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Additive Models

8.1 Additive Models

The additive model for regression is that the conditional expectation function
is a sum of partial response functions, one for each predictor variable. Formally,
when the vector ~X of predictor variables has p dimensions, x1, . . . xp, the model
says that

E
h
Y | ~X = ~x

i
= ↵+

pX

j=1

fj(xj) (8.1)

This includes the linear model as a special case, where fj(xj) = �jxj, but
it’s clearly more general, because the fjs can be arbitrary nonlinear functions.
The idea is still that each input feature makes a separate contribution to the
response, and these just add up (hence “partial response function”), but these
contributions don’t have to be strictly proportional to the inputs. We do need
to add a restriction to make it identifiable; without loss of generality, say that
E [Y ] = ↵ and E [fj(Xj)] = 0.1

Additive models keep a lot of the nice properties of linear models, but are
more flexible. One of the nice things about linear models is that they are fairly
straightforward to interpret: if you want to know how the prediction changes
as you change xj, you just need to know �j. The partial response function fj
plays the same role in an additive model: of course the change in prediction from
changing xj will generally depend on the level xj had before perturbation, but
since that’s also true of reality that’s really a feature rather than a bug. It’s true
that a set of plots for fjs takes more room than a table of �js, but it’s also nicer
to look at, conveys more information, and imposes fewer systematic distortions
on the data.

Of course, none of this would be of any use if we couldn’t actually estimate
these models, but we can, through a clever computational trick which is worth
knowing for its own sake. The use of the trick is also something they share with
linear models, so we’ll start there.

1 To see why we need to do this, imagine the simple case where p = 2. If we add constants c1 to f1
and c2 to f2, but subtract c1 + c2 from ↵, then nothing observable has changed about the model.

This degeneracy or lack of identifiability is a little like the way collinearity keeps us from defining

true slopes in linear regression. But it’s less harmful than collinearity because we can fix it with this

convention.
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8.2 Partial Residuals and Back-fitting

8.2.1 Back-fitting for Linear Models

The general form of a linear regression model is

E
h
Y | ~X = ~x

i
= �0 + ~� · ~x =

pX

j=0

�jxj (8.2)

where x0 is always the constant 1. (Adding this fictitious constant variable lets
us handle the intercept just like any other regression coe�cient.)

Suppose we don’t condition on all of ~X but just one component of it, say Xk.
What is the conditional expectation of Y ?

E [Y |Xk = xk] = E [E [Y |X1, X2, . . . Xk, . . . Xp] |Xk = xk] (8.3)

= E
"

pX

j=0

�jXj|Xk = xk

#

(8.4)

= �kxk + E
"
X

j 6=k

�jXj|Xk = xk

#

(8.5)

where the first line uses the law of total expectation2, and the second line uses
Eq. 8.2. Turned around,

�kxk = E [Y |Xk = xk]� E
"
X

j 6=k

�jXj|Xk = xk

#

(8.6)

= E
"

Y �
 
X

j 6=k

�jXj

!

|Xk = xk

#

(8.7)

The expression in the expectation is the kth partial residual — the (total)
residual is the di↵erence between Y and its expectation, the partial residual is
the di↵erence between Y and what we expect it to be ignoring the contribution
from Xk. Let’s introduce a symbol for this, say Y (k).

�kxk = E
h
Y (k)|Xk = xk

i
(8.8)

In words, if the over-all model is linear, then the partial residuals are linear. And
notice that Xk is the only input feature appearing here — if we could somehow
get hold of the partial residuals, then we can find �k by doing a simple regression,
rather than a multiple regression. Of course to get the partial residual we need
to know all the other �js. . .

This suggests the following estimation scheme for linear models, known as
the Gauss-Seidel algorithm, or more commonly and transparently as back-
fitting; the pseudo-code is in Example 17.

This is an iterative approximation algorithm. Initially, we look at how far each“You say
’vicious
circle’, I
say ’it-
erative
improve-
ment’.”

2 As you learned in baby prob., this is the fact that E [Y |X] = E [E [Y |X,Z] |X] — that we can always

condition more variables, provided we then average over those extra variables when we’re done.
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Given: n⇥ (p+ 1) inputs x (0th column all 1s)
n⇥ 1 responses y
small tolerance � > 0

center y and each column of x
b�j  0 for j 2 1 : p

until (all |b�j � �j|  �) {
for k 2 1 : p {

y(k)
i = yi �

P
j 6=k

b�jxij

�k  regression coe�cient of y(k) on x·k
b�k  �k

}
}
b�0  (n�1

Pn
i=1 yi)�

Pp
j=1

b�jn�1
Pn

i=1 xij

Return: (b�0, b�1, . . . b�p)

Code Example 17: Pseudocode for back-fitting linear models. Assume we make at least one
pass through the until loop. Recall from Chapter 1 that centering the data does not change the
�js; this way the intercept only has to be calculated once, at the end. [[ATTN: Fix horizontal
lines]]

point is from the global mean, and do a simple regression of those deviations on
the first input variable. This then gives us a better idea of what the regression
surface really is, and we use the deviations from that surface in a simple regression
on the next variable; this should catch relations between Y and X2 that weren’t
already caught by regressing on X1. We then go on to the next variable in turn.
At each step, each coe�cient is adjusted to fit in with what we have already
guessed about the other coe�cients — that’s why it’s called “back-fitting”. It is
not obvious3 that this will ever converge, but it (generally) does, and the fixed
point on which it converges is the usual least-squares estimate of �.

Back-fitting is rarely used to fit linear models these days, because with modern
computers and numerical linear algebra it’s faster to just calculate (xTx)�1xTy.
But the cute thing about back-fitting is that it doesn’t actually rely on linearity.

3 Unless, I suppose, you’re Gauss.
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Given: n⇥ p inputs x
n⇥ 1 responses y
small tolerance � > 0
one-dimensional smoother S

b↵ n�1
Pn

i=1 yi
bfj  0 for j 2 1 : p

until (all | bfj � gj|  �) {
for k 2 1 : p {

y(k)
i = yi �

P
j 6=k

bfj(xij)
gk  S(y(k) ⇠ x·k)
gk  gk � n�1

Pn
i=1 gk(xik)

bfk  gk
}

}
Return: (b↵, bf1, . . . bfp)

Code Example 18: Pseudo-code for back-fitting additive models. Notice the extra step, as com-
pared to back-fitting linear models, which keeps each partial response function centered.

8.2.2 Backfitting Additive Models

Defining the partial residuals by analogy with the linear case, as

Y (k) = Y �
 

↵+
X

j 6=k

fj(xj)

!

(8.9)

a little algebra along the lines of §8.2.1 shows that

E
h
Y (k)|Xk = xk

i
= fk(xk) (8.10)

If we knew how to estimate arbitrary one-dimensional regressions, we could now
use back-fitting to estimate additive models. But we have spent a lot of time
learning how to use smoothers to fit one-dimensional regressions! We could use
nearest neighbors, or splines, or kernels, or local-linear regression, or anything
else we feel like substituting here.

Our new, improved back-fitting algorithm in Example 18. Once again, while it’s
not obvious that this converges, it does. Also, the back-fitting procedure works
well with some complications or refinements of the additive model. If we know the
function form of one or another of the fj, we can fit those parametrically (rather
than with the smoother) at the appropriate points in the loop. (This would be a
semiparametric model.) If we think that there is an interaction between xj and
xk, rather than their making separate additive contributions for each variable,
we can smooth them together; etc.
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8.2.3 R Implementations

There are actually two packages standard packages for fitting additive models
in R: gam and mgcv. Both have commands called gam, which fit generalized
additive models — the generalization is to use the additive model for things
like the probabilities of categorical responses, rather than the response variable
itself. If that sounds obscure right now, don’t worry — we’ll come back to this
in Chapters 11–12 after we’ve looked at generalized linear models. §8.4 below
illustrates using one of these packages to fit an additive model.

8.3 The Curse of Dimensionality

Before illustrating how additive models work in practice, let’s talk about why
we’d want to use them. So far, we have looked at two extremes for regression
models; additive models are somewhere in between.

On the one hand, we had linear regression, which is a parametric method (with
p+1 parameters). Its weakness is that the true regression function µ is hardly ever
linear, so even with infinite data linear regression will always make systematic
mistakes in its predictions — there’s always some approximation bias, bigger or
smaller depending on how non-linear µ is. The strength of linear regression is
that it converges very quickly as we get more data. Generally speaking,

MSElinear = �2 + alinear +O(n�1) (8.11)

where the first term is the intrinsic noise around the true regression function,
the second term is the (squared) approximation bias, and the last term is the
estimation variance. Notice that the rate at which the estimation variance shrinks
doesn’t depend on p — factors like that are all absorbed into the big O.4 Other
parametric models generally converge at the same rate.

At the other extreme, we’ve seen a number of completely nonparametric regres-
sion methods, such as kernel regression, local polynomials, k-nearest neighbors,
etc. Here the limiting approximation bias is actually zero, at least for any rea-
sonable regression function µ. The problem is that they converge more slowly,
because we need to use the data not just to figure out the coe�cients of a para-
metric model, but the sheer shape of the regression function. We saw in Chapter 4
that the mean-squared error of kernel regression in one dimension is �2+O(n�4/5).
Splines, k-nearest-neighbors (with growing k), etc., all attain the same rate. But
in p dimensions, this becomes (Wasserman, 2006, §5.12)

MSEnonpara � �2 = O(n�4/(p+4)) (8.12)

There’s no ultimate approximation bias term here. Why does the rate depend on
p? Well, to hand-wave a bit, think of kernel smoothing, where bµ(~x) is an average
over yi for ~xi near ~x. In a p dimensional space, the volume within ✏ of ~x is O(✏p),
so the probability that a training point ~xi falls in the averaging region around ~x
gets exponentially smaller as p grows. Turned around, to get the same number of

4 See Appendix A you are not familiar with “big O” notation.
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training points per ~x, we need exponentially larger sample sizes. The appearance
of the 4s is a little more mysterious, but can be resolved from an error analysis
of the kind we did for kernel regression in Chapter 45. This slow rate isn’t just
a weakness of kernel smoothers, but turns out to be the best any nonparametric
estimator can do.

For p = 1, the nonparametric rate is O(n�4/5), which is of course slower than
O(n�1), but not all that much, and the improved bias usually more than makes
up for it. But as p grows, the nonparametric rate gets slower and slower, and the
fully nonparametric estimate more and more imprecise, yielding the infamous
curse of dimensionality. For p = 100, say, we get a rate of O(n�1/26), which
is not very good at all. (See Figure 8.1.) Said another way, to get the same
precision with p inputs that n data points gives us with one input takes n(4+p)/5

data points. For p = 100, this is n20.8, which tells us that matching the error of
n = 100 one-dimensional observations requires O(4⇥ 1041) hundred-dimensional
observations.

So completely unstructured nonparametric regressions won’t work very well in
high dimensions, at least not with plausible amounts of data. The trouble is that
there are just too many possible high-dimensional functions, and seeing only a
trillion points from the function doesn’t pin down its shape very well at all.[[ATTN:

More
mathe-
matical
expla-
nation
in ap-
pendix?]]

This is where additive models come in. Not every regression function is additive,
so they have, even asymptotically, some approximation bias. But we can estimate
each fj by a simple one-dimensional smoothing, which converges at O(n�4/5),
almost as good as the parametric rate. So overall

MSEadditive � �2 = aadditive +O(n�4/5) (8.13)

Since linear models are a sub-class of additive models, aadditive  alm. From a
purely predictive point of view, the only time to prefer linear models to additive
models is when n is so small that O(n�4/5) � O(n�1) exceeds this di↵erence in
approximation biases; eventually the additive model will be more accurate.6

5 Remember that in one dimension, the bias of a kernel smoother with bandwidth h is O(h2), and the

variance is O(1/nh), because only samples falling in an interval about h across contribute to the

prediction at any one point, and when h is small, the number of such samples is proportional to nh.

Adding bias squared to variance gives an error of O(h4) +O((nh)�1), solving for the best

bandwidth gives hopt = O(n�1/5), and the total error is then O(n�4/5). Suppose for the moment

that in p dimensions we use the same bandwidth along each dimension. (We get the same end result

with more work if we let each dimension have its own bandwidth.) The bias is still O(h2), because

the Taylor expansion still goes through. But now only samples falling into a region of volume O(hp)

around x contribute to the prediction at x, so the variance is O((nhp)�1). The best bandwidth is

now hopt = O(n�1/(p+4)), yielding an error of O(n�4/(p+4)) as promised.
6 Unless the best additive approximation to µ is linear; then the linear model has no more bias and

less variance.
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curve(x^(-1),from=1,to=1e4,log="x",xlab="n",ylab="Excess MSE")
curve(x^(-4/5),add=TRUE,lty="dashed")
curve(x^(-1/26),add=TRUE,lty="dotted")
legend("topright",legend=c(expression(n^{-1}),

expression(n^{-4/5}),expression(n^{-1/26})),
lty=c("solid","dashed","dotted"))

Figure 8.1 Schematic of rates of convergence of MSEs for parametric
models (O(n�1)), one-dimensional nonparametric regressions or additive
models (O(n�4/5)), and a 100-dimensional nonparametric regression
(O(n�1/26)). Note that the horizontal but not the vertical axis is on a
logarithmic scale.
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8.4 Example: California House Prices Revisited

As an example, we’ll look at data on median house prices across Census tracts
from the data-analysis assignment in §10. This has both California and Pennsyl-
vania, but it’s hard to visually see patterns with both states; I’ll do California,
and let you replicate this all on Pennsylvania, and even on the combined data.

Start with getting the data:

housing <- read.csv("http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/data/calif_penn_2011.csv")
housing <- na.omit(housing)
calif <- housing[housing$STATEFP == 6, ]

(How do I know that the STATEFP code of 6 corresponds to California?)
We’ll fit a linear model for the log price, on the thought that it makes some

sense for the factors which raise or lower house values to multiply together, rather
than just adding.

calif.lm <- lm(log(Median_house_value) ~ Median_household_income + Mean_household_income +
POPULATION + Total_units + Vacant_units + Owners + Median_rooms + Mean_household_size_owners +
Mean_household_size_renters + LATITUDE + LONGITUDE, data = calif)

This is very fast — about a fifth of a second on my laptop.
Here are the summary statistics7:

print(summary(calif.lm), signif.stars = FALSE, digits = 3)
##
## Call:
## lm(formula = log(Median_house_value) ~ Median_household_income +
## Mean_household_income + POPULATION + Total_units + Vacant_units +
## Owners + Median_rooms + Mean_household_size_owners + Mean_household_size_renters +
## LATITUDE + LONGITUDE, data = calif)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.855 -0.153 0.034 0.189 1.214
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.74e+00 5.28e-01 -10.86 < 2e-16
## Median_household_income 1.34e-06 4.63e-07 2.90 0.0038
## Mean_household_income 1.07e-05 3.88e-07 27.71 < 2e-16
## POPULATION -4.15e-05 5.03e-06 -8.27 < 2e-16
## Total_units 8.37e-05 1.55e-05 5.41 6.4e-08
## Vacant_units 8.37e-07 2.37e-05 0.04 0.9719
## Owners -3.98e-03 3.21e-04 -12.41 < 2e-16
## Median_rooms -1.62e-02 8.37e-03 -1.94 0.0525
## Mean_household_size_owners 5.60e-02 7.16e-03 7.83 5.8e-15
## Mean_household_size_renters -7.47e-02 6.38e-03 -11.71 < 2e-16
## LATITUDE -2.14e-01 5.66e-03 -37.76 < 2e-16
## LONGITUDE -2.15e-01 5.94e-03 -36.15 < 2e-16
##
## Residual standard error: 0.317 on 7469 degrees of freedom

7 I have suppressed the usual stars on “significant” regression coe�cients, because, as discussed in

Chapter ??, those aren’t really the most important variables, and I have reined in R’s tendency to

use far too many decimal places.
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predlims <- function(preds, sigma) {
prediction.sd <- sqrt(preds$se.fit^2 + sigma^2)
upper <- preds$fit + 2 * prediction.sd
lower <- preds$fit - 2 * prediction.sd
lims <- cbind(lower = lower, upper = upper)
return(lims)

}

Code Example 19: Calculating quick-and-dirty prediction limits from a prediction object
(preds) containing fitted values and their standard errors, plus an estimate of the noise level.
Because those are two (presumably uncorrelated) sources of noise, we combine the standard
deviations by “adding in quadrature”.

## Multiple R-squared: 0.639,Adjusted R-squared: 0.638
## F-statistic: 1.2e+03 on 11 and 7469 DF, p-value: <2e-16

Figure 8.2 plots the predicted prices, ±2 standard errors, against the actual
prices. The predictions are not all that accurate — the RMS residual is 0.317 on
the log scale (i.e., 37% on the original scale), but they do have pretty reasonable
coverage; about 96% of actual prices fall within the prediction limits8. On the
other hand, the predictions are quite precise, with the median of the calculated
standard errors being 0.011 on the log scale (i.e., 1.1% in dollars). This linear
model thinks it knows what’s going on.

Next, we’ll fit an additive model, using the gam function from the mgcv package;
this automatically decides how much smoothing is needed using a fast approx-
imation to leave-one-out CV called generalized cross-validation, or GCV
(§3.4.3).

system.time(calif.gam <- gam(log(Median_house_value) ~ s(Median_household_income) +
s(Mean_household_income) + s(POPULATION) + s(Total_units) + s(Vacant_units) +
s(Owners) + s(Median_rooms) + s(Mean_household_size_owners) + s(Mean_household_size_renters) +
s(LATITUDE) + s(LONGITUDE), data = calif))

## user system elapsed
## 3.296 0.188 3.527

(That is, it took about five seconds total to run this.) The s() terms in the
gam formula indicate which terms are to be smoothed — if we wanted particular
parametric forms for some variables, we could do that as well. (Unfortunately we
can’t just write MedianHouseValue ⇠ s(.), we have to list all the variables on

8 Remember from your linear regression class that there are two kinds of confidence intervals we

might want to use for prediction. One is a confidence interval for the conditional mean at a given

value of x; the other is a confidence interval for the realized values of Y at a given x. Earlier

examples have emphasized the former, but since we don’t know the true conditional means here, we

need to use the latter sort of intervals, prediction intervals proper, to evaluate coverage. The

predlims function in Code Example 19 calculates a rough prediction interval by taking the standard

error of the conditional mean, combining it with the estimated standard deviation, and multiplying

by 2. Strictly speaking, we ought to worry about using a t-distribution rather than a Gaussian here,

but with 7469 residual degrees of freedom, this isn’t going to matter much. (Assuming Gaussian

noise is likely to be more of a concern, but this is only meant to be a rough cut anyway.)
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the right-hand side.9) The smoothing here is done by splines (hence s()), and
there are lots of options for controlling the splines, or replacing them by other
smoothers, if you know what you’re doing.

Figure 8.3 compares the predicted to the actual responses. The RMS error
has improved (0.27 on the log scale, or 130%, with 96% of observations falling
with ±2 standard errors of their fitted values), at only a fairly modest cost in
the claimed precision (the median standard error of prediction is 0.02, or 2.1%).
Figure 8.4 shows the partial response functions.

It makes little sense to have latitude and longitude make separate additive con-
tributions here; presumably they interact. We can just smooth them together10:

calif.gam2 <- gam(log(Median_house_value) ~ s(Median_household_income) + s(Mean_household_income) +
s(POPULATION) + s(Total_units) + s(Vacant_units) + s(Owners) + s(Median_rooms) +
s(Mean_household_size_owners) + s(Mean_household_size_renters) + s(LONGITUDE,
LATITUDE), data = calif)

This gives an RMS error of ±0.25 (log-scale) and 96% coverage, with a median
standard error of 0.021, so accuracy is improving (at least in sample), with little
loss of precision.

Figures 8.6 and 8.7 show two di↵erent views of the joint smoothing of longitude
and latitude. In the perspective plot, it’s quite clear that price increases specif-
ically towards the coast, and even more specifically towards the great coastal
cities. In the contour plot, one sees more clearly an inward bulge of a negative,
but not too very negative, contour line (between -122 and -120 longitude) which
embraces Napa, Sacramento, and some related areas, which are comparatively
more developed and more expensive than the rest of central California, and so
more expensive than one would expect based on their distance from the coast
and San Francisco.

If you worked through problem set 10, you will recall that one of the big things
wrong with the linear model is that its errors (the residuals) are highly structured
and very far from random. In essence, it totally missed the existence of cities,
and the fact that houses cost more in cities (because land costs more there). It’s
a good idea, therefore, to make some maps, showing the actual values, and then,
by way of contrast, the residuals of the models. Rather than do the plotting by
hand over and over, let’s write a function (Code Example 20).

Figures 8.8 and 8.9 show that allowing for the interaction of latitude and longi-
tude (the smoothing term plotted in Figures 8.6–8.7) leads to a much more ran-
dom and less systematic clumping of residuals. This is desirable in itself, even if it
does little to improve the mean prediction error. Essentially, what that smooth-
ing term is doing is picking out the existence of California’s urban regions, and
their distinction from the rural background. Examining the plots of the inter-

9 Alternately, we could use Kevin Gilbert’s formulaTools functions — see

https://gist.github.com/kgilbert-cmu.
10 If the two variables which interact have very di↵erent magnitudes, it’s better to smooth them with a

te() term than an s() term, but here they are comparable. See §8.5 for more, and

help(gam.models).
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graymapper <- function(z, x = calif$LONGITUDE, y = calif$LATITUDE, n.levels = 10,
breaks = NULL, break.by = "length", legend.loc = "topright", digits = 3, ...) {
my.greys = grey(((n.levels - 1):0)/n.levels)
if (!is.null(breaks)) {

stopifnot(length(breaks) == (n.levels + 1))
}
else {

if (identical(break.by, "length")) {
breaks = seq(from = min(z), to = max(z), length.out = n.levels + 1)

}
else {

breaks = quantile(z, probs = seq(0, 1, length.out = n.levels + 1))
}

}
z = cut(z, breaks, include.lowest = TRUE)
colors = my.greys[z]
plot(x, y, col = colors, bg = colors, ...)
if (!is.null(legend.loc)) {

breaks.printable <- signif(breaks[1:n.levels], digits)
legend(legend.loc, legend = breaks.printable, fill = my.greys)

}
invisible(breaks)

}

Code Example 20: Map-making code. In its basic use, this takes vectors for x and y coordinates,
and draws gray points whose color depends on a third vector for z, with darker points indicating
higher values of z. Options allow for the control of the number of gray levels, setting the breaks
between levels automatically, and using a legend. Returning the break-points makes it easier to
use the same scale in multiple maps. See online for commented code.

action term should suggest to you how inadequate it would be to just put in a
LONGITUDE⇥LATITUDE term in a linear model.

Including an interaction between latitude and longitude in a spatial problem is
pretty obvious. There are other potential interactions which might be important
here — for instance, between the two measures of income, or between the total
number of housing units available and the number of vacant units. We could, of
course, just use a completely unrestricted nonparametric regression — going to
the opposite extreme from the linear model. In addition to the possible curse-
of-dimensionality issues, however, getting something like npreg to run with 7000
data points and 11 predictor variables requires a lot of patience. Other techniques,
like nearest neighbor regression (§1.5.1) or regression trees (Ch. 13), may run
faster, though cross-validation can be demanding even there.
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plot(calif$Median_house_value, exp(preds.lm$fit), type = "n", xlab = "Actual price ($)",
ylab = "Predicted ($)", main = "Linear model", ylim = c(0, exp(max(predlims.lm))))

segments(calif$Median_house_value, exp(predlims.lm[, "lower"]), calif$Median_house_value,
exp(predlims.lm[, "upper"]), col = "grey")

abline(a = 0, b = 1, lty = "dashed")
points(calif$Median_house_value, exp(preds.lm$fit), pch = 16, cex = 0.1)

Figure 8.2 Actual median house values (horizontal axis) versus those
predicted by the linear model (black dots), plus or minus two predictive
standard errors (grey bars). The dashed line shows where actual and
predicted prices are equal. Here predict gives both a fitted value for each
point, and a standard error for that prediction. (Without a newdata
argument, predict defaults to the data used to estimate calif.lm, which
here is what we want.) Predictions are exponentiated so they’re comparable
to the original values (and because it’s easier to grasp dollars than
log-dollars).
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plot(calif$Median_house_value, exp(preds.gam$fit), type = "n", xlab = "Actual price ($)",
ylab = "Predicted ($)", main = "First additive model", ylim = c(0, exp(max(predlims.gam))))

segments(calif$Median_house_value, exp(predlims.gam[, "lower"]), calif$Median_house_value,
exp(predlims.gam[, "upper"]), col = "grey")

abline(a = 0, b = 1, lty = "dashed")
points(calif$Median_house_value, exp(preds.gam$fit), pch = 16, cex = 0.1)

Figure 8.3 Actual versus predicted prices for the additive model, as in
Figure 8.2. Note that the sig2 attribute of a model returned by gam() is the
estimate of the noise variance around the regression surface (�2).
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Figure 8.4 The estimated partial response functions for the additive
model, with a shaded region showing ±2 standard errors. The tick marks
along the horizontal axis show the observed values of the input variables (a
rug plot); note that the error bars are wider where there are fewer
observations. Setting pages=0 (the default) would produce eight separate
plots, with the user prompted to cycle through them. Setting scale=0 gives
each plot its own vertical scale; the default is to force them to share the
same one. Finally, note that here the vertical scales are logarithmic.
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plot(calif.gam2, scale = 0, se = 2, shade = TRUE, resid = TRUE, pages = 1)

Figure 8.5 Partial response functions and partial residuals for addfit2, as
in Figure 8.4. See subsequent figures for the joint smoothing of longitude
and latitude, which here is an illegible mess. See help(plot.gam) for the
plotting options used here.
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plot(calif.gam2, select = 10, phi = 60, pers = TRUE, ticktype = "detailed", cex.axis = 0.5)

Figure 8.6 The result of the joint smoothing of longitude and latitude.
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s(LONGITUDE,LATITUDE,28.45)
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plot(calif.gam2, select = 10, se = FALSE)

Figure 8.7 The result of the joint smoothing of longitude and latitude.
Setting se=TRUE, the default, adds standard errors for the contour lines in
multiple colors. Again, note that these are log units.
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par(mfrow = c(2, 2))
calif.breaks <- graymapper(calif$Median_house_value, pch = 16, xlab = "Longitude",

ylab = "Latitude", main = "Data", break.by = "quantiles")
graymapper(exp(preds.lm$fit), breaks = calif.breaks, pch = 16, xlab = "Longitude",

ylab = "Latitude", legend.loc = NULL, main = "Linear model")
graymapper(exp(preds.gam$fit), breaks = calif.breaks, legend.loc = NULL, pch = 16,

xlab = "Longitude", ylab = "Latitude", main = "First additive model")
graymapper(exp(preds.gam2$fit), breaks = calif.breaks, legend.loc = NULL, pch = 16,

xlab = "Longitude", ylab = "Latitude", main = "Second additive model")
par(mfrow = c(1, 1))

Figure 8.8 Maps of real prices (top left), and those predicted by the linear
model (top right), the purely additive model (bottom left), and the additive
model with interaction between latitude and longitude (bottom right).
Categories are deciles of the actual prices.
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Figure 8.9 Actual housing values (top left), and the residuals of the three
models. (The residuals are all plotted with the same color codes.) Notice
that both the linear model and the additive model without spatial
interaction systematically mis-price urban areas. The model with spatial
interaction does much better at having randomly-scattered errors, though
hardly perfect. — How would you make a map of the magnitude of
regression errors?
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8.5 Interaction Terms and Expansions

One way to think about additive models, and about (possibly) including interac-
tion terms, is to imagine doing a sort of Taylor series or power series expansion
of the true regression function. The zero-th order expansion would be a constant:

µ(x) ⇡ ↵ (8.14)

The best constant to use here would just be E [Y ]. (“Best” here is in the mean-
square sense, as usual.) A purely additive model would correspond to a first-order
expansion:

µ(x) ⇡ ↵+
pX

j=1

fj(xj) (8.15)

Two-way interactions come in when we go to a second-order expansion:

µ(x) ⇡ ↵+
pX

j=1

fj(xj) +
pX

j=1

pX

k=j+1

fjk(xj, xk) (8.16)

(Why do I limit k to run from j + 1 to p?, rather than from 1 to p?) We will,
of course, insist that E [fjk(Xj, Xk)] = 0 for all j, k. If we want to estimate
these terms in R, using mgcv, we use the syntax s(xj, xk) or te(xj, xk). The
former fits a thin-plate spline over the (xj, xk) plane, and is appropriate when
those variables are measured on similar scales, so that curvatures along each
direction are comparable. The latter uses a tensor product of smoothing splines
along each coordinate, and is more appropriate when the measurement scales are
very di↵erent11.

There is an important ambiguity here: for any j, with additive partial-response
function fj, I could take any of its interactions, set f 0

jk(xj, xk) = fjk(xj, xk) +
fj(xj) and f 0

j(xj) = 0, and get exactly the same predictions under all circum-
stances. This is the parallel to being able to add and subtract constants from the
first-order functions, provided we made corresponding changes to the intercept
term. We therefore need to similarly fix the two-way interaction functions.

A natural way to do this is to insist that the second-order fjk function should
be uncorrelated with (“orthogonal to”) the first-order functions fj and fk; this
is the analog to insisting that the first-order functions all have expectation zero.
The fjks then represent purely interactive contributions to the response, which
could not be captured by additive terms. If this is what we want to do, the best
syntax to use in mgcv is ti, which specifically separates the first- and higher-
order terms, e.g., ti(xj) + ti(xk) + ti(xj, xk) will estimate three functions,
for the additive contributions and their interaction.

An alternative is to just pick a particular fjk, and absorb fj into it. The model

11 For the distinction between thin-plate and tensor-product splines, see §7.4. If we want to interact a

continuous variable xj with a categorical xk, mgcv’s syntax is s(xj, by=xk) or te(xj, by=xk).
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then looks like

µ(x) ⇡ ↵+
pX

j=1

pX

k=j+1

fjk(xj, xk) (8.17)

We can also mix these two approaches, if we specifically do not want additive or
interactive terms for certain predictor variables. This is what I did above, where I
estimated a single second-order smoothing term for both latitude and longitude,
with no additive components for either.

Of course, there is nothing special about two-way interactions. If you’re curious
about what a three-way term would be like, and you’re lucky enough to have data
which amenable to fitting it, you could certainly try

µ ⇡ ↵+
pX

j=1

fj(xj) +
pX

j=1

pX

k=j+1

fjk(xj, xk) +
X

j,k,l

fjkl(xj, xk, xl) (8.18)

(How should the indices for the last term go?) More ambitious combinations are
certainly possible, though they tend to become a confused mass of algebra and
indices.

Geometric interpretation

It’s often convenient to think of the regression function as living in a big (infinite-
dimensional) vector space of functions. Within this space, the constant functions
form a linear sub-space12, and we can ask for the projection of the true regression
function on to that sub-space; this would be the best approximation13 to µ as
a constant. This is, of course, the expectation value. The additive functions of
all p variables also form a linear sub-space14, so the right-hand side of Eq. 8.15
is just the projection of µ on to that space, and so forth and so on. When we
insist on having the higher-order interaction functions be uncorrelated with the
additive functions, we’re taking the projection of µ on to the space of all functions
orthogonal to the additive functions.

Selecting interactions

There are two issues with interaction terms. First, the curse of dimensionality
returns: an order-q interaction term will converge at the rate O(n�4/(4+q)), so
they can dominate the over-all uncertainty. Second, there are lots of possible
interactions (

�
p
q

�
, in fact), which can make it very demanding in time and data to

fit them all, and hard to interpret. Just as with linear models, therefore, it can
make a lot of sense to selectively include interactions based on subject-matter
knowledge, or examination of residuals of additive models.

12 Because if f and g are two constant functions, af + bg is also a constant, for any real numbers a and

b.
13 Remember that projecting a vector on to a linear sub-space finds the point in the sub-space closest

to the original vector. This is equivalent to minimizing the (squared) bias.
14 By parallel reasoning to the previous footnote.
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Varying-coe�cient models

In some contexts, people like to use models of the form

µ(x) = ↵+
pX

j=1

xjfj(x�j) (8.19)

where fj is a function of the non-j predictor variables, or some subset of them.
These varying-coe�cient functions are obviously a subset of the usual class of
additive models, but there are occasions where they have some scientific justifi-
cation15. These are conveniently estimated in mgcv through the by option, e.g.,
s(xk, by=xj) will estimate a term of the form xjf(xk).16

8.6 Closing Modeling Advice

With modern computing power, there are very few situations in which it is ac-
tually better to do linear regression than to fit an additive model. In fact, there
seem to be only two good reasons to prefer linear models.

1. Our data analysis is guided by a credible scientific theory which asserts lin-
ear relationships among the variables we measure (not others, for which our
observables serve as imperfect proxies).

2. Our data set is so massive that either the extra processing time, or the extra
computer memory, needed to fit and store an additive rather than a linear
model is prohibitive.

Even when the first reason applies, and we have good reasons to believe a linear
theory, the truly scientific thing to do would be to check linearity, by fitting a
flexible non-linear model and seeing if it looks close to linear. (We will see formal
tests based on this idea in Chapter 9.) Even when the second reason applies, we
would like to know how much bias we’re introducing by using linear predictors,
which we could do by randomly selecting a subset of the data which is small
enough for us to manage, and fitting an additive model.

In the vast majority of cases when users of statistical software fit linear models,
neither of these justifications applies: theory doesn’t tell us to expect linearity,
and our machines don’t compel us to use it. Linear regression is then employed
for no better reason than that users know how to type lm but not gam. You now
know better, and can spread the word.

8.7 Further Reading

Simon Wood, who wrote the mgcv package, has a nice book about additive models
and their generalizations, Wood (2006); at this level it’s your best source for
further information. Buja et al. (1989) dives further into some theoretical issues.

15 They can also serve as a “transitional object” when giving up the use of purely linear models.
16 As we saw above, by does something slightly di↵erent when given a categorical variable. How are

these two uses related?
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The expansions of §8.5 are sometimes called “functional analysis of variance”
or “functional ANOVA”. Making those ideas precise requires exploring some of
the geometry of infinite-dimensional spaces of functions (“Hilbert space”). See
Wahba (1990) for a treatment of the statistical topic, and Halmos (1957) for a
classic introduction to Hilbert spaces.

Historical notes

Ezekiel (1924) seems to be the first publication advocating the use of additive
models as a general method, which he called “curvilinear multiple correlation”.
His paper was complete with worked examples on simulated data (with known
answers) and real data (from economics)17. He was explicit that any reasonable
smoothing or regression technique could be used to find what we’d call the partial
response functions. He also gave a successive-approximation algorithm for esti-
mate the over-all model: start with an initial guess about all the partial responses;
plot all the partial residuals; refine the partial responses simultaneously; repeat.
This di↵ers from back-fitting in that the partial response functions are updating
in parallel within each cycle, not one after the other. This is a subtle di↵erence,
and Ezekiel’s method will often work, but can run into trouble with correlated
predictor variables, when back-fitting will not.

The Gauss-Seidel or backfitting algorithm was invented by Gauss in the early
1800s during his work on least squares estimation in linear models; he mentioned
it in letters to students, described it as something one could do “while half asleep”,
but never published it. Seidel gave the first published version in 1874. (For this
history, see Benzi 2009.) I am not sure when the connection was made between
additive statistical models and back-fitting.

Exercises

8.1 Repeat the analyses of California housing prices with Pennsylvania housing prices. Which

partial response functions might one reasonably hope would stay the same? Do they?

(How can you tell?)

8.2 Additive? For general p, let k~xk be the (ordinary, Euclidean) length of the vector ~x. Is

this an additive function of the (ordinary, Cartesian) coordinates? Is k~xk2 an additive

function? k~x� ~x0k for a fixed ~x0? k~x� ~x0k2?
8.3 Additivity vs. parallelism

1. Take any additive function f of p arguments x1, x2, . . . xp. Fix a coordinate index i and

a real number c. Prove that f(x1, x2, . . . xi, . . . xp)�f(x1, x2, . . . xi+ c, . . . xp) depends

only on xi and c, and not on the other coordinates.

2. Suppose p = 2, and continue to assume f is additive. Consider the curve formed by

plotting f(x1, x2) against x1 for a fixed value of x2, and the curved formed by plotting

17 “Each of these curves illustrates and substantiates conclusions reached by theoretical economic

analysis. Equally important, they provide definite quantitative statements of the relationships. The

method of . . . curvilinear multiple correlation enable[s] us to use the favorite tool of the economist,

caeteris paribus, in the analysis of actual happenings equally as well as in the intricacies of

theoretical reasoning” (p. 453). (See also Exercise 8.4.)
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f(x1, x2) against x1 with x2 fixed at a di↵erent value, say x
0
2. Prove that the curves

are parallel, i.e., that the vertical distance between them is constant.

3. For general p and additive f , consider the surfaces formed by the f by varying all but

one of the coordinates. Prove that these surfaces are always parallel to each other.

4. Is the converse true? That is, do parallel regression surfaces imply an additive model?

8.4 Additivity vs. partial derivatives

1. Suppose that the true regression function µ is additive, with partial response functions

fj . Show that @µ
@xj

= fj(xj), so that each partial derivative is a function of that

coordinate alone.

2. (Much harder) Suppose that, for each coordinate xj , there is some function fj of xj
alone such that @µ

@xj
= fj(xj). Is µ necessarily additive?

8.5 Suppose that an additive model holds, so that Y = ↵+
Pp

j=1 fj(Xj)+ ✏, with ↵ = E [Y ],

E
⇥
fj(Xj)

⇤
= 0 for each j, and E [✏|X = x] = 0 for all x.

1. For each j, let µj(xj) = E
⇥
Y |Xj = xj

⇤
. Show that

µj(xj) = ↵+ fj(xj) +
X

k 6=j

E
⇥
fk(Xk)|Xj = xj

⇤

2. Show that if Xk is statistically independent of Xj , for all k 6= j, then µj(xj) � ↵ =

fj(xj).

3. Does the conclusion of Exercise 22 still hold if one or more of the Xks is statistically

dependent on Xj? Explain why this should be the case, or give a counter-example to

show that it’s not true. Hint: All linear models are additive models, so if it is true for

all additive models, it’s true for all linear models. Is it true for all linear models?


