✓0, the variance will also

9.1 Testing Functional Forms 211

go to zero. In fact, with enough data the correctly-specified parametric model
will actually generalize better than the non-parametric model2.

Suppose on the other hand that the parametric model is mis-specified. Then
its predictions are systematically wrong, even with unlimited amounts of data
— there’s some bias which never goes away, no matter how big the sample.
Since the non-parametric smoother does eventually come arbitrarily close to the
true regression function, the smoother will end up predicting better than the
parametric model.

Smaller errors for the smoother, then, suggest that the parametric model is
wrong. But since the smoother has higher capacity, it could easily get smaller er-
rors on a particular sample by chance and/or over-fitting, so only big di↵erences
in error count as evidence. Simulating from the parametric model gives us surro-
gate data which looks just like reality ought to, if the model is true. We then see
how much better we could expect the non-parametric smoother to fit under the
parametric model. If the non-parametric smoother fits the actual data much bet-
ter than this, we can reject the parametric model with high confidence: it’s really
unlikely that we’d see that big an improvement from using the nonparametric
model just by luck.3

As usual, we simulate from the parametric model simply because we have
no hope of working out the distribution of the di↵erences in MSEs from first
principles. This is an example of our general strategy of bootstrapping.

2 Remember that the smoother must, so to speak, use up some of the information in the data to

figure out the shape of the regression function. The parametric model, on the other hand, takes that

basic shape as given, and uses all the data’s information to tune its parameters.
3 As usual with p-values, this is not symmetric. A high p-value might mean that the true regression

function is very close to µ(x; ✓), or it might mean that we don’t have enough data to draw

conclusions (or that we were unlucky).

212 Testing Regression Specifications

9.1.1 Examples of Testing a Parametric Model

Let’s see this in action. First, let’s detect a reasonably subtle nonlinearity. Take
the non-linear function g(x) = log (1 + x), and say that Y = g(x)+✏, with ✏ being
IID Gaussian noise with mean 0 and standard deviation 0.15. (This is one of the
examples from §4.2.) Figure 9.1 shows the regression function and the data. The
nonlinearity is clear with the curve to “guide the eye”, but fairly subtle.

A simple linear regression looks pretty good:

glinfit = lm(y ~ x, data = gframe)
print(summary(glinfit), signif.stars = FALSE, digits = 2)
##
Call:
lm(formula = y ~ x, data = gframe)
##
Residuals:
Min 1Q Median 3Q Max
-0.468 -0.109 -0.002 0.114 0.485
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.218 0.021 11 <2e-16
x 0.420 0.012 36 <2e-16
##
Residual standard error: 0.18 on 298 degrees of freedom
Multiple R-squared: 0.81,Adjusted R-squared: 0.81
F-statistic: 1.3e+03 on 1 and 298 DF, p-value: <2e-16

R2 is ridiculously high — the regression line preserves 81 percent of the variance
in the data. The p-value reported by R is also very, very low, but remember all
this really means is “you’d have to be crazy to think a flat line fit better than
straight line with a slope” (Figure 9.2).

The in-sample MSE of the linear fit is4

signif(mean(residuals(glinfit)^2), 3)
[1] 0.0311

The nonparametric regression has a somewhat smaller MSE5

library(np)
gnpr <- npreg(y ~ x, data = gframe)
signif(gnpr$MSE, 3)
[1] 0.024

So bd is

signif((d.hat = mean(glinfit$residual^2) - gnpr$MSE), 3)
[1] 0.00715

4 If we ask R for the MSE, by squaring summary(glinfit)$sigma, we get 0.031346. This di↵ers from

the mean of the squared residuals by a factor of factor of n/(n� 2) = 300/298 = 1.0067, because R

is trying to estimate the out-of-sample error by scaling up the in-sample error, the same way the

estimated population variance scales up the sample variance. We want to compare in-sample fits.
5
npreg does not apply the kind of correction mentioned in the previous footnote.

9.1 Testing Functional Forms 213

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

y

x <- runif(300, 0, 3)
yg <- log(x + 1) + rnorm(length(x), 0, 0.15)
gframe <- data.frame(x = x, y = yg)
plot(x, yg, xlab = "x", ylab = "y", pch = 16, cex = 0.5)
curve(log(1 + x), col = "grey", add = TRUE, lwd = 4)

Figure 9.1 True regression curve (grey) and data points (circles). The
curve g(x) = log (1 + x).

Now we need to simulate from the fitted parametric model, using its estimated
coe�cients and noise level. We have seen several times now how to do this. The
function sim.lm in Example 21 does this, along the same lines as the examples in
Chapter 6; it assumes homoskedastic Gaussian noise. Again, as before, we need

214 Testing Regression Specifications

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

y

Figure 9.2 As in previous figure, but adding the least-squares regression
line (black). Line widths exaggerated for clarity.

a function which will calculate the di↵erence in MSEs between a linear model
and a kernel smoother fit to the same data set — which will do automatically
what we did by hand above. This is calc.D in Example 22. Note that the kernel
bandwidth has to be re-tuned to each new data set.

If we call calc.D on the output of sim.lm, we get one value of the test statistic
under the null distribution:

calc.D(sim.lm(glinfit, x))
[1] 0.002131516

Now we just repeat this a lot to get a good approximation to the sampling
distribution of D under the null hypothesis:

9.1 Testing Functional Forms 215

sim.lm <- function(linfit, test.x) {
n <- length(test.x)
sim.frame <- data.frame(x = test.x)
sigma <- summary(linfit)$sigma * (n - 2)/n
y.sim <- predict(linfit, newdata = sim.frame)
y.sim <- y.sim + rnorm(n, 0, sigma)
sim.frame <- data.frame(sim.frame, y = y.sim)
return(sim.frame)

}

Code Example 21: Simulate a new data set from a linear model, assuming homoskedastic
Gaussian noise. It also assumes that there is one input variable, x, and that the response variable
is called y. Could you modify it to work with multiple regression?

calc.D <- function(data) {
MSE.p <- mean((lm(y ~ x, data = data)$residuals)^2)
MSE.np.bw <- npregbw(y ~ x, data = data)
MSE.np <- npreg(MSE.np.bw)$MSE
return(MSE.p - MSE.np)

}

Code Example 22: Calculate the di↵erence-in-MSEs test statistic.

null.samples.D <- replicate(200, calc.D(sim.lm(glinfit, x)))

This takes some time, because each replication involves not just generating a
new simulation sample, but also cross-validation to pick a bandwidth. This adds
up to about a second per replicate on my laptop, and so a couple of minutes for
200 replicates.

(While the computer is thinking, look at the command a little more closely.
It leaves the x values alone, and only uses simulation to generate new y values.
This is appropriate here because our model doesn’t really say where the x values
came from; it’s just about the conditional distribution of Y given X. If the model
we were testing specified a distribution for x, we should generate x each time we
invoke calc.D. If the specification is vague, like “x is IID” but with no particular
distribution, then resample X.)

When it’s done, we can plot the distribution and see that the observed value
bd is pretty far out along the right tail (Figure 9.3). This tells us that it’s very
unlikely that npreg would improve so much on the linear model if the latter were
true. In fact, exactly 0 of the simulated values of the test statistic were that big:

sum(null.samples.D > d.hat)
[1] 0

Thus our estimated p-value is  0.00498. We can reject the linear model pretty
confidently.6

As a second example, let’s suppose that the linear model is right — then the

6 If we wanted a more precise estimate of the p-value, we’d need to use more bootstrap samples.

216 Testing Regression Specifications

Histogram of null.samples.D

null.samples.D

D
en
si
ty

0.000 0.002 0.004 0.006 0.008

0
20
0

40
0

60
0

80
0

hist(null.samples.D, n = 31, xlim = c(min(null.samples.D), 1.1 * d.hat), probability = TRUE)
abline(v = d.hat)

Figure 9.3 Histogram of the distribution of D = MSEp �MSEnp for data
simulated from the parametric model. The vertical line marks the observed
value. Notice that the mode is positive and the distribution is right-skewed;
this is typical.

test should give us a high p-value. So let us stipulate that in reality

Y = 0.2 + 0.5x+ ⌘ (9.5)

with ⌘ ⇠ N (0, 0.152). Figure 9.4 shows data from this, of the same size as before.
Repeating the same exercise as before, we get that d̂ = 0.0013, together with

9.1 Testing Functional Forms 217

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

y

y2 <- 0.2 + 0.5 * x + rnorm(length(x), 0, 0.15)
y2.frame <- data.frame(x = x, y = y2)
plot(x, y2, xlab = "x", ylab = "y")
abline(0.2, 0.5, col = "grey", lwd = 2)

Figure 9.4 Data from the linear model (true regression line in grey).

a slightly di↵erent null distribution (Figure 9.5). Now the p-value is 0.14, which
it would be quite rash to reject.

218 Testing Regression Specifications

Histogram of null.samples.D.y2

null.samples.D.y2

D
en
si
ty

0.000 0.001 0.002 0.003 0.004 0.005

0
20
0

40
0

60
0

80
0

Figure 9.5 As in Figure 9.3, but using the data and fits from Figure 9.4.

9.1 Testing Functional Forms 219

9.1.2 Remarks

Other Nonparametric Regressions

There is nothing especially magical about using kernel regression here. Any con-
sistent nonparametric estimator (say, your favorite spline) would work. They may
di↵er somewhat in their answers on particular cases.

Curse of Dimensionality

For multivariate regressions, testing against a fully nonparametric alternative can
be very time-consuming, as well as running up against curse-of-dimensionality
issues7. A compromise is to test the parametric regression against an additive
model. Essentially nothing has to change.

Testing E [b✏|X] = 0

I mentioned at the beginning of the chapter that one way to test whether the
parametric model is correctly specified is to test whether the residuals have expec-
tation zero everywhere. Setting r(x;m) ⌘ E [Y �m(X)|X = x], we know from
Chapter ?? that r(x;µ) = 0 everywhere, and that, for any other function m,
r(x;m) 6= 0 for at least some values of x. Thus, if we take the residuals b✏ from our
parametric model and we smooth them, we get an estimated function r̂(x) that
should be converging to 0 everywhere if the parametric model is well-specified.
A natural test statistic is therefore some measure of the “size” of r̂, such as8R
r̂2(x)dx, or

R
r̂2(x)f(x)dx (where f(x) is the pdf of X). (The latter, in particu-

lar, can be approximated by n�1
Pn

i=1 r̂
2(xi).) Our testing procedure would then

amount to (i) finding the residuals by fitting the parametric model, (ii) smooth-
ing the residuals to get r̂, (iii) calculating the size of r̂, and (iv) simulating to
get a distribution for how big r̂ should be, under the null hypothesis that the
parametric model is right.

An alternative to measuring the size of the expected-residuals function would
be to try to predict the residuals. We would compare the MSEs of the “model”
that the residuals have conditional expectation 0 everywhere, to the MSE of the
model that predicts the residuals by smoothing against X, and proceed much as
before9.

Stabilizing the Sampling Distribution of the Test Statistic

I have just looked at the di↵erence in MSEs. The bootstrap principle being in-
voked is that the sampling distribution of the test statistic, under the estimated
parametric model, should be close to the distribution under the true parameter

7 This curse manifests itself here as a loss of power in the test. Said another way, because

unconstrained non-parametric regression must use a lot of data points just to determine the general

shape of the regression function, even more data is needed to tell whether a particular parametric

guess is wrong.
8 If you’ve taken functional analysis or measure theory, you may recognize these as the (squared) L2

and L2(f) norms of the function r̂.
9 Can you write the di↵erence in MSEs for the residuals in terms of either of the measures of the size

of r̂?

220 Testing Regression Specifications

value. As discussed in Chapter 6, sometimes some massaging of the test statistic
helps bring these distributions closer. Some modifications to consider:

• Divide the MSE di↵erence by an estimate of the noise �.
• Divide by an estimate of the noise � times the di↵erence in degrees of freedom,

using the e↵ective degrees of freedom (§1.5.3.2) of the nonparametric regression.
• Use the log of the ratio in MSEs instead of the MSE di↵erence.

Doing a double bootstrap can help you assess whether these are necessary.

9.2 Why Use Parametric Models At All?

It might seem by this point that there is little point to using parametric models
at all. Either our favorite parametric model is right, or it isn’t. If it is right, then
a consistent nonparametric estimate will eventually approximate it arbitrarily
closely. If the parametric model is wrong, it will not self-correct, but the non-
parametric estimate will eventually show us that the parametric model doesn’t
work. Either way, the parametric model seems superfluous.

There are two things wrong with this line of reasoning — two good reasons to
use parametric models.

1. One use of statistical models, like regression models, is to connect scientific
theories to data. The theories are ideas about the mechanisms generating the
data. Sometimes these ideas are precise enough to tell us what the functional
form of the regression should be, or even what the distribution of noise terms
should be, but still contain unknown parameters. In this case, the parameters
themselves are substantively meaningful and interesting — we don’t just care
about prediction.10

2. Even if all we care about is prediction accuracy, there is still the bias-variance
trade-o↵ to consider. Non-parametric smoothers will have larger variance in
their predictions, at the same sample size, than correctly-specified parametric
models, simply because the former are more flexible. Both models are converg-
ing on the true regression function, but the parametric model converges faster,
because it searches over a more confined space. In terms of total prediction
error, the parametric model’s low variance plus vanishing bias beats the non-
parametric smoother’s larger variance plus vanishing bias. (Remember that
this is part of the logic of testing parametric models in the previous section.)
In the next section, we will see that this argument can actually be pushed
further, to work with not-quite-correctly specified models.

Of course, both of these advantages of parametric models only obtain if they
are well-specified. If we want to claim those advantages, we need to check the
specification.

10 On the other hand, it is not uncommon for scientists to write down theories positing linear

relationships between variables, not because they actually believe that, but because that’s the only

thing they know how to estimate statistically.

9.2 Why Use Parametric Models At All? 221

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5
1.0

1.5

x

h(x)

h <- function(x) { 0.2 + 0.5*(1+sin(x)/10)*x }
curve(h(x),from=0,to=3)

Figure 9.6 Graph of h(x) = 0.2 + 1
2

�
1 + sin x

10

�
x over [0, 3].

9.2.1 Why We Sometimes Want Mis-Specified Parametric Models

Low-dimensional parametric models have potentially high bias (if the real re-
gression curve is very di↵erent from what the model posits), but low variance
(because there isn’t that much to estimate). Non-parametric regression models
have low bias (they’re flexible) but high variance (they’re flexible). If the para-
metric model is true, it can converge faster than the non-parametric one. Even if
the parametric model isn’t quite true, a small bias plus low variance can some-
times still beat a non-parametric smoother’s smaller bias and substantial vari-
ance. With enough data the non-parametric smoother will eventually over-take
the mis-specified parametric model, but with small samples we might be better
o↵ embracing bias.

To illustrate, suppose that the true regression function is

E [Y |X = x] = 0.2 +
1

2

✓
1 +

sinx

10

◆
x (9.6)

This is very nearly linear over small ranges — say x 2 [0, 3] (Figure 9.6).
I will use the fact that I know the true model here to calculate the actual

expected generalization error, by averaging over many samples (Example 23).
Figure 9.7 shows that, out to a fairly substantial sample size (⇡ 500), the

lower bias of the non-parametric regression is systematically beaten by the lower
variance of the linear model — though admittedly not by much.

222 Testing Regression Specifications

5 10 20 50 100 200 500 1000

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

0.
21

n

R
M

S
ge

ne
ra

liz
at

io
n

er
ro

r

sizes <- c(5, 10, 15, 20, 25, 30, 50, 100, 200, 500, 1000)
generalizations <- sapply(sizes, nearly.linear.generalization)
plot(sizes, sqrt(generalizations[1,]), type = "l", xlab = "n", ylab = "RMS generalization error",

log = "xy", ylim = range(sqrt(generalizations)))
lines(sizes, sqrt(generalizations[2,]), lty = "dashed")
abline(h = 0.15, col = "grey")

Figure 9.7 Root-mean-square generalization error for linear model (solid
line) and kernel smoother (dashed line), fit to the same sample of the
indicated size. The true regression curve is as in 9.6, and observations are
corrupted by IID Gaussian noise with � = 0.15 (grey horizontal line). The
cross-over after which the nonparametric regressor has better generalization
performance happens shortly before n = 500.

9.2 Why Use Parametric Models At All? 223

nearly.linear.out.of.sample = function(n) {
x <- seq(from = 0, to = 3, length.out = n)
y <- h(x) + rnorm(n, 0, 0.15)
data <- data.frame(x = x, y = y)
y.new <- h(x) + rnorm(n, 0, 0.15)
sim.lm <- lm(y ~ x, data = data)
lm.mse <- mean((fitted(sim.lm) - y.new)^2)
sim.np.bw <- npregbw(y ~ x, data = data)
sim.np <- npreg(sim.np.bw)
np.mse <- mean((fitted(sim.np) - y.new)^2)
mses <- c(lm.mse, np.mse)
return(mses)

}

nearly.linear.generalization <- function(n, m = 100) {
raw <- replicate(m, nearly.linear.out.of.sample(n))
reduced <- rowMeans(raw)
return(reduced)

}

Code Example 23: Evaluating the out-of-sample error for the nearly-linear problem as a func-
tion of n, and evaluting the generalization error by averaging over many samples.

224 Testing Regression Specifications

9.3 Further Reading

This chapter has been on specification testing for regression models, focusing on
whether they are correctly specified for the conditional expectation function. I
am not aware of any other treatment of this topic at this level, other than the
not-wholly-independent Spain et al. (2012). If you have somewhat more statistical
theory than this book demands, there are very good treatments of related tests in
Li and Racine (2007), and of tests based on smoothing residuals in Hart (1997).

Econometrics seems to have more of a tradition of formal specification testing
than many other branches of statistics. Godfrey (1988) reviews tests based on
looking for parametric extensions of the model, i.e., refinements of the idea of
testing whether ✓3 = 0 in Eq. 9.3. White (1994) combines a detailed theory
of specification testing within parametric stochastic models, not presuming any
particular parametric model is correct, with an analysis of when we can and
cannot still draw useful inferences from estimates within a mis-specified model.
Because of its generality, it, too, is at a higher theoretical level than this book,
but is strongly recommend. White was also the co-author of a paper (Hong and
White, 1995) presenting a theoretical analysis of the di↵erence-in-MSEs test used
in this chapter, albeit for a particular sort of nonparametric regression we’ve not
really touched on.

Appendix F considers some ways of doing specification test for models of dis-
tributions, rather than regressions.

