
7

Splines

7.1 Smoothing by Penalizing Curve Flexibility

Let’s go back to the problem of smoothing one-dimensional data. We have data
points (x1, y1), (x2, y2), . . . (xn, yn), and we want to find a good approximation bµ
to the true conditional expectation or regression function µ. Previously, we con-
trolled how smooth we made bµ indirectly, through the bandwidth of our kernels.
But why not be more direct, and control smoothness itself?

A natural way to do this is to minimize the spline objective function

L(m,�) ⌘ 1

n

nX

i=1

(yi �m(xi))
2 + �

Z
(m00(x))2dx (7.1)

The first term here is just the mean squared error of using the curve m(x) to
predict y. We know and like this; it is an old friend.

The second term, however, is something new for us. m00 is the second derivative
of m with respect to x — it would be zero if m were linear, so this measures the
curvature ofm at x. The sign ofm00(x) says whether the curvature at x is concave
or convex, but we don’t care about that so we square it. We then integrate this
over all x to say how curved m is, on average. Finally, we multiply by � and add
that to the MSE. This is adding a penalty to the MSE criterion — given two
functions with the same MSE, we prefer the one with less average curvature. We
will accept changes in m that increase the MSE by 1 unit if they also reduce the
average curvature by at least �.

The curve or function which solves this minimization problem,

bµ� = argmin
m

L(m,�) (7.2)

is called a smoothing spline, or spline curve. The name “spline” comes from
a simple tool used by craftsmen to draw smooth curves, which was a thin strip of
a flexible material like a soft wood; you pin it in place at particular points, called
knots, and let it bend between them. (When the gas company dug up my front
yard and my neighbor’s driveway, the contractors who put everything back used
a plywood board to give a smooth, curved edge to the new driveway. That board
was a spline, and the knots were pairs of metal stakes on either side of the board.
Figure 7.1 shows the spline after concrete was poured on one side of it.) Bending
the spline takes energy — the sti↵er the material, the more energy has to go into
bending it through the same shape, and so the material makes a straighter curve

169

22:33 Friday 2nd February, 2024
Copyright c�Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

170 Splines

Figure 7.1 A wooden spline used to create a smooth, curved border for a
paved area (Shadyside, Pittsburgh, October 2014).

between given points. For smoothing splines, using a sti↵er material corresponds
to increasing �.

It is possible to show (§7.6 below) that all solutions to Eq. 7.1, no matter what
the data might be, are piecewise cubic polynomials which are continuous and have
continuous first and second derivatives — i.e., not only is bµ continuous, so are
bµ0 and bµ00. The boundaries between the pieces sit at the original data points. By
analogy with the craftman’s spline, the boundary points are called the knots of
the smoothing spline. The function is continuous beyond the largest and smallest
data points, but it is always linear in those regions.1

I will also assert, without proof, that, with enough pieces, such piecewise cu-
bic polynomials can approximate any well-behaved function arbitrarily closely.
Finally, smoothing splines are linear smoothers, in the sense of Chapter 1: pre-
dicted values are linear combinations of the training-set response values yi — see
Eq. 7.21 below.

7.1.1 The Meaning of the Splines

Look back to the optimization problem. As � ! 1, any curvature at all becomes
infinitely costly, and only linear functions are allowed. But we know how to min-
imize mean squared error with linear functions, that’s OLS. So we understand
that limit.

On the other hand, as � ! 0, we decide that we don’t care about curvature. In
that case, we can always come up with a function which just interpolates between
the data points, an interpolation spline passing exactly through each point.
More specifically, of the infinitely many functions which interpolate between those
points, we pick the one with the minimum average curvature.

At intermediate values of �, bµ� becomes a function which compromises between

1 Can you explain why it is linear outside the data range, in terms of the optimization problem?

7.2 Computational Example: Splines for Stock Returns 171

having low curvature, and bending to approach all the data points closely (on
average). The larger we make �, the more curvature is penalized. There is a bias-
variance trade-o↵ here. As � grows, the spline becomes less sensitive to the data,
with lower variance to its predictions but more bias. As � shrinks, so does bias,
but variance grows. For consistency, we want to let � ! 0 as n ! 1, just as,
with kernel smoothing, we let the bandwidth h ! 0 while n ! 1.

We can also think of the smoothing spline as the function which minimizes the
mean squared error, subject to a constraint on the average curvature. This turns
on a general corresponds between penalized optimization and optimization under
constraints, which is explored in Appendix D.3. The short version is that each
level of � corresponds to imposing a cap on how much curvature the function
is allowed to have, on average, and the spline we fit with that � is the MSE-
minimizing curve subject to that constraint.2 As we get more data, we have more
information about the true regression function and can relax the constraint (let
� shrink) without losing reliable estimation.

It will not surprise you to learn that we select � by cross-validation. Ordinary
k-fold CV is entirely possible, but leave-one-out CV works quite well for splines.
In fact, the default in most spline software is either leave-one-out CV, or the even
faster approximation called “generalized cross-validation” or GCV (see §3.4.3).

7.2 Computational Example: Splines for Stock Returns

The default R function for fitting a smoothing spline is smooth.spline:

smooth.spline(x, y, cv = FALSE)

where x should be a vector of values for input variable, y is a vector of values
for the response (in the same order), and the switch cv controls whether to pick �
by generalized cross-validation (the default) or by leave-one-out cross-validation.
The object which smooth.spline returns has an $x component, re-arranged in
increasing order, a $y component of fitted values, a $yin component of original
values, etc. See help(smooth.spline) for more.

As a concrete illustration, Figure 7.2 looks at the daily logarithmic returns3
of the S&P 500 stock index, on 5542 consecutive trading days, from 9 February
1993 to 9 February 20154.
2 The slightly longer version: Consider minimizing the MSE (not the penalized MSE), but only over

functions m where
R
(m00(x))2dx is at most some maximum level C. � would then be the Lagrange

multiplier enforcing the constraint. The constrained but unpenalized optimization is equivalent to

the penalized but unconstrained one. In economics, � would be called the “shadow price” of average

curvature in units of MSE, the rate at which we’d be willing to pay to have the constraint level C

marginally increased.
3 For a financial asset whose price on day t is pt and which pays a dividend on that day of dt, the

log-returns on t are log (pt + dt)/pt�1. Financiers and other professional gamblers care more about

the log returns than about the price change, pt � pt�1, because the log returns give the rate of

profit (or loss) on investment. We are using a price series which is adjusted to incorporate dividend

(and related) payments.
4 This uses the handy pdfetch library, which downloads data from such public domain sources as the

Federal Reserve, Yahoo Finance, etc.

172 Splines

require(pdfetch)
sp <- pdfetch_YAHOO("SPY", fields = "adjclose", from = as.Date("1993-02-09"), to = as.Date("2015-02-09"))
sp <- diff(log(sp))
sp <- sp[-1]

We want to use the log-returns on one day to predict what they will be on the
next. The horizontal axis in the figure shows the log-returns for each of 2527 days
t, and the vertical axis shows the corresponding log-return for the succeeding day
t+ 1. A linear model fitted to this data displays a slope of �0.0642 (grey line in
the figure). Fitting a smoothing spline with cross-validation selects � = 0.0127,
and the black curve:

sp.today <- head(sp, -1)
sp.tomorrow <- tail(sp, -1)
coefficients(lm(sp.tomorrow ~ sp.today))
(Intercept) sp.today
0.0003716842 -0.0640909118
sp.spline <- smooth.spline(x = sp.today, y = sp.tomorrow, cv = TRUE)
sp.spline
Call:
smooth.spline(x = sp.today, y = sp.tomorrow, cv = TRUE)
##
Smoothing Parameter spar= 1.346152 lambda= 0.01298188 (11 iterations)
Equivalent Degrees of Freedom (Df): 5.857222
Penalized Criterion (RSS): 0.7807542
PRESS(l.o.o. CV): 0.0001428134
sp.spline$lambda
[1] 0.01298188

(PRESS is the “prediction sum of squares”, i.e., the sum of the squared leave-
one-out prediction errors.) This is the curve shown in black in the figure. The
blue curves are for large values of �, and clearly approach the linear regression;
the red curves are for smaller values of �.

The spline can also be used for prediction. For instance, if we want to know
what the return to expect following a day when the log return was +0.01, we do

predict(sp.spline, x = 0.01)
$x
[1] 0.01
##
$y
[1] 0.0001949144

R Syntax Note:

The syntax for predict with smooth.spline spline di↵ers slightly from the syntax
for predict with lm or np. The latter two want a newdata argument, which should
be a data-frame with column names matching those in the formula used to fit
the model. The predict function for smooth.spline, though, just wants a vector
called x. Also, while predict for lm or np returns a vector of predictions, predict
for smooth.spline returns a list with an x component (in increasing order) and a
y component, which is the sort of thing that can be put directly into points or
lines for plotting.

7.2 Computational Example: Splines for Stock Returns 173

−0.10 −0.05 0.00 0.05 0.10

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Today's log−return

To
m

or
ro

w
's

lo
g−

re
tu

rn

plot(as.vector(sp.today), as.vector(sp.tomorrow), xlab = "Today's log-return", ylab = "Tomorrow's log-return",
pch = 16, cex = 0.5, col = "grey")

abline(lm(sp.tomorrow ~ sp.today), col = "darkgrey")
sp.spline <- smooth.spline(x = sp.today, y = sp.tomorrow, cv = TRUE)
lines(sp.spline)
lines(smooth.spline(sp.today, sp.tomorrow, spar = 1.5), col = "blue")
lines(smooth.spline(sp.today, sp.tomorrow, spar = 2), col = "blue", lty = 2)
lines(smooth.spline(sp.today, sp.tomorrow, spar = 1.1), col = "red")
lines(smooth.spline(sp.today, sp.tomorrow, spar = 0.5), col = "red", lty = 2)

Figure 7.2 The S& P 500 log-returns data (grey dots), with the OLS linear
regression (dark grey line), the spline selected by cross-validation (solid
black, � = 0.0127), some more smoothed splines (blue, � = 0.178 and 727)
and some less smooth splines (red, � = 2.88⇥ 10�4 and 1.06⇥ 10�8).
Incoveniently, smooth.spline does not let us control � directly, but rather a
somewhat complicated but basically exponential transformation of it called
spar. (See help(smooth.spline) for the gory details.) The equivalent � can
be extracted from the return value, e.g.,
smooth.spline(sp.today,sp.tomorrow,spar=2)$lambda.

174 Splines

7.2.1 Confidence Bands for Splines

Continuing the example, the smoothing spline selected by cross-validation has
a negative slope everywhere, like the regression line, but it’s asymmetric — the
slope is more negative to the left, and then levels o↵ towards the regression
line. (See Figure 7.2 again.) Is this real, or might the asymmetry be a sampling
artifact?

We’ll investigate by finding confidence bands for the spline, much as we did for
kernel regression in Chapter 6 and Problem Set 24, problem 5. Again, we need
to bootstrap, and we can do it either by resampling the residuals or resampling
whole data points. Let’s take the latter approach, which assumes less about the
data. We’ll need a simulator:

sp.frame <- data.frame(today = sp.today, tomorrow = sp.tomorrow)

sp.resampler <- function() {
n <- nrow(sp.frame)
resample.rows <- sample(1:n, size = n, replace = TRUE)
return(sp.frame[resample.rows,])

}

This treats the points in the scatterplot as a complete population, and then
draws a sample from them, with replacement, just as large as the original5. We’ll
also need an estimator. What we want to do is get a whole bunch of spline curves,
one on each simulated data set. But since the values of the input variable will
change from one simulation to another, to make everything comparable we’ll
evaluate each spline function on a fixed grid of points, that runs along the range
of the data.

grid.300 <- seq(from = min(sp.today), to = max(sp.today), length.out = 300)

sp.spline.estimator <- function(data, eval.grid = grid.300) {
fit <- smooth.spline(x = data[, 1], y = data[, 2], cv = TRUE)
return(predict(fit, x = eval.grid)$y)

}

This sets the number of evaluation points to 300, which is large enough to give
visually smooth curves, but not so large as to be computationally unwieldly.

Now put these together to get confidence bands:

sp.spline.cis <- function(B, alpha, eval.grid = grid.300) {
spline.main <- sp.spline.estimator(sp.frame, eval.grid = eval.grid)
spline.boots <- replicate(B, sp.spline.estimator(sp.resampler(), eval.grid = eval.grid))
cis.lower <- 2 * spline.main - apply(spline.boots, 1, quantile, probs = 1 - alpha/2)
cis.upper <- 2 * spline.main - apply(spline.boots, 1, quantile, probs = alpha/2)
return(list(main.curve = spline.main, lower.ci = cis.lower, upper.ci = cis.upper,

x = eval.grid))
}

The return value here is a list which includes the original fitted curve, the
lower and upper confidence limits, and the points at which all the functions were
evaluated.

5 §23.5 covers more refined ideas about bootstrapping time series.

7.2 Computational Example: Splines for Stock Returns 175

Figure 7.3 shows the resulting 95% confidence limits, based on B=1000 boot-
strap replications. (Doing all the bootstrapping took 45 seconds on my laptop.)
These are pretty clearly asymmetric in the same way as the curve fit to the whole
data, but notice how wide they are, and how they get wider the further we go
from the center of the distribution in either direction.

176 Splines

−0.10 −0.05 0.00 0.05 0.10

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Today's log−return

To
m

or
ro

w
's

lo
g−

re
tu

rn

sp.cis <- sp.spline.cis(B = 1000, alpha = 0.05)
plot(as.vector(sp.today), as.vector(sp.tomorrow), xlab = "Today's log-return", ylab = "Tomorrow's log-return",

pch = 16, cex = 0.5, col = "grey")
abline(lm(sp.tomorrow ~ sp.today), col = "darkgrey")
lines(x = sp.cis$x, y = sp.cis$main.curve, lwd = 2)
lines(x = sp.cis$x, y = sp.cis$lower.ci)
lines(x = sp.cis$x, y = sp.cis$upper.ci)

Figure 7.3 Bootstrapped pointwise confidence band for the smoothing
spline of the S & P 500 data, as in Figure 7.2. The 95% confidence limits
around the main spline estimate are based on 1000 bootstrap re-samplings of
the data points in the scatterplot.

7.3 Basis Functions and Degrees of Freedom 177

7.3 Basis Functions and Degrees of Freedom

7.3.1 Basis Functions

Splines, I said, are piecewise cubic polynomials. To see how to fit them, let’s
think about how to fit a global cubic polynomial. We would define four basis
functions,

B1(x) = 1 (7.3)

B2(x) = x (7.4)

B3(x) = x2 (7.5)

B4(x) = x3 (7.6)

and chose to only consider regression functions that are linear combinations of
the basis functions,

µ(x) =
4X

j=1

�jBj(x) (7.7)

Such regression functions would be linear in the transformed variablesB1(x), . . . B4(x),
even though it is nonlinear in x.

To estimate the coe�cients of the cubic polynomial, we would apply each basis
function to each data point xi and gather the results in an n⇥ 4 matrix B,

Bij = Bj(xi) (7.8)

Then we would do OLS using the B matrix in place of the usual data matrix x:

�̂ = (BTB)�1BTy (7.9)

Since splines are piecewise cubics, things proceed similarly, but we need to be a
little more careful in defining the basis functions. Recall that we have n values of
the input variable x, x1, x2, . . . xn. For the rest of this section, I will assume that
these are in increasing order, because it simplifies the notation. These n “knots”
define n+ 1 pieces or segments: n� 1 of them between the knots, one from �1
to x1, and one from xn to +1. A third-order polynomial on each segment would
seem to need a constant, linear, quadratic and cubic term per segment. So the
segment running from xi to xi+1 would need the basis functions

1(xi,xi+1)(x), (x� xi)1(xi,xi+1)(x), (x� xi)
21(xi,xi+1)(x), (x� xi)

31(xi,xi+1)(x)
(7.10)

where as usual the indicator function 1(xi,xi+1)(x) is 1 if x 2 (xi, xi+1) and 0
otherwise. This makes it seem like we need 4(n+ 1) = 4n+ 4 basis functions.

However, we know from linear algebra that the number of basis vectors we
need is equal to the number of dimensions of the vector space. The number of
adjustable coe�cients for an arbitrary piecewise cubic with n + 1 segments is
indeed 4n + 4, but splines are constrained to be smooth. The spline must be
continuous, which means that at each xi, the value of the cubic from the left,
defined on (xi�1, xi), must match the value of the cubic from the right, defined
on (xi, xi+1). This gives us one constraint per data point, reducing the number of

178 Splines

adjustable coe�cients to at most 3n+4. Since the first and second derivatives are
also continuous, we are down to just n+4 coe�cients. Finally, we know that the
spline function is linear outside the range of the data, i.e., on (�1, x1) and on
(xn,1), lowering the number of coe�cients to n. There are no more constraints,
so we end up needing only n basis functions. And in fact, from linear algebra, any
set of n piecewise cubic functions which are linearly independent6 can be used as
a basis. One common choice is

B1(x) = 1 (7.11)

B2(x) = x (7.12)

Bi+2(x) =
(x� xi)3+ � (x� xn)3+

xn � xi
�

(x� xn�1)3+ � (x� xn)3+
xn � xn�1

(7.13)

where (a)+ = a if a > 0, and = 0 otherwise. This rather unintuitive-looking basis
has the nice property that the second and third derivatives of each Bj are zero
outside the interval (x1, xn).

Now that we have our basis functions, we can once again write the spline as a
weighted sum of them,

m(x) =
mX

j=1

�jBj(x) (7.14)

and put together the matrix B where Bij = Bj(xi). We can write the spline
objective function in terms of the basis functions,

nL = (y �B�)T (y �B�) + n��T⌦� (7.15)

where the matrix ⌦ encodes information about the curvature of the basis func-
tions:

⌦jk =
Z

B00
j (x)B

00
k (x)dx (7.16)

Notice that only the quadratic and cubic basis functions will make non-zero
contributions to ⌦. With the choice of basis above, the second derivatives are
non-zero on, at most, the interval (x1, xn), so each of the integrals in ⌦ is going
to be finite. This is something we (or, realistically, R) can calculate once, no
matter what � is. Now we can find the smoothing spline by di↵erentiating with
respect to �:

0 = �2BTy + 2BTB�̂ + 2n�⌦�̂ (7.17)

BTy =
�
BTB+ n�⌦

�
�̂ (7.18)

�̂ =
�
BTB+ n�⌦

��1
BTy (7.19)

6 Recall that vectors ~v1,~v2, . . .~vd are linearly independent when there is no way to write any one of

the vectors as a weighted sum of the others. The same definition applies to functions.

7.4 Splines in Multiple Dimensions 179

Notice, incidentally, that we can now show splines are linear smoothers:

bµ(x) = B�̂ (7.20)

= B
�
BTB+ n�⌦

��1
BTy (7.21)

Once again, if this were ordinary linear regression, the OLS estimate of the co-
e�cients would be (xTx)�1xTy. In comparison to that, we’ve made two changes.
First, we’ve substituted the basis function matrix B for the original matrix of
independent variables, x — a change we’d have made already for a polynomial
regression. Second, the “denominator” is not xTx, or even BTB, but BTB+n�⌦.
Since xTx is n times the covariance matrix of the independent variables, we are
taking the covariance matrix of the spline basis functions and adding some extra
covariance — how much depends on the shapes of the functions (through ⌦) and
how much smoothing we want to do (through �). The larger we make �, the less
the actual data matters to the fit.

In addition to explaining how splines can be fit quickly (do some matrix arith-
metic), this illustrates two important tricks. One, which we won’t explore further
here, is to turn a nonlinear regression problem into one which is linear in an-
other set of basis functions. This is like using not just one transformation of
the input variables, but a whole library of them, and letting the data decide
which transformations are important. There remains the issue of selecting the
basis functions, which can be quite tricky. In addition to the spline basis7, most
choices are various sorts of waves — sine and cosine waves of di↵erent frequen-
cies, various wave-forms of limited spatial extent (“wavelets”), etc. The ideal is
to chose a function basis where only a few non-zero coe�cients would need to be
estimated, but this requires some understanding of the data. . .

The other trick is that of stabilizing an unstable estimation problem by adding a
penalty term. This reduces variance at the cost of introducing some bias. Exercise
7.2 explores this idea.

E↵ective degrees of freedom

In §1.5.3.2, we defined the number of e↵ective degrees of freedom for a linear
smoother with smoothing matrix w as just trw. Thus, Eq. 7.21 lets us calculate

the e↵ective degrees of freedom of a spline, as tr
⇣
B(BTB+ n�⌦)

�1
BT

⌘
. You

should be able to convince yourself from this that increasing � will, all else being
equal, reduce the e↵ective degrees of freedom of the fit.

7.4 Splines in Multiple Dimensions

Suppose we have two input variables, x and z, and a single response y. How could
we do a spline fit?

7 Or, really, bases; there are multiple sets of basis functions for the splines, just like there are multiple

sets of basis vectors for the plane. Phrases like “B splines” and “P splines” refer to particular

choices of spline basis functions.

180 Splines

One approach is to generalize the spline optimization problem so that we pe-
nalize the curvature of the spline surface (no longer a curve). The appropriate
penalized least-squares objective function to minimize is

L(m,�) =
nX

i=1

(yi �m(xi, zi))
2 + �

Z "✓
@2m

@x2

◆2

+ 2

✓
@2m

@x@z

◆2

+

✓
@2m

@z2

◆2
#

dxdz

(7.22)
The solution is called a thin-plate spline. This is appropriate when the two
input variables x and z should be treated more or less symmetrically8.

An alternative is use the spline basis functions from section 7.3. We write

m(x) =
M1X

j=1

M2X

k=1

�jkBj(x)Bk(z) (7.23)

Doing all possible multiplications of one set of numbers or functions with another
is said to give their outer product or tensor product, so this is known as a
tensor product spline or tensor spline. We have to chose the number of terms
to include for each variable (M1 and M2), since using n for each would give n2

basis functions, and fitting n2 coe�cients to n data points is asking for trouble.

7.5 Smoothing Splines versus Kernel Regression

For one input variable and one output variable, smoothing splines can basically
do everything which kernel regression can do9. The advantages of splines are their
computational speed and (once we’ve calculated the basis functions) simplicity,
as well as the clarity of controlling curvature directly. Kernels however are easier
to program (if slower to run), easier to analyze mathematically10, and extend
more straightforwardly to multiple variables, and to combinations of discrete and
continuous variables.

7.6 Some of the Math Behind Splines

Above, I claimed that a solution to the optimization problem Eq. 7.1 exists, and
is a continuous, piecewise-cubic polynomial, with continuous first and second
derivatives, with pieces at the xi, and linear outside the range of the xi. I do not
know of any truly elementary way of showing this, but I will sketch here how it’s
established, if you’re interested.

Eq. 7.1 asks us to find the function which minimize the sum of the MSE and

8 Generalizations to more than two input variables are conceptually straightforward — just keep

adding up more partial derivatives — but the book-keeping gets annoying.
9 In fact, there is a technical sense in which, for large n, splines act like a kernel regression with a

specific non-Gaussian kernel, and a bandwidth which varies over the data, being smaller in

high-density regions. See Simono↵ (1996, §5.6.2), or, for more details, Silverman (1984).
10 Most of the bias-variance analysis for kernel regression can be done with basic calculus, as we did in

Chapter 4. The corresponding analysis for splines requires working in infinite-dimensional function

spaces called “Hilbert spaces”. It’s a pretty theory, if you like that sort of thing.

7.6 Some of the Math Behind Splines 181

a certain integral. Even the MSE can be brought inside the integral, using Dirac
delta functions:

L =
Z "

�(m00(x))2 +
1

n

nX

i=1

(yi �m(xi))
2�(x� xi)

#

dx (7.24)

In what follows, without loss of generality, assume that the xi are ordered, so
x1 x2 . . . xi xi+1 . . . xn. With some loss of generality but a great gain
in simplicity, assume none of the xi are equal, so we can make those inequalities
strict.

The subject which deals with maximizing or minimizing integrals of functions
is the calculus of variations11, and one of its basic tricks is to write the integrand
as a function of x, the function, and its derivatives:

L =
Z

L(x,m,m0,m00)dx (7.25)

where, in our case,

L = �(m00(x))2 +
1

n

nX

i=1

(yi �m(xi))
2�(x� xi) (7.26)

This sets us up to use a general theorem of the calculus of variations, to the e↵ect
that any function m̂ which minimizes L must also solve L’s Euler-Lagrange
equation:

@L

@m
� d

dx

@L

@m0 +
d2

dx2

@L

@m00

����
m=m̂

= 0 (7.27)

In our case, the Euler-Lagrange equation reads

� 2

n

nX

i=1

(yi � m̂(xi))�(x� xi) + 2�
d2

dx2
m̂00(x) = 0 (7.28)

Remembering that m̂00(x) = d2m̂/dx2,

d4

dx4
m̂(x) =

1

n�

nX

i=1

(yi � m̂(xi))�(x� xi) (7.29)

The right-hand side is zero at any point x other than one of the xi, so the fourth
derivative has to be zero in between the xi. This in turn means that the function
must be piecewise cubic. Now fix an xi, and pick any two points which bracket
it, but are both greater than xi�1 and less than xi+1; call them l and u. Integrate

11 In addition to its uses in statistics, the calculus of variations also shows up in physics (“what is the

path of least action?”), control theory (“what is the cheapest route to the objective?”) and

stochastic processes (“what is the most probable trajectory?”). Gershenfeld (1999, ch. 4) is a good

starting point.

182 Splines

our Euler-Lagrange equation from l to u:
Z u

l

d4

dx4
m̂(x)dx =

Z u

l

1

n�

nX

i=1

(yi � m̂(xi))�(x� xi) (7.30)

m̂000(u)� m̂000(l) =
yi � m̂(xi)

n�
(7.31)

That is, the third derivative makes a jump when we move across xi, though (since
the fourth derivative is zero), it doesn’t matter which pair of points above and
below xi we compare third derivatives at. Integrating the equation again,

m̂00(u)� m̂00(l) = (u� l)
yi � m̂(xi)

n�
(7.32)

Letting u and l approach xi from either side, so u� l ! 0, we see that m̂00 makes
no jump at xi. Repeating this trick twice more, we conclude the same about
m̂0 and m̂ itself. In other words, m̂ must be continuous, with continuous first
and second derivatives, and a third derivative that is constant on each (xi, xi+1)
interval. Since the fourth derivative is zero on those intervals (and undefined at
the xi), the function must be a piecewise cubic, with the piece boundaries at the
xi, and continuity (up to the second derivative) across pieces.

To see that the optimal function must be linear below x1 and above xn, suppose
that it wasn’t. Clearly, though, we could reduce the curvature as much as we want
in those regions, without altering the value of the function at the boundary, or
even its first derivative there. This would yield a better function, i.e., one with a
lower value of L, since the MSE would be unchanged and the average curvature
would be smaller. Taking this to the limit, then, the function must be linear
outside the observed data range.

We have now shown12 that the optimal function m̂, if it exists, must have all
the properties I claimed for it. We have not shown either that there is a solution,
or that a solution is unique if it does exist. However, we can use the fact that
solutions, if there are any, are piecewise cubics obeying continuity conditions to
set up a system of equations to find their coe�cients. In fact, we did so already
in §7.3.1, where we saw it’s a system of n independent linear equations in n
unknowns. Such a thing does indeed have a unique solution, here Eq. 7.19.

7.7 Further Reading

There are good discussions of splines in Simono↵ (1996, ch. 5), Hastie et al. (2009,
ch. 5) and Wasserman (2006, §5.5). Wood (2006, ch. 4) includes a thorough prac-
tical treatment of splines as a preparation for additive models (see Chapter 8
below) and generalized additive models (see Chapters 11–12). The classic ref-
erence, by one of the inventors of splines as a useful statistical tool, is Wahba
(1990); it’s great if you already know what a Hilbert space is and how to navigate
one.
12 For a very weak value of “shown”, admittedly.

Exercises 183

Historical notes

The first introduction of spline smoothing in the statistical literature seems to
be Whittaker (1922). (His “graduation” is more or less our “smoothing”.) He
begins with an “inverse probability” (we would now say “Bayesian”) argument
for minimizing Eq. 7.1 to find the most probable curve, based on the a priori
hypothesis of smooth Gaussian curves observed through Gaussian error, and gives
tricks for fitting splines more easily with the mathematical technology available
in 1922.

The general optimization problem, and the use of the word “spline”, seems to
have its roots in numerical analysis in the early 1960s; those spline functions were
intended as ways of smoothly interpolating between given points. The connec-
tion to statistical smoothing was made by Schoenberg (1964) (who knew about
Whittaker’s earlier work) and by Reinsch (1967) (who gave code). Splines were
then developed as a practical tool in statistics and in applied mathematics in the
1960s and 1970s. Silverman (1985) is a still-readable and insightful summary of
this work.

In econometrics, spline smoothing a time series is called the “Hodrick-Prescott
filter”, after two economists who re-discovered the technique in 1981, along with
a fallacious argument that � should always take a particular value (1600, as it
happens), regardless of the data. See Paige and Trindade (2010) for a (polite)
discussion, and demonstration of the advantages of cross-validation.

Exercises

7.1 The smooth.spline function lets you set the e↵ective degrees of freedom explicitly. Write

a function which chooses the number of degrees of freedom by five-fold cross-validation.

7.2 When we can’t measure our predictor variables perfectly, it seems like a good idea to try

to include multiple measurements for each one of them. For instance, if we were trying to

predict grades in college from grades in high school, we might include the student’s grade

from each year separately, rather than simply averaging them. Multiple measurements

of the same variable will however tend to be strongly correlated, so this means that a

linear regression will be nearly multi-collinear. This in turn means that it will tend to

have multiple, mutually-canceling large coe�cients. This makes it hard to interpret the

regression and hard to treat the predictions seriously. (See §2.1.1.)
One strategy for coping with this situation is to carefully select the variables one uses in the

regression. Another, however, is to add a penalty for large coe�cient values. For historical

reasons, this second strategy is called ridge regression, or Tikhonov regularization.

Specifically, while the OLS estimate is

b�OLS = argmin
�

1
n

nX

i=1

(yi � xi · �)2 , (7.33)

the regularized or penalized estimate is

b�RR = argmin
�

"
1
n

nX

i=1

(yi � xi · �)2
#
+ �

pX

j=1

�
2
j (7.34)

184 Splines

1. Show that the matrix form of the ridge-regression objective function is

n
�1(y � x�)T (y � x�) + ��

T
� (7.35)

2. Show that the optimum is

b�RR = (xTx+ n�I)�1xTy (7.36)

(This is where the name “ridge regression” comes from: we take xTx and add a “ridge”

along the diagonal of the matrix.)

3. What happens as � ! 0? As � ! 1? (For the latter, it may help to think about the

case of a one-dimensional X first.)

4. Let Y = Z+✏, with Z ⇠ U(�1, 1) and ✏ ⇠ N (0, 0.05). Generate 2000 draws from Z and

Y . Now let Xi = 0.9Z + ⌘, with ⌘ ⇠ N (0, 0.05), for i 2 1 : 50. Generate corresponding

Xi values. Using the first 1000 rows of the data only, do ridge regression of Y on the Xi

(not on Z), plotting the 50 coe�cients as functions of �. Explain why ridge regression

is called a shrinkage estimator.

5. Use cross-validation with the first 1000 rows to pick the optimal value of �. Compare the

out-of-sample performance you get with this penalty to the out-of-sample performance

of OLS.

For more on ridge regression, see Appendix D.3.5.

