
4

Using Nonparametric Smoothing in
Regression

Having spent long enough running down linear regression, and thought through
evaluating predictive models, it is time to turn to constructive alternatives, which
are (also) based on smoothing.

Recall the basic kind of smoothing we are interested in: we have a response
variable Y , some input variables which we bind up into a vector X, and a col-
lection of data values, (x1, y1), (x2, y2), . . . (xn, yn). By “smoothing”, I mean that
predictions are going to be weighted averages of the observed responses in the
training data:

bµ(x) =
nX

i=1

yiw(x, xi, h) (4.1)

Most smoothing methods have a control setting, here written h, that says how
much to smooth. With k nearest neighbors, for instance, the weights are 1/k if
xi is one of the k-nearest points to x, and w = 0 otherwise, so large k means that
each prediction is an average over many training points. Similarly with kernel
regression, where the degree of smoothing is controlled by the bandwidth.

Why do we want to do this? How do we pick how much smoothing to do?

4.1 How Much Should We Smooth?

When we smooth very little (h ! 0), then we can match very small, fine-grained
or sharp aspects of the true regression function, if there are such. That is, less
smoothing leads to less bias. At the same time, less smoothing means that each of
our predictions is going to be an average over (in e↵ect) fewer observations, mak-
ing the prediction noisier. Smoothing less increases the variance of our estimate.
Since

(total error) = (noise) + (bias)2 + (variance) (4.2)

(Eq. 1.28), if we plot the di↵erent components of error as a function of h, we
typically get something that looks like Figure 4.1. Because changing the amount
of smoothing has opposite e↵ects on the bias and the variance, there is an optimal
amount of smoothing, where we can’t reduce one source of error without increas-
ing the other. We therefore want to find that optimal amount of smoothing, which
is where cross-validation comes in.

You should note, at this point, that the optimal amount of smoothing depends

90

11:21 Wednesday 24th January, 2024
Copyright c�Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

4.1 How Much Should We Smooth? 91

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Smoothing

G
en

er
al

iz
at

io
n

er
ro

r

curve(2 * x^4, from = 0, to = 1, lty = 2, xlab = "Smoothing", ylab = "Generalization error")
curve(0.12 + x - x, lty = 3, add = TRUE)
curve(1/(10 * x), lty = 4, add = TRUE)
curve(0.12 + 2 * x^4 + 1/(10 * x), add = TRUE)

Figure 4.1 Decomposition of the generalization error of smoothing: the
total error (solid) equals process noise (dotted) plus approximation error
from smoothing (=squared bias, dashed) and estimation variance
(dot-and-dash). The numerical values here are arbitrary, but the functional
forms (squared bias / h4, variance / n�1h�1) are representative of kernel
regression (Eq. 4.12).

on the real regression curve, on our smoothing method, and on how much data we
have. This is because the variance contribution generally shrinks as we get more
data.1 If we get more data, we go from Figure 4.1 to Figure 4.2. The minimum
of the over-all error curve has shifted to the left, and we should smooth less.

Strictly speaking, parameters are properties of the data-generating process
alone, so the optimal amount of smoothing is not really a parameter. If you do
think of it as a parameter, you have the problem of why the “true” value changes
as you get more data. It’s better thought of as a setting or control variable in
the smoothing method, to be adjusted as convenient.

1 Sometimes bias changes as well. Noise does not (why?).

92 Smoothing in Regression

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Smoothing

G
en

er
al

iz
at

io
n

er
ro

r

curve(2 * x^4, from = 0, to = 1, lty = 2, xlab = "Smoothing", ylab = "Generalization error")
curve(0.12 + x - x, lty = 3, add = TRUE)
curve(1/(10 * x), lty = 4, add = TRUE, col = "grey")
curve(0.12 + 2 * x^2 + 1/(10 * x), add = TRUE, col = "grey")
curve(1/(30 * x), lty = 4, add = TRUE)
curve(0.12 + 2 * x^4 + 1/(30 * x), add = TRUE)

Figure 4.2 Consequences of adding more data to the components of error:
noise (dotted) and bias (dashed) don’t change, but the new variance curve
(dotted and dashed, black) is to the left of the old (greyed), so the new
over-all error curve (solid black) is lower, and has its minimum at a smaller
amount of smoothing than the old (solid grey).

4.2 Adapting to Unknown Roughness 93

4.2 Adapting to Unknown Roughness

Figure 4.3, which graphs two functions, r and s. Both are “smooth” functions in
the mathematical sense2. We could Taylor-expand both functions to approximate
their values anywhere, just from knowing enough derivatives at one point x0.3 If
instead of knowing the derivatives at x0 we have the values of the functions at a
sequence of points x1, x2, . . . xn, we could use interpolation to fill out the rest of
the curve. Quantitatively, however, r is less smooth than s — it changes much
more rapidly, with many reversals of direction. For the same degree of accuracy
in the interpolation r needs more, and more closely spaced, training points xi

than does s.
Now suppose that we don’t get to actually get to see r and s, but rather just

r(x)+✏ and s(x)+⌘, for various x, where ✏ and ⌘ are noise. (To keep things simple
I’ll assume they’re constant-variance, IID Gaussian noises, say with � = 0.15.)
The data now look something like Figure 4.4. Can we recover the curves?

As remarked in Chapter 1, if we had many measurements at the same x, then
we could find the expectation value by averaging: the regression function µ(x) =
E [Y |X = x], so with multiple observations xi = x, the mean of the corresponding
yi would (by the law of large numbers) converge on µ(x). Generally, however, we
have at most one measurement per value of x, so simple averaging won’t work.
Even if we just confine ourselves to the xi where we have observations, the mean-
squared error would always be �2, the noise variance. However, our estimate
would be unbiased.

Smoothing methods try to use multiple measurements at points xi which are
near the point of interest x. If the regression function is smooth, as we’re assuming
it is, µ(xi) will be close to µ(x). Remember that the mean-squared error is the
sum of bias (squared) and variance. Averaging values at xi 6= x is going to
introduce bias, but averaging independent terms together also reduces variance.
If smoothing gets rid of more variance than it adds bias, we come out ahead.

Here’s a little math to see it. Let’s assume that we can do a first-order Taylor
expansion (Figure B.1), so

µ(xi) ⇡ µ(x) + (xi � x)µ0(x) (4.3)

and

yi ⇡ µ(x) + (xi � x)µ0(x) + ✏i (4.4)

Now we average: to keep the notation simple, abbreviate the weight w(xi, x, h)

2 They are “C1”: continuous, with continuous derivatives to all orders.
3 See App. B for a refresher on Taylor expansions.

94 Smoothing in Regression

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1
.0

0.
0

0.
5

1.
0

x

r(
x)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
4

0.
8

1.
2

x

s(
x)

par(mfcol = c(2, 1))
true.r <- function(x) {

sin(x) * cos(20 * x)
}
true.s <- function(x) {

log(x + 1)
}
curve(true.r(x), from = 0, to = 3, xlab = "x", ylab = expression(r(x)))
curve(true.s(x), from = 0, to = 3, xlab = "x", ylab = expression(s(x)))
par(mfcol = c(1, 1))

Figure 4.3 Two curves for the running example. Above,
r(x) = sinx cos 20x ; below, s(x) = log 1 + x (we will not use this
information about the exact functional forms).

4.2 Adapting to Unknown Roughness 95

by just wi.

bµ(x) =
nX

i=1

yiwi (4.5)

=
nX

i=1

(µ(x) + (xi � x)µ0(x) + ✏i)wi (4.6)

= µ(x) +
nX

i=1

wi✏i + µ0(x)
nX

i=1

wi(xi � x) (4.7)

bµ(x)� µ(x) =
nX

i=1

wi✏i + µ0(x)
nX

i=1

wi(xi � x) (4.8)

E
⇥
(bµ(x)� µ(x))2

⇤
= �2

nX

i=1

w2
i + E

2

4

µ0(x)
nX

i=1

wi(xi � x)

!2
3

5 (4.9)

(Remember that:
P

wi = 1; E [✏i] = 0; ✏ is uncorrelated with everything; and
V [✏i] = �2.)

The first term on the final right-hand side is an estimation variance, which will
tend to shrink as n grows. (If we just did a simple global mean, wi = 1/n for all
i, so we’d get �2/n, just like in baby stats.) The second term, an expectation,
is bias, which grows as xi gets further from x, and as the magnitudes of the
derivatives grow, i.e., this term’s growth varies with how smooth or wiggly the
regression function is. For smoothing to work, wi had better shrink as xi �x and
µ0(x) grow.4 Finally, all else being equal, wi should also shrink with n, so that
the over-all size of the sum shrinks as we get more data.

To illustrate, let’s try to estimate r(1.6) and s(1.6) from the noisy observations.
We’ll try a simple approach, just averaging all values of r(xi) + ✏i and s(xi) + ⌘i
for 1.5 < xi < 1.7 with equal weights. For r, this gives 0.54, while r(1.6) = 0.83.
For g, this gives 0.94, with s(1.6) = 0.96. (See figure 4.5.) The same window size
creates a much larger bias with the rougher, more rapidly changing r than with
the smoother, more slowly changing s. Varying the size of the averaging window
will change the amount of error, and it will change it in di↵erent ways for the
two functions.

If one does a more careful second-order Taylor expansion like that leading to
Eq. 4.9, specifically for kernel regression, one can show that the bias at x is

E [bµ(x)� µ(x)|X1 = x1, . . . Xn = xn] = h2

1

2
µ00(x) +

µ0(x)f 0(x)

f(x)

�
�2
K + o(h2)

(4.10)
where f is the density of x, and �2

K =
R
u2K(u)du, the variance of the probability

density corresponding to the kernel5. The µ00 term just comes from the second-

4 The higher derivatives of µ also matter, since we should really keep more than just the first term in

the Taylor expansion. The details get messy, but Eq. 4.12 below gives the upshot for kernel

smoothing.
5 If you are not familiar with the “order” symbols O and o, see Appendix A.

96 Smoothing in Regression

order part of the Taylor expansion. To see where the µ0f 0 term comes from,
imagine first that x is a mode of the distribution, so f 0(x) = 0. As h shrinks, only
training points where Xi is very close to x will have any weight in bµ(x), and their
distribution will be roughly symmetric around x (at least once h is su�ciently
small). So, at mode, E [w(Xi, x, h)(Xi � x)bµ(x)] ⇡ 0. Away from a mode, there
will tend to be more training points on one side or the other of x, depending
on the sign of f 0(x), and this induces a bias. The tricky part of the analysis is
concluding that the bias has exactly the form given above.6

One can also work out the variance of the kernel regression estimate,

V [bµ(x)|X1 = x1, . . . Xn = xn] =
�2(x)R(K)

nhf(x)
+ o((nh)�1) (4.11)

where R(K) ⌘
R
K2(u)du. Roughly speaking, the width of the region where the

kernel puts non-trivial weight is about h, so there will be about nhf(x) training
points available to estimate bµ(x). Each of these has a yi value, equal to µ(x) plus
noise of variance �2(x). The final factor of R(K) accounts for the average weight.

Putting the bias together with the variance, we get an expression for the mean
squared error of the kernel regression at x:

MSE(x) = �2(x)+h4

1

2
µ00(x) +

µ0(x)f 0(x)

f(x)

�2
(�2

K)
2+

�2(x)R(K)

nhf(x)
+o(h4)+o((nh)�1)

(4.12)
Eq. 4.12 tells us that, in principle, there is a single optimal choice of bandwidth
h, an optimal degree of smoothing. We could find it by taking Eq. 4.12, di↵eren-
tiating with respect to the bandwidth, and setting everything to zero (neglecting
the o terms):

0 = 4h3

1

2
µ00(x) +

µ0(x)f 0(x)

f(x)

�2
(�2

K)
2 � �2(x)R(K)

nh2f(x)
(4.13)

h =

0

B@n
4f(x)(�2

K)
2
h
1
2
µ00(x) + µ0(x)f 0(x)

f(x)

i2

�2(x)R(K)

1

CA

�1/5

(4.14)

Of course, this expression for the optimal h involves the unknown derivatives µ0(x)
and µ00(x), plus the unknown density f(x) and its unknown derivative f 0(x). But
if we knew the derivative of the regression function, we would basically know the
function itself (just integrate), so we seem to be in a vicious circle, where we need
to know the function before we can learn it.7

One way of expressing this is to talk about how well a smoothing procedure

6 Exercise 4.1 sketches the demonstration for the special case of the uniform (“boxcar”) kernel.
7 You may be wondering why I keep talking about the optimal bandwidth, when Eq. 4.14 makes it

seem that the bandwidth should vary with x. One can go through pretty much the same sort of

analysis in terms of the expected values of the derivatives, and the qualitative conclusions will be the

same, but the notational overhead is even worse. Alternatively, there are techniques for

variable-bandwidth smoothing.

4.2 Adapting to Unknown Roughness 97

would work, if an Oracle were to tell us the derivatives, or (to cut to the chase)
the optimal bandwidth hopt. Since most of us do not have access to such oracles,

we need to estimate hopt. Once we have this estimate, bh, then we get our weights
and our predictions, and so a certain mean-squared error. Basically, our MSE will
be the Oracle’s MSE, plus an extra term which depends on how far bh is to hopt,
and how sensitive the smoother is to the choice of bandwidth.

What would be really nice would be an adaptive procedure, one where our
actual MSE, using bh, approaches the Oracle’s MSE, which it gets from hopt.
This would mean that, in e↵ect, we are figuring out how rough the underlying
regression function is, and so how much smoothing to do, rather than having to
guess or be told. An adaptive procedure, if we can find one, is a partial8 substitute
for prior knowledge.

4.2.1 Bandwidth Selection by Cross-Validation

The most straight-forward way to pick a bandwidth, and one which generally
manages to be adaptive, is in fact cross-validation; k-fold CV is usually somewhat
better than leave-one-out, but the latter often works acceptably too. The usual
procedure is to come up with an initial grid of candidate bandwidths, and then
use cross-validation to estimate how well each one of them would generalize. The
one with the lowest error under cross-validation is then used to fit the regression
curve to the whole data9.

Code Example 4 shows how it would work in R, with a one predictor variable,
borrowing the npreg function from the np library (Hayfield and Racine, 2008).10

The return value has three parts. The first is the actual best bandwidth. The
second is a vector which gives the cross-validated mean-squared errors of all the
di↵erent bandwidths in the vector bandwidths. The third component is an array
which gives the MSE for each bandwidth on each fold. It can be useful to know
things like whether the di↵erence between the CV score of the best bandwidth
and the runner-up is bigger than their fold-to-fold variability.

Figure 4.7 plots the CV estimate of the (root) mean-squared error versus band-
width for our two curves. Figure 4.8 shows the data, the actual regression func-
tions and the estimated curves with the CV-selected bandwidths. This illustrates
why picking the bandwidth by cross-validation works: the curve of CV error
against bandwidth is actually a pretty good approximation to the true curve
of generalization error (which would look like Figure 4.1), so optimizing the CV
error is close to optimizing the generalization error.

Notice, by the way, in Figure 4.7, that the rougher curve is more sensitive
to the choice of bandwidth, and that the smoother curve always has a lower

8 Only partial, because we’d always do better if the Oracle would just tell us hopt.
9 Since the optimal bandwidth is / n�1/5, and the training sets in cross-validation are smaller than

the whole data set, one might adjust the bandwidth proportionally. However, if n is small enough

that this makes a big di↵erence, the sheer noise in bandwidth estimation usually overwhelms this.
10 The package has methods for automatically selecting bandwidth by cross-validation — see §4.6

below.

98 Smoothing in Regression

cv_bws_npreg <- function(x, y, bandwidths = (1:50)/50, nfolds = 10) {
require(np)
n <- length(x)
stopifnot(n > 1, length(y) == n)
stopifnot(length(bandwidths) > 1)
stopifnot(nfolds > 0, nfolds == trunc(nfolds))

fold_MSEs <- matrix(0, nrow = nfolds, ncol = length(bandwidths))
colnames(fold_MSEs) = bandwidths

case.folds <- sample(rep(1:nfolds, length.out = n))
for (fold in 1:nfolds) {

train.rows = which(case.folds != fold)
x.train = x[train.rows]
y.train = y[train.rows]
x.test = x[-train.rows]
y.test = y[-train.rows]
for (bw in bandwidths) {

fit <- npreg(txdat = x.train, tydat = y.train, exdat = x.test, eydat = y.test,
bws = bw)

fold_MSEs[fold, paste(bw)] <- fit$MSE
}

}
CV_MSEs = colMeans(fold_MSEs)
best.bw = bandwidths[which.min(CV_MSEs)]
return(list(best.bw = best.bw, CV_MSEs = CV_MSEs, fold_MSEs = fold_MSEs))

}

Code Example 4: Cross-validation for univariate kernel regression. The colnames trick: com-
ponent names have to be character strings; other data types will be coerced into characters when
we assign them to be names. Later, when we want to refer to a bandwidth column by its name,
we wrap the name in another coercing function, such as paste. — The is just demo of how
cross-validation for bandwidth selection works in principle; don’t use it blindly on data, or in
assignments. (That goes double for the vector of default bandwidths.)

mean-squared error. Also notice that, at the minimum, one of the cross-validation
estimates of generalization error is smaller than the true system noise level; this
shows that cross-validation doesn’t completely correct for optimism11.

We still need to come up with an initial set of candidate bandwidths. For
reasons which will drop out of the math in Chapter 14, it’s often reasonable
to start around 1.06sX/n1/5, where sX is the sample standard deviation of X.
However, it is hard to be very precise about this, and good results often require
some honest trial and error.

4.2.2 Convergence of Kernel Smoothing and Bandwidth Scaling

Go back to Eq. 4.12 for the mean squared error of kernel regression. As we said,
it involves some unknown constants, but we can bury them inside big-O order

11 Tibshirani and Tibshirani (2009) gives a fairly straightforward way to adjust the estimate of the

generalization error for the selected model or bandwidth, but that doesn’t influence the choice of the

best bandwidth.

4.2 Adapting to Unknown Roughness 99

symbols, which also absorb the little-o remainder terms:

MSE(h) = �2(x) +O(h4) +O((nh)�1) (4.15)

The �2(x) term is going to be there no matter what, so let’s look at the excess
risk over and above the intrinsic noise:

MSE(h)� �2(x) = O(h4) +O((nh)�1) (4.16)

That is, the (squared) bias from the kernel’s only approximately getting the curve
is proportional to the fourth power of the bandwidth, but the variance is inversely
proportional to the product of sample size and bandwidth. If we kept h constant
and just let n ! 1, we’d get rid of the variance, but we’d be left with the bias.
To get the MSE to go to zero, we need to let the bandwidth h change with n —
call it hn. Specifically, suppose hn ! 0 as n ! 1, but nhn ! 1. Then, by Eq.
4.16, the risk (generalization error) of kernel smoothing is approaching that of
the ideal predictor.

What is the best bandwidth? We saw in Eq. 4.14 that it is (up to constants)

hopt = O(n�1/5) (4.17)

If we put this bandwidth into Eq. 4.16, we get

MSE(h)��2(x) = O

✓⇣
n�1/5

⌘4◆
+O

✓
n�1

⇣
n�1/5

⌘�1
◆
= O

⇣
n�4/5

⌘
+O

⇣
n�4/5

⌘
= O

⇣
n�4/5

⌘

(4.18)
That is, the excess prediction error of kernel smoothing over and above the system
noise goes to zero as 1/n0.8. Notice, by the way, that the contributions of bias
and variance to the generalization error are both of the same order, n�0.8.

Is this fast or slow? We can compare it to what would happen with a parametric
model, say with parameter ✓. (For linear regression, ✓ would be the vector of
slopes and the intercept.) The optimal value of the parameter, ✓0, minimizes the
mean-squared error. At ✓0, the parametric model has MSE

MSE(✓0) = �2(x) + b(x, ✓0) (4.19)

where b is the bias of the parametric model; this is zero when the parametric
model is true12. Since ✓0 is unknown and must be estimated, one typically has
b✓ � ✓0 = O(1/

p
n). Because the error is minimized at ✓0, the first derivatives

of MSE at ✓0 are 0. Doing a second-order Taylor expansion of the parametric
model contributes an error O((b✓ � ✓0)2), so altogether

MSE(b✓)� �2(x) = b(x, ✓0) +O(1/n) (4.20)

This means parametric models converge more quickly (n�1 goes to zero faster
than n�0.8), but they typically converge to the wrong answer (b2 > 0). Kernel
smoothing converges more slowly, but always converges to the right answer13.

12 When the model is wrong, the optimal parameter value ✓0 is often called the pseudo-truth.
13 It is natural to wonder if one couldn’t do better than kernel smoothing’s O(n�4/5) while still having

no asymptotic bias. Resolving this is very di�cult, but the answer turns out to be “no” in the

100 Smoothing in Regression

This doesn’t change much if we use cross-validation. Writing dhCV for the band-
width picked by cross-validation, it turns out (Simono↵, 1996, ch. 5) that

dhCV � hopt

hopt
� 1 = O(n�1/10) (4.21)

Given this, one concludes (Exercise 4.2) that the MSE of using dhCV is also
O(n�4/5).

4.2.3 Summary on Kernel Smoothing in 1D

Suppose that X and Y are both one-dimensional, and the true regression func-
tion µ(x) = E [Y |X = x] is continuous and has first and second derivatives14.
Suppose that the noise around the true regression function is uncorrelated be-
tween di↵erent observations. Then the bias of kernel smoothing, when the kernel
has bandwidth h, is O(h2), and the variance, after n samples, is O((1/nh)�1).
The optimal bandwidth is O(n�1/5), and the excess mean squared error of using
this bandwidth is O(n�4/5). If the bandwidth is selected by cross-validation, the
excess risk is still O(n�4/5).

following sense (Wasserman, 2006). Any curve-fitting method which can learn arbitrary smooth

regression functions will have some curves where it cannot converge any faster than O(n�4/5). (In

the jargon, that is the minimax rate.) Methods which converge faster than this for some kinds of

curves have to converge more slowly for others. So this is the best rate we can hope for on truly

unknown curves.
14 Or can be approximated arbitrarily closely by such functions.

4.2 Adapting to Unknown Roughness 101

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1
.0

0.
0

1.
0

x

r(
x)
+
ε

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

s(
x)
+
η

x = runif(300, 0, 3)
yr = true.r(x) + rnorm(length(x), 0, 0.15)
ys = true.s(x) + rnorm(length(x), 0, 0.15)
par(mfcol = c(2, 1))
plot(x, yr, xlab = "x", ylab = expression(r(x) + epsilon))
curve(true.r(x), col = "grey", add = TRUE)
plot(x, ys, xlab = "x", ylab = expression(s(x) + eta))
curve(true.s(x), col = "grey", add = TRUE)

Figure 4.4 The curves of Fig. 4.3 (in grey), plus IID Gaussian noise with
mean 0 and standard deviation 0.15. The two curves are sampled at the
same x values, but with di↵erent noise realizations.

102 Smoothing in Regression

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1
.0

0.
0

1.
0

x

r(
x)
+
ε

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

s(
x)
+
η

par(mfcol = c(2, 1))
x.focus <- 1.6
x.lo <- x.focus - 0.1
x.hi <- x.focus + 0.1
colors = ifelse((x < x.hi) & (x > x.lo), "black", "grey")
plot(x, yr, xlab = "x", ylab = expression(r(x) + epsilon), col = colors)
curve(true.r(x), col = "grey", add = TRUE)
points(x.focus, mean(yr[(x < x.hi) & (x > x.lo)]), pch = 18, cex = 2)
plot(x, ys, xlab = "x", ylab = expression(s(x) + eta), col = colors)
curve(true.s(x), col = "grey", add = TRUE)
points(x.focus, mean(ys[(x < x.hi) & (x > x.lo)]), pch = 18, cex = 2)
par(mfcol = c(1, 1))

Figure 4.5 Relationship between smoothing and function roughness. In
both panels we estimate the value of the regression function at x = 1.6 by
averaging observations where 1.5 < xi < 1.7 (black points, others are
“ghosted” in grey). The location of the average in shown by the large black
diamond. This works poorly for the rough function r in the upper panel (the
bias is large), but much better for the smoother function in the lower panel
(the bias is small).

4.2 Adapting to Unknown Roughness 103

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Radius of averaging window

Ab
so

lu
te

 v
al

ue
 o

f e
rro

r

Figure 4.6 Error of estimating r(1.6) (solid line) and s(1.6) (dashed) from
averaging observed values at 1.6� h < x < 1.6 + h, for di↵erent radii h. The
grey is �, the standard deviation of the noise — how can the estimation
error be smaller than that?

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Bandwidth

R
oo

t C
V

M
SE

rbws <- cv_bws_npreg(x, yr, bandwidths = (1:100)/200)
sbws <- cv_bws_npreg(x, ys, bandwidths = (1:100)/200)
plot(1:100/200, sqrt(rbws$CV_MSEs), xlab = "Bandwidth", ylab = "Root CV MSE", type = "l",

ylim = c(0, 0.6), log = "x")
lines(1:100/200, sqrt(sbws$CV_MSEs), lty = "dashed")
abline(h = 0.15, col = "grey")

Figure 4.7 Cross-validated estimate of the (root) mean-squard error as a
function of the bandwidth (solid curve, r data; dashed, s data; grey line,
true noise �). Notice that the rougher curve is more sensitive to the choice of
bandwidth, and that the smoother curve is more predictable at every choice
of bandwidth. CV selects bandwidths of 0.015 for r and 0.075 for s.

104 Smoothing in Regression

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1
.0

0.
0

1.
0

x

r(
x)
+
ε

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

s(
x)
+
η

x.ord = order(x)
par(mfcol = c(2, 1))
plot(x, yr, xlab = "x", ylab = expression(r(x) + epsilon))
rhat <- npreg(bws = rbws$best.bw, txdat = x, tydat = yr)
lines(x[x.ord], fitted(rhat)[x.ord], lwd = 4)
curve(true.r(x), col = "grey", add = TRUE, lwd = 2)
plot(x, ys, xlab = "x", ylab = expression(s(x) + eta))
shat <- npreg(bws = sbws$best.bw, txdat = x, tydat = ys)
lines(x[x.ord], fitted(shat)[x.ord], lwd = 4)
curve(true.s(x), col = "grey", add = TRUE, lwd = 2)
par(mfcol = c(1, 1))

Figure 4.8 Data from the running examples (circles), true regression
functions (grey) and kernel estimates of regression functions with
CV-selected bandwidths (black). R notes: The x values aren’t sorted, so we
need to put them in order before drawing lines connecting the fitted values; then
we need to put the fitted values in the same order. Alternately, we could have used
predict on the sorted values, as in §4.3.

4.3 Kernel Regression with Multiple Inputs 105

4.3 Kernel Regression with Multiple Inputs

For the most part, when I’ve been writing out kernel regression I have been
treating the input variable x as a scalar. There’s no reason to insist on this,
however; it could equally well be a vector. If we want to enforce that in the
notation, say by writing ~x = (x1, x2, . . . xd), then the kernel regression of y on ~x
would just be

bµ(~x) =
nX

i=1

yi
K(~x� ~xi)Pn
j=1 K(~x� ~xj)

(4.22)

In fact, if we want to predict a vector, we’d just substitute ~yi for yi above.
To make this work, we need kernel functions for vectors. For scalars, I said

that any probability density function would work so long as it had mean zero,
and a finite, strictly positive (not 0 or 1) variance. The same conditions carry
over: any distribution over vectors can be used as a multivariate kernel, provided
it has mean zero, and the variance matrix is finite and “positive definite”15. In
practice, the overwhelmingly most common and practical choice is to use product
kernels16.

A product kernel simply uses a di↵erent kernel for each component, and then
multiplies them together:

K(~x� ~xi) = K1(x
1 � x1

i)K2(x
2 � x2

i) . . .Kd(x
d � xd

i) (4.23)

Now we just need to pick a bandwidth for each kernel, which in general should
not be equal — say ~h = (h1, h2, . . . hd). Instead of having a one-dimensional error
curve, as in Figure 4.1 or 4.2, we will have a d-dimensional error surface, but we
can still use cross-validation to find the vector of bandwidths that generalizes best.
We generally can’t, unfortunately, break the problem up into somehow picking the
best bandwidth for each variable without considering the others. This makes it
slower to select good bandwidths in multivariate problems, but still often feasible.

(We can actually turn the need to select bandwidths together to our advantage.
If one or more of the variables are irrelevant to our prediction given the others,
cross-validation will tend to give them the maximum possible bandwidth, and
smooth away their influence. In Chapter 14, we’ll look at formal tests based on
this idea.)

Kernel regression will recover almost any regression function. This is true even
when the true regression function involves lots of interactions among the input
variables, perhaps in complicated forms that would be very hard to express in
linear regression. For instance, Figure 4.9 shows a contour plot of a reasonably
complicated regression surface, at least if one were to write it as polynomials in
x1 and x2, which would be the usual approach. Figure 4.11 shows the estimate
we get with a product of Gaussian kernels and only 1000 noisy data points. It’s

15 Remember that for a matrix v to be “positive definite”, it must be the case that for any vector

~a 6= ~0, ~a · v~a > 0. Covariance matrices are automatically non-negative, so we’re just ruling out the

case of some weird direction along which the distribution has zero variance.
16 People do sometimes use multivariate Gaussians with non-trivial correlation across the variables,

but this is very rare in my experience.

106 Smoothing in Regression

−3
−2

−1
0

1
2

3

−3

−2
−1

0
1

2
3

0.2

0.4

0.6

0.8

x1
x2

y

x1.points <- seq(-3, 3, length.out = 100)
x2.points <- x1.points
x12grid <- expand.grid(x1 = x1.points, x2 = x2.points)
y <- matrix(0, nrow = 100, ncol = 100)
y <- outer(x1.points, x2.points, f)
library(lattice)
wireframe(y ~ x12grid$x1 * x12grid$x2, scales = list(arrows = FALSE), xlab = expression(x^1),

ylab = expression(x^2), zlab = "y")

Figure 4.9 An example of a regression surface that would be very hard to
learn by piling together interaction terms in a linear regression framework.
(Can you guess what the mystery function f is?) — wireframe is from the
graphics library lattice.

not perfect, of course (in particular the estimated contours aren’t as perfectly
smooth and round as the true ones), but the important thing is that we got this
without having to know, and describe in Cartesian coordinates, the type of shape
we were looking for. Kernel smoothing discovered the right general form.

There are limits to these abilities of kernel smoothers; the biggest one is that
they require more and more data as the number of predictor variables increases.
We will see later (Chapter 8) exactly how much data is required, generalizing the
kind of analysis done §4.2.2, and some of the compromises this can force us into.

4.3 Kernel Regression with Multiple Inputs 107

−2
−1

0
1

2

−2
−1

0
1

2

0.0

0.2

0.4

0.6

0.8

1.0

x1
x2

y

x1.noise <- runif(1000, min = -3, max = 3)
x2.noise <- runif(1000, min = -3, max = 3)
y.noise <- f(x1.noise, x2.noise) + rnorm(1000, 0, 0.05)
noise <- data.frame(y = y.noise, x1 = x1.noise, x2 = x2.noise)
cloud(y ~ x1 * x2, data = noise, col = "black", scales = list(arrows = FALSE), xlab = expression(x^1),

ylab = expression(x^2), zlab = "y")

Figure 4.10 1000 points sampled from the surface in Figure 4.9, plus
independent Gaussian noise (s.d. = 0.05).

108 Smoothing in Regression

−3
−2

−1
0

1
2

3

−3

−2
−1

0
1

2
3

0.0

0.2

0.4

0.6

0.8

x1
x2

y

noise.np <- npreg(y ~ x1 + x2, data = noise)
y.out <- matrix(0, 100, 100)
y.out <- predict(noise.np, newdata = x12grid)
wireframe(y.out ~ x12grid$x1 * x12grid$x2, scales = list(arrows = FALSE), xlab = expression(x^1),

ylab = expression(x^2), zlab = "y")

Figure 4.11 Gaussian kernel regression of the points in Figure 4.10. Notice
that the estimated function will make predictions at arbitrary points, not
just the places where there was training data.

4.4 Interpreting Smoothers: Plots 109

4.4 Interpreting Smoothers: Plots

In a linear regression without interactions, it is fairly easy to interpret the coe�-
cients. The expected response changes by �i for a one-unit change in the ith input
variable. The coe�cients are also the derivatives of the expected response with
respect to the inputs. And it is easy to draw pictures of how the output changes
as the inputs are varied, though the pictures are somewhat boring (straight lines
or planes).

As soon as we introduce interactions, all this becomes harder, even for para-
metric regression. If there is an interaction between two components of the input,
say x1 and x2, then we can’t talk about the change in the expected response for
a one-unit change in x1 without saying what x2 is. We might average over x2

values, and in §4.5 below we’ll see next time a reasonable way of doing this, but
the flat statement “increasing x1 by one unit increases the response by �1” is just
false, no matter what number we fill in for �1. Likewise for derivatives; we’ll come
back to them next time as well.

What about pictures? With only two input variables, we can make wireframe
plots like Figure 4.11, or contour or level plots, which will show the predictions
for di↵erent combinations of the two variables. But what if we want to look at
one variable at a time, or there are more than two input variables?

A reasonable way to produce a curve for each input variable is to set all the
others to some “typical” value, like their means or medians, and to then plot the
predicted response as a function of the one remaining variable of interest (Figure
4.12). Of course, when there are interactions, changing the values of the other
inputs will change the response to the input of interest, so it’s a good idea to
produce a couple of curves, possibly super-imposed (Figure 4.12 again).

If there are three or more input variables, we can look at the interactions of any
two of them, taken together, by fixing the others and making three-dimensional
or contour plots, along the same principles.

The fact that smoothers don’t give us a simple story about how each input is
associated with the response may seem like a disadvantage compared to using
linear regression. Whether it really is a disadvantage depends on whether there
really is a simple story to be told, and/or how much big a lie you are prepared
to tell in order to keep your story simple.

110 Smoothing in Regression

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

y

new.frame <- data.frame(x1 = seq(-3, 3, length.out = 300), x2 = median(x2.noise))
plot(new.frame$x1, predict(noise.np, newdata = new.frame), type = "l", xlab = expression(x^1),

ylab = "y", ylim = c(0, 1))
new.frame$x2 <- quantile(x2.noise, 0.25)
lines(new.frame$x1, predict(noise.np, newdata = new.frame), lty = 2)
new.frame$x2 <- quantile(x2.noise, 0.75)
lines(new.frame$x1, predict(noise.np, newdata = new.frame), lty = 3)

Figure 4.12 Predicted mean response as function of the first input
coordinate x1 for the example data, evaluated with the second coordinate x2

set to the median (solid), its 25th percentile (dashed) and its 75th percentile
(dotted). Note that the changing shape of the partial response curve
indicates an interaction between the two inputs. Also, note that the model
can make predictions at arbitrary coordinates, whether or not there were
any training points there.

4.5 Average Predictive Comparisons 111

4.5 Average Predictive Comparisons

Suppose we have a linear regression model

Y = �1X1 + �2X2 + ✏ (4.24)

and we want to know how much Y changes, on average, for a one-unit increase
in X1. The answer, as you know very well, is just �1:

[�1(X1 + 1) + �2X2]� [�1X1 + �2X2] = �1 (4.25)

This is an interpretation of the regression coe�cients which you are very used to
giving. But it fails as soon as we have interactions:

Y = �1X1 + �2X2 + �3X1X2 + ✏ (4.26)

Now the e↵ect of increasing X1 by 1 is

[�1(X1+1)+�2X2+�3(X1+1)X2]� [�1X1+�2X2+�3X1X2] = �1+�3X2 (4.27)

The right answer to “how much does the response change when X1 is increased
by one unit?” depends on the value of X2; it’s certainly not just “�1”.

We also can’t give just a single answer if there are nonlinearities. Suppose that
the true regression function is this:

Y =
e�X

1 + e�X
+ ✏ (4.28)

which looks like Figure 4.13, setting � = 7 (for luck). Moving x from �4 to �3
increases the response by 7.57⇥ 10�10, but the increase in the response from x =
�1 to x = 0 is 0.499. Functions like this are very common in psychology, medicine
(dose-response curves for drugs), biology, etc., and yet we cannot sensibly talk
about the response to a one-unit increase in x. (We will come back to curves
which look like this in Chapter 11.)

More generally, let’s say we are regressing Y on a vector ~X, and want to assess
the impact of one component of the input on Y . To keep the use of subscripts and
superscripts to a minimum, we’ll write ~X = (U, ~V), where U is the coordinate
we’re really interested in. (It doesn’t have to come first, of course.) We would like
to know how much the prediction changes as we change u,

E
h
Y | ~X = (u(2),~v)

i
� E

h
Y | ~X = (u(1),~v)

i
(4.29)

and the change in the response per unit change in u,

E
h
Y | ~X = (u(2),~v)

i
� E

h
Y | ~X = (u(1),~v)

i

u(2) � u(1)
(4.30)

Both of these, but especially the latter, are called the predictive comparison.
Note that both of them, as written, depend on u(1) (the starting value for the
variable of interest), on u(2) (the ending value), and on ~v (the other variables,
held fixed during this comparison). We have just seen that in a linear model

112 Smoothing in Regression

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

curve(exp(7 * x)/(1 + exp(7 * x)), from = -5, to = 5, ylab = "y")

Figure 4.13 The function of Eq. 4.28, with � = 7.

without interactions, u(1), u(2) and ~v all go away and leave us with the regression
coe�cient on u. In nonlinear or interacting models, we can’t simplify so much.

Once we have estimated a regression model, we can choose our starting point,
ending point and context, and just plug in to Eq. 4.29 or Eq. 4.30. (Or problem
9 in problem set 11.) But suppose we do want to boil this down into a single
number for each input variable — how might we go about this?

One good answer, which comes from Gelman and Pardoe (2007), is just to av-
erage 4.30 over the data17. More specifically, we have as our average predictive
comparison for u

Pn
i=1

Pn
j=1 (bµ(uj,~vi)� bµ(ui,~vi))sign(uj � ui)Pn
i=1

Pn
j=1 (uj � ui)sign(uj � ui)

(4.31)

where i and j run over data points, bµ is our estimated regression function, and
the sign function is defined by sign(x) = +1 if x > 0, = 0 if x = 0, and = �1 if
x < 0. We use the sign function this way to make sure we are always looking at
the consequences of increasing u.

The average predictive comparison is a reasonable summary of how rapidly we
should expect the response to vary as u changes slightly. But we need to remember
that once the model is nonlinear or has interactions, it’s just not possible to boil
down the whole predictive relationship between u and y into one number. In
particular, the value of Eq. 4.31 is going to depend on the distribution of u (and
possibly of v), even when the regression function is unchanged. (See Exercise 4.3.)

17 Actually, they propose something a bit more complicated, which takes into account the uncertainty

in our estimate of the regression function, via bootstrapping (Chapter 6).

4.6 Computational Advice: npreg 113

make.demo.df <- function(n) {
demo.func <- function(x, z, w) {

20 * x^2 + ifelse(w == "A", z, 10 * exp(z)/(1 + exp(z)))
}
x <- runif(n, -1, 1)
z <- rnorm(n, 0, 10)
w <- sample(c("A", "B"), size = n, replace = TRUE)
y <- demo.func(x, z, w) + rnorm(n, 0, 0.05)
return(data.frame(x = x, y = y, z = z, w = w))

}

demo.df <- make.demo.df(100)

Code Example 5: Generating data from Eq. 4.32.

4.6 Computational Advice: npreg

The homework will call for you to do nonparametric regression with the np pack-
age — which we’ve already looked at a little. It’s a powerful bit of software, but
it can take a bit of getting used to. This section is not a substitute for reading
Hayfield and Racine (2008), but should get you started.

We’ll look at a synthetic-data example with four variables: a quantitative re-
sponse Y , two quantitative predictors X and Z, and a categorical predictor W ,
which can be either “A” or “B”. The true model is

Y = ✏+ 20X2 +

⇢
Z if W = A

10eZ/(1 + eZ) if W = B
(4.32)

with ✏ ⇠ N (0, 0.05). Code Example 5 generates some data from this model for
us.

The basic function for fitting a kernel regression in np is npreg — conceptually,
it’s the equivalent of lm. Like lm, it takes a formula argument, which specifies
the model, and a data argument, which is a data frame containing the variables
included in the formula. The basic idea is to do something like this:

demo.np1 <- npreg(y ~ x + z, data = demo.df)

The variables on the right-hand side of the formula are the predictors; we use
+ to separate them. Kernel regression will automatically include interactions be-
tween all variables, so there is no special notation for interactions. Similarly, there
is no point in either including or excluding intercepts. If we wanted to transform
either a predictor variable or the response, as in lm, we can do so. Run like this,
npreg will try to determine the best bandwidths for the predictor variables, based
on a sophisticated combination of cross-validation and optimization.

Let’s look at the output of npreg:

summary(demo.np1)
##
Regression Data: 100 training points, in 2 variable(s)
x z
Bandwidth(s): 0.06227118 4.744557
##

114 Smoothing in Regression

Kernel Regression Estimator: Local-Constant
Bandwidth Type: Fixed
Residual standard error: 2.584642
R-squared: 0.9378975
##
Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 2

The main things here are the bandwidths. We also see the root mean squared
error on the training data. Note that this is the in-sample root MSE; if we wanted
the in-sample MSE, we could do

demo.np1$MSE
[1] 6.680373

(You can check that this is the square of the residual standard error above.) If
we want the cross-validated MSE used to pick the bandwidths, that’s

demo.np1bwsfval
[1] 25.52361

The fitted and residuals functions work on these objects just like they do
in lm objects, while the coefficients and confint functions do not. (Why?)

The predict function also works like it does for lm, expecting a data frame
containing columns whose names match those in the formula used to fit the model:

predict(demo.np1, newdata = data.frame(x = -1, z = 5))
[1] 26.04758

With two predictor variables, there is a nice three-dimensional default plot
(Figure 4.14).

Kernel functions can also be defined for categorical and ordered variables.
These can be included in the formula by wrapping the variable in factor()
or ordered(), respectively:

demo.np3 <- npreg(y ~ x + z + factor(w), data = demo.df)

Again, there’s no point, or need, to indicate interactions. Including the extra
variable, not surprisingly, improves the cross-validated MSE:

demo.np3bwsfval
[1] 13.94945

With three or more predictor variables, we’d need a four-dimensional plot,
which is hard. Instead, the default is to plot what happens as we sweep one vari-
able with the others held fixed (by default, at their medians; see help(npplot)
for changing that), as in Figure 4.15. We get something parabola-ish as we sweep
X (which is right), and something near a step function as we sweep Z (which is
right when W = B), so we’re not doing badly for estimating a fairly complicated
function of three variables with only 100 samples. We could also try fixing W at
one value or another and making a perspective plot — Figure 4.16.

4.6 Computational Advice: npreg 115

x

−0.5

0.0

0.5

z

−20

−10

0
10

20

y

−20

−10

0

10

20

30

[theta= 40, phi= 10]

plot(demo.np1, theta = 40, view = "fixed")

Figure 4.14 Plot of the kernel regression with just two predictor variables.
(See help(npplot) for plotting options.

The default optimization of bandwidths is extremely aggressive. It keeps adjust-
ing the bandwidths until the changes in the cross-validated MSE are very small,
or the changes in the bandwidths themselves are very small. The “tolerances”
for what count as “very small” are controlled by arguments to npreg called tol
(for the bandwidths) and ftol (for the MSE), which default to about 10�8 and
10�7, respectively. With a lot of data, or a lot of variables, this gets extremely
slow. One can often make npreg run much faster, with no real loss of accuracy,
by adjusting these options. A decent rule of thumb is to start with tol and ftol
both at 0.01. One can use the bandwidth found by this initial coarse search to
start a more refined one, as follows:

bigdemo.df <- make.demo.df(1000)
system.time(demo.np4 <- npreg(y ~ x + z + factor(w), data = bigdemo.df, tol = 0.01,

ftol = 0.01))
user system elapsed
31.314 0.330 32.160

This tells us how much time it took R to run npreg, dividing that between
time spent exclusively on our job and on background system tasks. The result of
the run is stored in demo.np4:

demo.np4$bws
##
Regression Data (1000 observations, 3 variable(s)):
##
x z factor(w)

116 Smoothing in Regression

−1.0 −0.5 0.0 0.5 1.0

−2
0

x

 y

−20 −10 0 10 20

−2
0

z

 y

A B

−2
0

factor(w)

 y

plot(demo.np3)

Figure 4.15 Predictions of demo.np3 as each variable is swept over its
range, with the others held at their medians.

Bandwidth(s): 0.06101409 2.441987 9.649056e-08
##
Regression Type: Local-Constant
Bandwidth Selection Method: Least Squares Cross-Validation
Formula: y ~ x + z + factor(w)
Bandwidth Type: Fixed
Objective Function Value: 1.517143 (achieved on multistart 1)
##
Continuous Kernel Type: Second-Order Gaussian

4.6 Computational Advice: npreg 117

No. Continuous Explanatory Vars.: 2
##
Unordered Categorical Kernel Type: Aitchison and Aitken
No. Unordered Categorical Explanatory Vars.: 1

The bandwidths have all shrunk (as they should), and the cross-validated MSE
is also much smaller (1.5 versus 14 before). Figure 4.16 shows the estimated
regression surfaces for both values of the categorical variable.

The package also contains a function, npregbw, which takes a formula and a
data frame, and just optimizes the bandwidth. This is called automatically by
npreg, and many of the relevant options are documented in its help page. One can
also use the output of npregbw as an argument to npreg, in place of a formula.

As a final piece of computational advice, you will notice when you run these
commands yourself that the bandwidth-selection functions by default print out
lots of progress-report messages. This can be annoying, especially if you are em-
bedding the computation in a document, and so can be suppressed by setting a
global option at the start of your code:

options(np.messages = FALSE)

118 Smoothing in Regression

x

−1.0
−0.5

0.0
0.5

1.0

z

−30
−20
−10

010
2030

y

−20

0

20

40

W=A

x

−1.0
−0.5

0.0
0.5

1.0

z

−30
−20
−10

010
2030

y

0
5
10
15
20
25

W=B

x.seq <- seq(from = -1, to = 1, length.out = 50)
z.seq <- seq(from = -30, to = 30, length.out = 50)
grid.A <- expand.grid(x = x.seq, z = z.seq, w = "A")
grid.B <- expand.grid(x = x.seq, z = z.seq, w = "B")
yhat.A <- predict(demo.np4, newdata = grid.A)
yhat.B <- predict(demo.np4, newdata = grid.B)
par(mfrow = c(1, 2))
persp(x = x.seq, y = z.seq, z = matrix(yhat.A, nrow = 50), theta = 40, main = "W=A",

xlab = "x", ylab = "z", zlab = "y", ticktype = "detailed")
persp(x = x.seq, y = z.seq, z = matrix(yhat.B, nrow = 50), theta = 40, main = "W=B",

xlab = "x", ylab = "z", zlab = "y", ticktype = "detailed")

Figure 4.16 The regression surfaces learned for the demo function at the
two di↵erent values of the categorical variable. Note that holding z fixed, we
always see a parabolic shape as we move along x (as we should), while
whether we see a line or something close to a step function at constant x
depends on w, as it should.

4.7 Further Reading 119

4.7 Further Reading

Simono↵ (1996) is a good practical introduction to kernel smoothing and related
methods. Wasserman (2006) provides more theory. Li and Racine (2007) is a
detailed treatment of nonparametric methods for econometric problems, over-
whelmingly focused on kernel regression and kernel density estimation (which
we’ll get to in Chapter 14); Racine (2008) summarizes.

While kernels are a nice, natural method of non-parametric smoothing, they are
not the only one. We saw nearest-neighbors in §1.5.1, and will encounter splines
(continuous piecewise-polynomial models) in Chapter 7 and trees (piecewise-
constant functions, with cleverly chosen pieces) in Chapter 13; local linear models
(§10.5) combine kernels and linear models. There are many, many more options.

Historical Notes

Kernel regression was introduced, independently, by Nadaraya (1964) and Watson
(1964); both were inspired by kernel density estimation.

In the mid-2010s, kernel smoothing was re-invented by computer scientists
working on large language models, under the curious name of “attention”. This
turned out to be a key technical step in creating language models like GPT
(Vaswani et al., 2017). The first people to realize that “attention”, in this sense,
was a kind of kernel smoothing seem to have been Tsai et al. (2019).

Exercises

4.1 Suppose we use a uniform (“boxcar”) kernel extending over the region (�h/2, h/2). Show

that

E [bµ(0)] = E

µ(X)

����X 2
✓
�h

2
,
h

2

◆�
(4.33)

= µ(0) + µ
0(0)E

X

����X 2
✓
�h

2
,
h

2

◆�
(4.34)

+
µ
00(0)
2

E

X

2

����X 2
✓
�h

2
,
h

2

◆�
+ o(h2)

Show that E
⇥
X

��X 2
�
�h

2 ,
h
2

�⇤
= O(f 0(0)h2), and that E

⇥
X

2
��X 2

�
�h

2 ,
h
2

�⇤
= O(h2).

Conclude that the over-all bias is O(h2).

4.2 Use Eqs. 4.21, 4.17 and 4.16 to show that the excess risk of the kernel smoothing, when

the bandwidth is selected by cross-validation, is also O(n�4/5).

4.3 Generate 1000 data points where X is uniformly distributed between �4 and 4, and Y =

e
7x

/(1 + e
7x) + ✏, with ✏ Gaussian and with variance 0.01. Use non-parametric regression

to estimate bµ(x), and then use Eq. 4.31 to find the average predictive comparison. Now

re-run the simulation with X uniform on the interval [0, 0.5] and re-calculate the average

predictive comparison. What happened?

