
5

Simulation

You will recall from your previous statistics courses that quantifying uncertainty
in statistical inference requires us to get at the sampling distributions of things
like estimators. When the very strong simplifying assumptions of basic statistics
courses do not apply1, there is little hope of being able to write down sampling
distributions in closed form. There is equally little help when the estimates are
themselves complex objects, like kernel regression curves or even histograms,
rather than short, fixed-length parameter vectors. We get around this by using
simulation to approximate the sampling distributions we can’t calculate.

5.1 What Is a Simulation?

A mathematical model is a mathematical story about how the data could have
been made, or generated. Simulating the model means following that story,
implementing it, step by step, in order to produce something which should look
like the data — what’s sometimes called synthetic data, or surrogate data,
or a realization of the model. In a stochastic model, some of the steps we need
to follow involve a random component, and so multiple simulations starting from
exactly the same inputs or initial conditions will not give exactly the same outputs
or realizations. Rather, the model specifies a distribution over the realizations,
and doing many simulations gives us a good approximation to this distribution.

For a trivial example, consider a model with three random variables, X1 ⇠
N (µ1,�2

1), X2 ⇠ N (µ2,�2
2), with X1 ?? X2, and X3 = X1 +X2. Simulating from

this model means drawing a random value from the first normal distribution for
X1, drawing a second random value for X2, and adding them together to get X3.
The marginal distribution of X3, and the joint distribution of (X1, X2, X3), are
implicit in this specification of the model, and we can find them by running the
simulation.

In this particular case, we could also find the distribution of X3, and the joint
distribution, by probability calculations of the kind you learned how to do in
your basic probability courses. For instance, X3 is N (µ1 + µ2,�2

1 + �2
2). These

1 As discussed ad nauseam in Chapter 2, in your linear models class, you learned about the sampling

distribution of regression coe�cients when the linear model is true, and the noise is Gaussian,

independent of the predictor variables, and has constant variance. As an exercise, try to get parallel

results when the noise has a t distribution with 10 degrees of freedom.

125

22:33 Friday 2nd February, 2024
Copyright c�Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

126 Simulation

analytical probability calculations can usually be thought of as just short-cuts
for exhaustive simulations.

5.2 How Do We Simulate Stochastic Models?

5.2.1 Chaining Together Random Variables

Stochastic models are usually specified by sets of conditional distributions for one
random variable, given some other variable or variables. For instance, a simple
linear regression model might have the specification

X ⇠ U(xmin, xmax) (5.1)

Y |X ⇠ N (�0 + �1X,�2) (5.2)

If we knew how to generate a random variable from the distributions given
on the right-hand sides, we could simulate the whole model by chaining together
draws from those conditional distributions. This is in fact the general strategy for
simulating any sort of stochastic model, by chaining together random variables.2

You might ask why we don’t start by generating a random Y , and then gen-
erate X by drawing from the X|Y distribution. The basic answer is that you
could, but it would generally be messier. (Just try to work out the conditional
distribution X|Y .) More broadly, in Chapter 18, we’ll see how to arrange the
variables in complicated probability models in a natural order, so that we start
with independent, “exogenous” variables, then first-generation variables which
only need to be conditioned on the exogenous variables, then second-generation
variables which are conditioned on first-generation ones, and so forth. This is also
the natural order for simulation.

The upshot is that we can reduce the problem of simulating to that of gener-
ating random variables.

5.2.2 Random Variable Generation

5.2.2.1 Built-in Random Number Generators

R provides random number generators for most of the most common distributions.
By convention, the names of these functions all begin with the letter “r”, followed
by the abbreviation of the functions, and the first argument is always the number
of draws to make, followed by the parameters of the distribution. Some examples:

rnorm(n, mean = 0, sd = 1)
runif(n, min = 0, max = 1)
rexp(n, rate = 1)
rpois(n, lambda)
rbinom(n, size, prob)

2 In this case, we could in principle first generate Y , and then draw from Y |X, but have fun finding

those distributions. Especially have fun if, say, X has a t distribution with 10 degrees of freedom. (I

keep coming back to that idea, because it’s really a very small change from being Gaussian.)

5.2 How Do We Simulate Stochastic Models? 127

A further convention is that these parameters can be vectorized. Rather than
giving a single mean and standard deviation (say) for multiple draws from the
Gaussian distribution, each draw can have its own:

rnorm(10, mean = 1:10, sd = 1/sqrt(1:10))

That instance is rather trivial, but the exact same principle would be at work
here:

rnorm(nrow(x), mean = predict(regression.model, newdata = x), sd = predict(volatility.model,
newdata = x))

where regression.model and volatility.model are previously-defined parts
of the model which tell us about conditional expectations and conditional vari-
ances.

Of course, none of this explains how R actually draws from any of these distri-
butions; it’s all at the level of a black box, which is to say black magic. Because
ignorance is evil, and, even worse, unhelpful when we need to go beyond the stan-
dard distributions, it’s worth opening the black box just a bit. We’ll look at using
transformations between distributions, and, in particular, transforming uniform
distributions into others (§5.2.2.3).

5.2.2.2 Transformations

If we can generate a random variable Z with some distribution, and V = g(Z),
then we can generate V . So one thing which gets a lot of attention is writing
random variables as transformations of one another — ideally as transformations
of easy-to-generate variables.

Example: from standard to customized Gaussians

Suppose we can generate random numbers from the standard Gaussian distri-
bution Z ⇠ N (0, 1). Then we can generate from N (µ,�2) as �Z + µ. We can
generate �2 random variables with 1 degree of freedom as Z2. We can generate
�2 random variables with d degrees of freedom by summing d independent copies
of Z2.

In particular, if we can generate random numbers uniformly distributed be-
tween 0 and 1, we can use this to generate anything which is a transformation of
a uniform distribution. How far does that extend?

5.2.2.3 Quantile Method

Suppose that we know the quantile function QZ for the random variable Z we
want, so that QZ(0.5) is the median of X, QZ(0.9) is the 90th percentile, and in
general QZ(p) is bigger than or equal to Z with probability p. QZ comes as a pair
with the cumulative distribution function FZ , since

QZ(FZ(a)) = a, FZ(QZ(p)) = p (5.3)

In the quantile method (or inverse distribution transform method), we
generate a uniform random number U and feed it as the argument to QZ . Now

128 Simulation

QZ(U) has the distribution function FZ :

Pr (QZ(U) a) = Pr (FZ(QZ(U)) FZ(a)) (5.4)

= Pr (U FZ(a)) (5.5)

= FZ(a) (5.6)

where the last line uses the fact that U is uniform on [0, 1], and the first line
uses the fact that FZ is a non-decreasing function, so b a is true if and only if
FZ(b) FZ(a).

Example: Exponentials

The CDF of the exponential distribution with rate � is 1 � e��z. The quantile
function Q(p) is thus � log (1�p)

�
. (Notice that this is positive, because 1 � p < 1

and so log (1� p) < 0, and that it has units of 1/�, which are the units of z, as it
should.) Therefore, if U Unif(0, 1), then � log (1�U)

�
⇠ Exp(�). This is the method

used by rexp().

Example: Power laws

The Pareto distribution or power-law distribution is a two-parameter fam-

ily, f(z;↵, z0) = ↵�1
z0

⇣
z
z0

⌘�↵

if z � z0, with density 0 otherwise. Integration

shows that the cumulative distribution function is F (z;↵, z0) = 1 �
⇣

z
z0

⌘�↵+1

.

The quantile function therefore is Q(p;↵, z0) = z0(1� p)�
1

↵�1 . (Notice that this
has the same units as z, as it should.)

Example: Gaussians

The standard Gaussian N (0, 1) does not have a closed form for its quantile func-
tion, but there are fast and accurate ways of calculating it numerically (they’re
what stand behind qnorm), so the quantile method can be used. In practice, there
are other transformation methods which are even faster, but rely on special tricks.

Since QZ(U) has the same distribution function as Z, we can use the quantile
method, as long as we can calculate QZ . Since QZ always exists, in principle
this solves the problem. In practice, we need to calculate QZ before we can use
it, and this may not have a closed form, and numerical approximations may be
intractable.3 In such situations, we turn to more advanced methods (see further
reading).

5.2.3 Sampling

A complement to drawing from given distributions is to sample from a given
collection of objects. This is a common task, so R has a function to do it:

3 In essence, we have to solve the nonlinear equation FZ(z) = p for z over and over for di↵erent p —

and that assumes we can easily calculate FZ .

5.2 How Do We Simulate Stochastic Models? 129

sample(x, size, replace = FALSE, prob = NULL)

Here x is a vector which contains the objects we’re going to sample from.
size is the number of samples we want to draw from x. replace says whether
the samples are drawn with or without replacement. (If replace=TRUE, then
size can be arbitrarily larger than the length of x. If replace=FALSE, having a
larger size doesn’t make sense.) Finally, the optional argument prob allows for
weighted sampling; ideally, prob is a vector of probabilities as long as x, giving
the probability of drawing each element of x4.

As a convenience for a common situation, running sample with one argument
produces a random permutation of the input, i.e.,

sample(x)

is equivalent to

sample(x, size = length(x), replace = FALSE)

For example, the code for k-fold cross-validation, Code Example 3, had the
lines

fold.labels <- sample(rep(1:nfolds, length.out = nrow(data)))

Here, rep repeats the numbers from 1 to nfolds until we have one number
for each row of the data frame, say 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2 if there were twelve
rows. Then sample shu✏es the order of those numbers randomly. This then would
give an assignment of each row of df to one (and only one) of five folds.

5.2.3.1 Sampling Rows from Data Frames
When we have multivariate data (which is the usual situation), we typically
arrange it into a data-frame, where each row records one unit of observation,
with multiple interdependent columns. The natural notion of sampling is then to
draw a random sample of the data points, which in that representation amounts
to a random sample of the rows. We can implement this simply by sampling row
numbers. For instance, this command,

df[sample(1:nrow(df), size = b),]

will create a new data frame from b, by selecting b rows from df without
replacement. It is an easy exercise to figure out how to sample from a data frame
with replacement, and with unequal probabilities per row.

5.2.3.2 Multinomials and Multinoullis

If we want to draw one value from a multinomial distribution with probabilities
p = (p1, p2, . . . pk), then we can use sample:

4 If the elements of prob do not add up to 1, but are positive, they will be normalized by their sum,

e.g., setting prob=c(9,9,1) will assign probabilities (9
19 ,

9
19 ,

1
19) to the three elements of x.

130 Simulation

sample(1:k, size = 1, prob = p)

If we want to simulate a “multinoulli” process5, i.e., a sequence of independent
and identically distributed multinomial random variables, then we can easily do
so:

rmultinoulli <- function(n, prob) {
k <- length(prob)
return(sample(1:k, size = n, replace = TRUE, prob = prob))

}

Of course, the labels needn’t be the integers 1 : k (exercise 5.1).

5.2.3.3 Probabilities of Observation

Often, our models of how the data are generated will break up into two parts.
One part is a model of how actual variables are related to each other out in the
world. (E.g., we might model how education and racial categories are related to
occupation, and occupation is related to income.) The other part is a model of
how variables come to be recorded in our data, and the distortions they might
undergo in the course of doing so. (E.g., we might model the probability that
someone appears in a survey as a function of race and income.) Plausible sampling
mechanisms often make the probability of appearing in the data a function of
some of the variables. This can then have important consequences when we try
to draw inferences about the whole population or process from the sample we
happen to have seen (see, e.g., App. I).

income <- rnorm(n, mean = predict(income.model, x), sd = sigma)
capture.probabilities <- predict(observation.model, x)
observed.income <- sample(income, size = b, prob = capture.probabilities)

5.3 Repeating Simulations

Because simulations are often most useful when they are repeated many times,
R has a command to repeat a whole block of code:

replicate(n, expr)

Here expr is some executable “expression” in R, basically something you could
type in the terminal, and n is the number of times to repeat it.

For instance,

output <- replicate(1000, rnorm(length(x), beta0 + beta1 * x, sigma))

will replicate, 1000 times, sampling from the predictive distribution of a Gaus-
sian linear regression model. Conceptually, this is equivalent to doing something
like

5 A handy term I learned from Gustavo Lacerda.

5.4 Why Simulate? 131

output <- matrix(0, nrow = 1000, ncol = length(x))
for (i in 1:1000) {

output[i,] <- rnorm(length(x), beta0 + beta1 * x, sigma)
}

but the replicate version has two great advantages. First, it is faster, because
R processes it with specially-optimized code. (Loops are especially slow in R.)
Second, and far more importantly, it is clearer: it makes it obvious what is being
done, in one line, and leaves the computer to figure out the boring and mundane
details of how best to implement it.

5.4 Why Simulate?

There are three major uses for simulation: to understand a model, to check it,
and to fit it. We will deal with the first two here, and return to fitting in Chapter
24, after we’ve looked at dealing with dependence and hidden variables.

5.4.1 Understanding the Model; Monte Carlo

We understand a model by seeing what it predicts about the variables we care
about, and the relationships between them. Sometimes those predictions are easy
to extract from a mathematical representation of the model, but often they aren’t.
With a model we can simulate, however, we can just run the model and see what
happens.

Our stochastic model gives a distribution for some random variable Z, which
in general is a complicated, multivariate object with lots of interdependent com-
ponents. We may also be interested in some complicated function g of Z, such
as, say, the ratio of two components of Z, or even some nonparametric curve fit
through the data points. How do we know what the model says about g?

Assuming we can make draws from the distribution of Z, we can find the
distribution of any function of it we like, to as much precision as we want. Suppose
that Z̃1, Z̃2, . . . Z̃b are the outputs of b independent runs of the model — b di↵erent
replicates of the model. (The tilde is a reminder that these are just simulations.)
We can calculate g on each of them, getting g(Z̃1), g(Z̃2), . . . g(Z̃b). If averaging
makes sense for these values, then

1

b

bX

i=1

g(Z̃i) ���!
b!1

E [g(Z)] < (5.7)

by the law of large numbers. So simulation and averaging lets us get expectation
values. This basic observation is the seed of the Monte Carlo method.6 If our
6 The name was coined by the physicists at Los Alamos who used the method to do calculations

relating to designing the hydrogen bomb; see Metropolis et al. (1953). (Folklore specifically credits it

to Stanislaw Ulam, as a joking reference to the famous casino at the town of Monte Carlo in the

principality of Monaco, on the French Riviera.) The technique was pioneered by the great physicist

Enrico Fermi, who began using it in 1935 to do calculations relating to nuclear fission, but using

132 Simulation

simulations are independent7, we can even use the central limit theorem to say
that 1

b

Pb
i=1 g(Z̃i) has approximately the distribution N (E [g(Z)] ,V [g(Z)] /b).

Of course, if you can get expectation values, you can also get variances. (This
is handy if trying to apply the central limit theorem!) You can also get any
higher moments — if, for whatever reason, you need the kurtosis, you just have
to simulate enough.

You can also pick any set s and get the probability that g(Z) falls into that
set:

1

b

bX

i=1

1s(g(Z̃i)) ���!
b!1

Pr (g(Z) 2 s) (5.8)

The reason this works is of course that Pr (g(Z) 2 s) = E [1s(g(Z))], and we can
use the law of large numbers again. So we can get the whole distribution of any
complicated function of the model that we want, as soon as we can simulate the
model. It is really only a little harder to get the complete sampling distribution
than it is to get the expectation value, and the exact same ideas apply.

5.4.2 Checking the Model

An important but under-appreciated use for simulation is to check models after
they have been fit. If the model is right, after all, it represents the mechanism
which generates the data. This means that when we simulate, we run that mecha-
nism, and the surrogate data which comes out of the machine should look like the
real data. More exactly, the real data should look like a typical realization of the
model. If it does not, then the model’s account of the data-generating mechanism
is systematically wrong in some way. By carefully choosing the simulations we
perform, we can learn a lot about how the model breaks down and how it might
need to be improved.8

5.4.2.1 “Exploratory” Analysis of Simulations

Often the comparison between simulations and data can be done qualitatively
and visually. For example, a classic data set concerns the time between eruptions
of the Old Faithful geyser in Yellowstone, and how they relate to the duration of
the latest eruption. A common exercise is to fit a regression line to the data by
ordinary least squares:

library(MASS)
data(geyser)
fit.ols <- lm(waiting ~ duration, data = geyser)

pencil, paper, and printed tables of random numbers, because programmable electronic computers

did not exist yet (Schwartz, 2017, p. 124).
7 Often our simulations are dependent, particularly in Markov chain Monte Carlo (MCMC), but there

are still applicable central limit theorems. This is outside the scope of this chapter, but see the

further reading.
8 “Might”, because sometimes (e.g., §1.4.2) we’re better o↵ with a model that makes systematic

mistakes, if they’re small and getting it right would be a hassle.

5.4 Why Simulate? 133

1 2 3 4 5

50
60

70
80

90
10
0

11
0

duration

wa
iti
ng

plot(geyser$duration, geyser$waiting, xlab = "duration", ylab = "waiting")
abline(fit.ols)

Figure 5.1 Data for the geyser data set, plus the OLS regression line.

Figure 5.1 shows the data, together with the OLS line. It doesn’t look that
great, but if someone insisted it was a triumph of quantitative vulcanology, how
could you show they were wrong?

We’ll consider general tests of regression specifications in Chapter 9. For now,
let’s focus on the way OLS is usually presented as part of a stochastic model for
the response conditional on the input, with Gaussian and homoskedastic noise.
In this case, the stochastic model is waiting = �0 + �1duration + ✏, with ✏ ⇠
N (0,�2). If we simulate from this probability model, we’ll get something we can

134 Simulation

rgeyser <- function() {
n <- nrow(geyser)
sigma <- summary(fit.ols)$sigma
new.waiting <- rnorm(n, mean = fitted(fit.ols), sd = sigma)
new.geyser <- data.frame(duration = geyser$duration, waiting = new.waiting)
return(new.geyser)

}

Code Example 6: Function for generating surrogate data sets from the linear model fit to
geyser.

compare to the actual data, to help us assess whether the scatter around that
regression line is really bothersome. Since OLS doesn’t require us to assume a
distribution for the input variable (here, duration), the simulation function in
Code Example 6 leaves those values alone, but regenerates values of the response
(waiting) according to the model assumptions.

A useful principle for model checking is that if we do some exploratory data
analyses of the real data, doing the same analyses to realizations of the model
should give roughly the same results (Gelman, 2003; Hunter et al., 2008; Gelman
and Shalizi, 2013). This is a test the model fails. Figure 5.2 shows the actual
histogram of waiting, plus the histogram produced by simulating — reality is
clearly bimodal, but the model is unimodal. Similarly, Figure 5.3 shows the real
data, the OLS line, and a simulation from the OLS model. It’s visually clear that
the deviations of the real data from the regression line are both bigger and more
patterned than those we get from simulating the model, so something is wrong
with the latter.

By itself, just seeing that data doesn’t look like a realization of the model isn’t
super informative, since we’d really like to know how the model’s broken, and
so how to fix it. Further simulations, comparing more detailed analyses of the
data to analyses of the simulation output, are often very helpful here. Looking
at Figure 5.3, we might suspect that one problem is heteroskedasticity — the
variance isn’t constant. This suspicion is entirely correct, and will be explored in
§10.3.2.

5.4 Why Simulate? 135

waiting

D
en
si
ty

40 50 60 70 80 90 100 110

0.
00

0.
01

0.
02

0.
03

0.
04

hist(geyser$waiting, freq = FALSE, xlab = "waiting", main = "", sub = "", col = "grey")
lines(hist(rgeyser()$waiting, plot = FALSE), freq = FALSE, lty = "dashed")

Figure 5.2 Actual density of the waiting time between eruptions (grey bars,
solid lines) and that produced by simulating the OLS model (dashed lines).

136 Simulation

1 2 3 4 5

50
60

70
80

90
10
0

11
0

duration

wa
iti
ng

plot(geyser$duration, geyser$waiting, xlab = "duration", ylab = "waiting")
abline(fit.ols)
points(rgeyser(), pch = 20, cex = 0.5)

Figure 5.3 As in Figure 5.1, plus one realization of simulating the OLS
model (small black dots).

5.5 Further Reading 137

5.4.3 Sensitivity Analysis

Often, the statistical inference we do on the data is predicated on certain assump-
tions about how the data is generated. We’ve talked a lot about the Gaussian-
noise assumptions that usually accompany linear regression, but there are many
others. For instance, if we have missing values for some variables and just ignore
incomplete rows, we are implicitly assuming that data are “missing at random”,
rather than in some systematic way that would carry information about what
the missing values were (see App. I). Often, these assumptions make our analysis
much neater than it otherwise would be, so it would be convenient if they were
true.

As a wise man said long ago, “The method of ‘postulating’ what we want has
many advantages; they are the same as the advantages of theft over honest toil”
(Russell, 1920, ch. VII, p. 71). In statistics, honest toil often takes the form of
sensitivity analysis, of seeing how much our conclusions would change if the
assumptions were violated, i.e., of checking how sensitive our inferences are to the
assumptions. In principle, this means setting up models where the assumptions
are more or less violated, or violated in di↵erent ways, analyzing them as though
the assumptions held, and seeing how badly wrong we go. Of course, if that
was easy to do in closed form, we often wouldn’t have needed to make those
assumptions in the first place.

On the other hand, it’s usually pretty easy to simulate a model where the
assumption is violated, run our original, assumption-laden analysis on the sim-
ulation output, and see what happens. Because it’s a simulation, we know the
complete truth about the data-generating process, and can assess how far o↵ our
inferences are. In favorable circumstances, our inferences don’t mess up too much
even when the assumptions we used to motivate the analysis are badly wrong.
Sometimes, however, we discover that even tiny violations of our initial assump-
tions lead to large errors in our inferences. Then we either need to make some
compelling case for those assumptions, or be very cautious in our inferences.

5.5 Further Reading

Simulation will be used in nearly every subsequent chapter. It is the key to the
“bootstrap” technique for quantifying uncertainty (Ch. 6), and the foundation
for a whole set of methods for dealing with complex models of dependent data
(Ch. 24).

Many texts on scientific programming discuss simulation, including Press et al.
(1992) and, using R, Jones et al. (2009). There are also many more specialized
texts on simulation in various applied areas. It must be said that many references
on simulation present it as almost completely disconnected from statistics and
data analysis, giving the impression that probability models just fall from the
sky. Guttorp (1995) is an excellent exception.

Random-variable generation is a standard topic in computational statistics, so
there are lots of perfectly decent references, e.g., Press et al. (1992) or Monahan

138 Simulation

(2001); at a higher level of technicality, Devroye (1986) is authoritative. Many of
these references also cover methods of generating uniformly distributed (pseudo-
)random numbers as a fundamental input.

On Monte Carlo: Robert and Casella (2004) is a standard authority on appli-
cations and techniques common in statistics. It has particularly good coverage of
the important technique of Markov chain Monte Carlo, which is used when it’s
easier to get many dependent samples from the desired distribution than indepen-
dent ones. Newman and Barkema (1999) is excellent if you know some physics,
especially thermodynamics.

When all (!) you need to do is draw numbers from a probability distribution
which isn’t one of the ones built in to R, it’s worth checking CRAN’s “task
view” on probability distributions, https://cran.r-project.org/web/views/
Distributions.html.

For sensitivity analyses, Miller (1998) describes how to use modern optimiza-
tion methods to actively search for settings in simulation models which break
desired behaviors or conclusions. I have not seen this idea applied to sensitivity
analyses for statistical models, but it really ought to be.

Exercises

5.1 Modify rmultinoulli from §5.2.3.2 so that the values in the output are not the integers

from 1 to k, but come from a vector of arbitrary labels.

