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The Truth about Linear Regression

We need to say some more about how linear regression, and especially about how
it really works and how it can fail. Linear regression is important because

1. it’s a fairly straightforward technique which sometimes works tolerably for
prediction;

2. it’s a simple foundation for some more sophisticated techniques;
3. it’s a standard method so people use it to communicate; and
4. it’s a standard method so people have come to confuse it with prediction and

even with causal inference as such.

We need to go over (1)–(3), and provide prophylaxis against (4).

2.1 Optimal Linear Prediction: Multiple Variables

We have a numerical variable Y and a p-dimensional vector of predictor variables
or features ~X. We would like to predict Y using ~X. Chapter 1 taught us that the
mean-squared optimal predictor is is the conditional expectation,

µ(~x) = E
h
Y | ~X = ~x

i
(2.1)

Instead of using the optimal predictor µ(~x), let’s try to predict as well as
possible while using only a linear1 function of ~x, say �0 + � · ~x. This is not
an assumption about the world, but rather a decision on our part; a choice,
not a hypothesis. This decision can be good — �0 + ~x · � could be a tolerable
approximation to µ(~x) — even if the linear hypothesis is strictly wrong. Even if
no linear approximation to µ is much good mathematically, but we might still
want one for practical reasons, e.g., speed of computation.

(Perhaps the best reason to hope the choice to use a linear model isn’t crazy
is that we may hope µ is a smooth function. If it is, then we can Taylor expand2

it about our favorite point, say ~u:

µ(~x) = µ(~u) +
pX

i=1

✓
@µ

@xi

����
~u

◆
(xi � ui) +O(k~x� ~uk2) (2.2)

1 Pedants might quibble that this function is actually a�ne rather than linear. But the distinction is

specious: we can always add an extra element to ~x, which is always 1, getting the vector ~x0, and

then we have the linear function �0 · ~x0.
2 See Appendix B on Taylor approximations.
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2.1 Optimal Linear Prediction: Multiple Variables 45

or, in the more compact vector-calculus notation,

µ(~x) = µ(~u) + (~x� ~u) ·rµ(~u) +O(k~x� ~uk2) (2.3)

If we only look at points ~x which are close to ~u, then the remainder terms
O(k~x� ~uk2) are small, and a linear approximation is a good one3. Here, “close
to ~u” really means “so close that all the non-linear terms in the Taylor series are
comparatively negligible”.)

Whatever the reason for wanting to use a linear function, there are many
linear functions, and we need to pick just one of them. We may as well do that
by minimizing mean-squared error again:

MSE(�) = E
⇣

Y � �0 � ~X · �
⌘2

�
(2.4)

Going through the optimization is parallel to the one-dimensional case we worked
through in §1.4.3, with the conclusion that the optimal � is

� = v�1Cov
h
~X,Y

i
(2.5)

where v is the covariance matrix of ~X, i.e., vij = Cov [Xi, Xj], and Cov
h
~X,Y

i

is the vector of covariances between the regressors and Y , i.e. Cov
h
~X,Y

i

i
=

Cov [Xi, Y ]. We also get

�0 = E [Y ]� � · E
h
~X
i

(2.6)

just as in the one-dimensional case (Exercise 2.1). These conclusions hold without
assuming anything at all about the true regression function µ; about the distri-
bution of X, of Y , of Y | X, or of Y � µ(X) (in particular, nothing needs to be
Gaussian); or whether data points are independent or not.

Multiple regression would be a lot simpler if we could just do a simple regression
for each regressor, and add them up; but really, this is what multiple regression
does, just in a disguised form. If the input variables are uncorrelated, v is diagonal
(vij = 0 unless i = j), and so is v�1. Then doing multiple regression breaks up into
a sum of separate simple regressions across each input variable. When the input
variables are correlated and v is not diagonal, we can think of the multiplication
by v�1 as de-correlating ~X — applying a linear transformation to come up
with a new set of inputs which are uncorrelated with each other.4

3 If you are not familiar with the big-O notation like O(k~x� ~uk2), now would be a good time to read

Appendix A.
4 If ~Z is a random vector with covariance matrix I, then w~Z is a random vector with covariance

matrix w
T
w. Conversely, if we start with a random vector ~X with covariance matrix v, the latter

has a “square root” v
1/2 (i.e., v1/2

v
1/2 = v), and v

�1/2 ~X will be a random vector with covariance

matrix I. When we write our predictions as ~Xv
�1Cov

h
~X,Y

i
, we should think of this as

⇣
~Xv

�1/2
⌘⇣

v
�1/2Cov

h
~X,Y

i⌘
. We use one power of v�1/2 to transform the input features into

uncorrelated variables before taking their correlations with the response, and the other power to

decorrelate ~X. — For more on using covariance matrices to come up with new, decorrelated

variables, see Chapter 15.
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Notice: � depends on the marginal distribution of ~X (through the covariance
matrix v). If that shifts, the optimal coe�cients � will shift, unless the real
regression function is linear.

2.1.1 Collinearity

The formula � = v�1Cov
h
~X,Y

i
makes no sense if v has no inverse. This will

happen if, and only if, the predictor variables are linearly dependent on each
other — if one of the predictors is really a linear combination of the others. Then
(as we learned in linear algebra) the covariance matrix is of less than “full rank”
(i.e., “rank deficient”) and it doesn’t have an inverse. Equivalently, v has at least
one eigenvalue which is exactly zero.

So much for the algebra; what does that mean statistically? Let’s take an
easy case where one of the predictors is just a multiple of the others — say
you’ve included people’s weight in pounds (X1) and mass in kilograms (X2), so
X1 = 2.2X2. Then if we try to predict Y , we’d have

bµ( ~X) = �1X1 + �2X2 + �3X3 + . . .+ �pXp (2.7)

= 0X1 + (2.2�1 + �2)X2 +
pX

i=3

�iXi (2.8)

= (�1 + �2/2.2)X1 + 0X2 +
pX

i=3

�iXi (2.9)

= �2200X1 + (1000 + �1 + �2)X2 +
pX

i=3

�iXi (2.10)

In other words, because there’s a linear relationship between X1 and X2, we make
the coe�cient for X1 whatever we like, provided we adjust the coe�cient for X2

to compensate, and it has no e↵ect at all on our prediction. So rather than having
one optimal linear predictor, we have infinitely many of them.5

There are three ways of dealing with collinearity. One is to get a di↵erent data
set where the regressors are no longer collinear. A second is to identify one of the
collinear variables (it usually doesn’t matter which) and drop it from the data set.
This can get complicated; principal components analysis (Chapter 15) can help
here. Thirdly, since the issue is that there are infinitely many di↵erent coe�cient
vectors which all minimize the MSE, we could appeal to some extra principle,
beyond prediction accuracy, to select just one of them. We might, for instance,
prefer smaller coe�cient vectors (all else being equal), or ones where more of the
coe�cients were exactly zero. Using some quality other than the squared error
to pick out a unique solution is called “regularizing” the optimization problem,
and a lot of attention has been given to regularized regression, especially in the
“high dimensional” setting where the number of coe�cients is comparable to, or

5 Algebraically, there is a linear combination of two (or more) of the regressors which is constant. The

coe�cients of this linear combination are given by one of the zero eigenvectors of v.
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even greater than, the number of data points. See Appendix D.3.5, and exercise
7.2 in Chapter 7.

2.1.2 The Prediction and Its Error

Once we have coe�cients �, we can use them to make predictions for the expected
value of Y at arbitrary values of ~X, whether we’ve an observation there before or
not. How good are these?

If we have the optimal coe�cients, then the prediction error will be uncorrelated
with the regressors:

Cov
h
Y � ~X · �, ~X

i
= Cov

h
Y, ~X

i
� Cov

h
~X · (v�1Cov

h
~X,Y

i
), ~X

i
(2.11)

= Cov
h
Y, ~X

i
� vv�1Cov

h
Y, ~X

i
(2.12)

= 0 (2.13)

Moreover, the expected prediction error, averaged over all ~X, will be zero (Exer-
cise 2.2):

E
h
Y � ~X · �

i
= 0 (2.14)

But the conditional expectation of the error is generally not zero,

E
h
Y � ~X · � | ~X = ~x

i
6= 0 (2.15)

and the conditional variance is generally not constant,

V
h
Y � ~X · � | ~X = ~x1

i
6= V

h
Y � ~X · � | ~X = ~x2

i
(2.16)

The optimal linear predictor can be arbitrarily bad, and it can make arbitrarily
big systematic mistakes. It is generally very biased6.

2.1.3 Estimating the Optimal Linear Predictor

To actually estimate � from data, we need to make some probabilistic assumptions
about where the data comes from. A fairly weak but often su�cient assumption
is that observations ( ~Xi, Yi) are independent for di↵erent values of i, with un-
changing covariances. Then if we look at the sample covariances, they will, by
the law of large numbers, converge on the true covariances:

1

n
XTY ! Cov

h
~X,Y

i
(2.17)

1

n
XTX ! v (2.18)

where as before X is the data-frame matrix with one row for each data point and
one column for each variable, and similarly for Y.
6 You were taught in your linear models course that linear regression makes unbiased predictions.

This presumed that the linear model was true.
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So, by continuity,

b� = (XTX)
�1
XTY ! � (2.19)

and we have a consistent estimator.
On the other hand, we could start with the empirical or in-sample mean squared

error

MSE(�) ⌘ 1

n

nX

i=1

(yi � ~xi · �)2 (2.20)

and minimize it. The minimizer is the same b� we got by plugging in the sample
covariances. No probabilistic assumption is needed to minimize the in-sample
MSE, but it doesn’t let us say anything about the convergence of b�. For that,
we do need some assumptions about ~X and Y coming from distributions with
unchanging covariances.

(One can also show that the least-squares estimate is the linear predictor with
the minimax prediction risk. That is, its worst-case performance, when everything
goes wrong and the data are horrible, will be better than any other linear method.
This is some comfort, especially if you have a gloomy and pessimistic view of
data, but other methods of estimation may work better in less-than-worst-case
scenarios.)

2.1.3.1 Unbiasedness and Variance of Ordinary Least Squares Estimates

The very weak assumptions we have made still let us say a little bit more about
the properties of the ordinary least squares estimate b�. To do so, we need to think
about why b� fluctuates. For the moment, let’s fix X at a particular value x, but
allow Y to vary randomly (what’s called “fixed design” regression). That means

that � = V
h
~X | X = x

i�1

Cov
h
~X,Y | X = x

i
.

The key fact is that b� is linear in the observed responses Y. We can use this
by writing, as you’re used to from your linear regression class,

Y = ~X · � + ✏ (2.21)

Here ✏ is the noise around the optimal linear predictor; we have to remember that

while E [✏] = 0 and Cov
h
✏, ~X

i
= 0, it is not generally true that E

h
✏ | ~X = ~x

i
= 0

or that V
h
✏ | ~X = ~x

i
is constant.

Let’s assume for the moment that all the coordinates of ~X are centered. (Re-
member that centering doesn’t change variances or covariances, which are what

matter for �.) So V
h
~X | X = x

i
= n�1xTx. Similarly, Cov

h
~X,Y | X = x

i
=
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E
h
~XY | X = x

i
= n�1xTE [Y | X = x]. So

� = (n�1xTx)�1n�1xTE [Y | X = x] (2.22)

= (xTx)�1xTE [Y | X = x] (2.23)

= (xTx)�1xTE [X� + ✏ | X = x] (2.24)

= � + (xTx)�1xTE [✏ | X = x] (2.25)

0 = (xTx)�1xTE [✏ | X = x] (2.26)

Now we use the key fact that the estimate is linear in Y:

b� = (xTx)
�1
xTY (2.27)

= (xTx)
�1
xT (x� + ✏) (2.28)

= � + (xTx)
�1
xT ✏ (2.29)

This directly tells us that b� is an unbiased estimate of �:

E
h
b� | X = x

i
= � + (xTx)

�1
xTE [✏ | X = x] (2.30)

= � + 0 = � (2.31)

We can also get the variance matrix of b�:

V
h
b� | X = x

i
= V

h
� + (xTx)

�1
xT ✏ | x

i
(2.32)

= V
h
(xTx)

�1
xT ✏ | X = x

i
(2.33)

= (xTx)
�1
xTV [✏ | X = x]x(xTx)

�1
(2.34)

Let’s write V [✏ | X = x] as a single matrix ⌃(x). If the linear-prediction errors
are uncorrelated with each other, then ⌃ will be diagonal. If they’re also of equal
variance, then ⌃ = �2I, and we have

V
h
b� | X = x

i
= �2(xTx)�1 =

�2

n

✓
1

n
xTx

◆�1

(2.35)

Said in words, this means that the variance of our estimates of the linear-regression
coe�cient will (i) go down as the sample size n grows, (ii) go up as the linear
regression gets worse (�2 grows), and (iii) go down as the regressors, the compo-
nents of ~X, have more sample variance themselves, and are less correlated with
each other.

If we allow X to vary, then by the law of total variance,

V
h
b�
i
= E

h
V
h
b� | X

ii
+ V

h
E
h
b� | X

ii
=

�2

n
E
"✓

1

n
XTX

◆�1
#

(2.36)

As n ! 1, the sample variance matrix n�1XTX ! v. Since matrix inversion is

continuous, V
h
b�
i
! n�1�2v�1, and points (i)–(iii) still hold.
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2.1.4 Some Geometry

When we have p regressors, we can think of our data as points in a p+ 1 dimen-
sional space (regressors + Y ). When we use a linear model, we are choosing to
smooth or fit the data points on to a p-dimensional linear subspace, since that’s
what �0 + ~� · ~x will give us. When we use least squares to chose the coe�cients,
we are minimizing the mean-square vertical distance between the subspace and
the data points7. The linear subspace is a line when p = 1, a plane when p = 2,
etc. I’ll call this “the surface” for short.

The height of this surface, at a given value of ~x, is our model’s prediction

for E
h
Y | ~X = ~x

i
. If we’re interested in a particular height, say y0, we can set

up the equation y0 = �0 + ~� · ~x and solve for ~x. Since there’s one equation,
and p unknowns (the coordinates of ~x), there isn’t a unique solution; rather, the
solutions themselves form a (p�1)-dimensional subspace. If we set up and solved
the equation for a di↵erent value of y, say y1, w’d get a di↵erent subspace, but it’d
be parallel to the subspace we got for y0. Every possible value of ~x is in one, and
only one, of these parallel subspaces. If p = 2, the set of all ~x where �0+� ·~x = y0
is just a line, and y1 we get another line, parallel to the contour line for y0, and
every ~x is in one, and only one, contour line. Moving within a contour subspace
(= contour line, when p = 2) doesn’t change our prediction for Y , not matter
how far we move. Moving from one contour surface to another does change our
prediction for Y .

Remember, from vector algebra, that if we’re looking at a dot or inner product
between two vectors, say ~c· ~d, we can break ~d up into two parts, ~d = ~dk+ ~d?, where
~dk is parallel to ~c and ~d? is perpendicular to ~c, and then ~c · ~d = ~c · ~dk = k~ckk~dkk.
Applied to the inner product in a linear model, ~� ·~x, this tells us that only the part
of ~x which is parallel to ~� matters for the prediction. ~� gives us the direction in
the p-dimensional space of regressors which matters to the linear model. Moving
~x back and forth in this direction changes our prediction. Moving ~x in any of the
p� 1 other, orthogonal directions, no matter how far we move it, does absolutely
nothing to the linear model’s predictions.

The last paragraph repeated phrases like “matters to the linear model” quite
tiresomely, but it did so for a reason. If the relationship between Y and ~X really
is linear, then ~� really is the only direction in regressor space that matters, we
really can move arbitrarily far perpendicular to ~� without changing the expected
value of Y , etc., etc. If the real relationship is nonlinear, though, none of that is
true of reality, but it’s still true of the linear model.

7 If we want to minimize the mean-square distance between the data points and a linear subspace, we

need to use principal components analysis, as explained in Chapter 15.
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x1 <- runif(100)
x2 <- rnorm(100, 0.5, 0.1)
x3 <- runif(100, 2, 3)
y1 <- sqrt(x1) + rnorm(length(x1), 0, 0.05)
y2 <- sqrt(x2) + rnorm(length(x2), 0, 0.05)
y3 <- sqrt(x3) + rnorm(length(x3), 0, 0.05)
plot(x1, y1, xlim = c(0, 3), ylim = c(0, 3), xlab = "X", ylab = "Y", col = "darkgreen",

pch = 15)
rug(x1, side = 1, col = "darkgreen")
rug(y1, side = 2, col = "darkgreen")
points(x2, y2, pch = 16, col = "blue")
rug(x2, side = 1, col = "blue")
rug(y2, side = 2, col = "blue")
points(x3, y3, pch = 17, col = "red")
rug(x3, side = 1, col = "red")
rug(y3, side = 2, col = "red")
lm1 <- lm(y1 ~ x1)
lm2 <- lm(y2 ~ x2)
lm3 <- lm(y3 ~ x3)
abline(lm1, col = "darkgreen", lty = "dotted")
abline(lm2, col = "blue", lty = "dashed")
abline(lm3, col = "red", lty = "dotdash")
x.all <- c(x1, x2, x3)
y.all <- c(y1, y2, y3)
lm.all <- lm(y.all ~ x.all)
abline(lm.all, lty = "solid")
curve(sqrt(x), col = "grey", add = TRUE)
legend("topleft", legend = c("Unif[0,1]", "N(0.5, 0.01)", "Unif[2,3]", "Union of above",

"True regression line"), col = c("black", "blue", "red", "black", "grey"), pch = c(15,
16, 17, NA, NA), lty = c("dotted", "dashed", "dotdash", "solid", "solid"))

Code Example 1: Code used to make Figure 2.1.

2.2 Shifting Distributions, Omitted Variables, and Transformations

2.2.1 Changing Slopes

I said earlier that the best � in linear regression will depend on the distribution
of the regressors, unless the conditional mean is exactly linear. Here is an illustra-
tion. For simplicity, let’s say that p = 1, so there’s only one regressor. I generated
data from Y =

p
X + ✏, with ✏ ⇠ N (0, 0.052) (i.e. the standard deviation of the

noise was 0.05). Figure 2.1 shows the lines inferred from samples with three dif-
ferent distributions of X: X ⇠ Unif(0, 1), X ⇠ N (0.5, 0.01), and X ⇠ Unif(2, 3).
Some distributions of X lead to similar (and similarly wrong) regression lines;
doing one estimate from all three data sets gives yet another answer.
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Unif[0,1]
N(0.5, 0.01)
Unif[2,3]
Union of above
True regression line

Figure 2.1 Behavior of the conditional distribution Y | X ⇠ N (
p
X, 0.052)

with di↵erent distributions of X. The dots (in di↵erent colors and shapes)
show three di↵erent distributions of X (with sample values indicated by
colored “rug” ticks on the axes), plus the corresponding regression lines. The
solid line is the regression using all three sets of points, and the grey curve is
the true regression function. (See Code Example 1 for the code use to make
this figure.) Notice how di↵erent distributions of X give rise to di↵erent
slopes, each of which may make sense as a local approximation to the truth.
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2.2.1.1 R2: Distraction or Nuisance?

This little set-up, by the way, illustrates that R2 is not a stable property of the
distribution either. For the black points, R2 = 0.92; for the blue, R2 = 0.70; and
for the red, R2 = 0.77; and for the complete data, 0.96. Other sets of xi values
would give other values for R2. Note that while the global linear fit isn’t even a
good approximation anywhere in particular, it has the highest R2.

This kind of perversity can happen even in a completely linear set-up. Suppose
now that Y = aX + ✏, and we happen to know a exactly. The variance of Y will
be a2V [X] + V [✏]. The amount of variance our regression “explains” — really,

the variance of our predictions — will be a2V [X]. So R2 = a2V[X]
a2V[X]+V[✏] . This goes

to zero as V [X] ! 0 and it goes to 1 as V [X] ! 1. It thus has little to do with
the quality of the fit, and a lot to do with how spread out the regressor is.

Notice also how easy it is to get a very high R2 even when the true model is
not linear!

2.2.2 Omitted Variables and Shifting Distributions

That the optimal regression coe�cients can change with the distribution of the
predictor features is annoying, but one could after all notice that the distribution
has shifted, and so be cautious about relying on the old regression. More subtle is
that the regression coe�cients can depend on variables which you do not measure,
and those can shift without your noticing anything.

Mathematically, the issue is that

E
h
Y | ~X

i
= E

h
E
h
Y | Z, ~X

i
| ~X

i
(2.37)

Now, if Y is independent of Z given ~X, then the extra conditioning in the inner
expectation does nothing and changing Z doesn’t alter our predictions. But in
general there will be plenty of variables Z which we don’t measure (so they’re
not included in ~X) but which have some non-redundant information about the
response (so that Y depends on Z even conditional on ~X). If the distribution of
~X given Z changes, then the optimal regression of Y on ~X should change too.
Here’s an example. X and Z are both N (0, 1), but with a positive correlation

of 0.1. In reality, Y ⇠ N (X +Z, 0.01). Figure 2.2 shows a scatterplot of all three
variables together (n = 100).

Now I change the correlation between X and Z to �0.1. This leaves both
marginal distributions alone, and is barely detectable by eye (Figure 2.3).

Figure 2.4 shows just the X and Y values from the two data sets, in black for
the points with a positive correlation between X and Z, and in blue when the
correlation is negative. Looking by eye at the points and at the axis tick-marks,
one sees that, as promised, there is very little change in the marginal distribution
of either variable. Furthermore, the correlation between X and Y doesn’t change
much, going only from 0.7 to 0.59. On the other hand, the regression lines are
noticeably di↵erent. When Cov [X,Z] = 0.1, the slope of the regression line is 1.2
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library(lattice)
library(MASS)

x.z = mvrnorm(100, c(0, 0), matrix(c(1, 0.1, 0.1, 1), nrow = 2))
y = x.z[, 1] + x.z[, 2] + rnorm(100, 0, 0.1)
cloud(y ~ x.z[, 1] * x.z[, 2], xlab = "X", ylab = "Z", zlab = "Y", scales = list(arrows = FALSE),

col.point = "black")

Figure 2.2 Scatter-plot of response variable Y (vertical axis) and two
variables which influence it (horizontal axes): X, which is included in the
regression, and Z, which is omitted. X and Z have a correlation of +0.1.

— high values for X tend to indicate high values for Z, which also increases Y .
When Cov [X,Z] = �0.1, the slope of the regression line is 0.79, since extreme
values of X are now signs that Z is at the opposite extreme, bringing Y closer
back to its mean. But, to repeat, the di↵erence is due to changing the correlation
between X and Z, not how X and Z themselves relate to Y . If I regress Y on X
and Z, I get b� = 1, 1 in the first case and b� = 1, 0.99 in the second.

We’ll return to omitted variables when we look at causal inference in Part III.
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new.x.z = mvrnorm(100, c(0, 0), matrix(c(1, -0.1, -0.1, 1), nrow = 2))
new.y = new.x.z[, 1] + new.x.z[, 2] + rnorm(100, 0, 0.1)
cloud(new.y ~ new.x.z[, 1] * new.x.z[, 2], xlab = "X", ylab = "Z", zlab = "Y", scales = list(arrows = FALSE))

Figure 2.3 As in Figure 2.2, but shifting so that the correlation between X
and Z is now �0.1, though the marginal distributions, and the distribution
of Y given X and Z, are unchanged.

−2 −1 0 1 2

−4
−2

0
2

x

y

Figure 2.4 Joint distribution of X and Y from Figure 2.2 (black, with a
positive correlation between X and Z) and from Figure 2.3 (blue, with a
negative correlation between X and Z). Tick-marks on the axes show the
marginal distributions, which are manifestly little-changed. (See
accompanying R file for commands.)
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2.2.3 Errors in Variables

Often, the predictor variables we can actually measure, ~X, are distorted versions
of some other variables ~U we wish we could measure, but can’t:

~X = ~U + ~⌘ (2.38)

with ~⌘ being some sort of noise. Regressing Y on ~X then gives us what’s called
an errors-in-variables problem.

In one sense, the errors-in-variables problem is huge. We are often much more
interested in the connections between actual variables in the real world, than
with our imperfect, noisy measurements of them. Endless ink has been spilled, for
instance, on what determines students’ test scores. One thing commonly thrown
into the regression — a feature included in ~X — is the income of children’s
families. But this is rarely measured precisely8, so what we are really interested
in — the relationship between actual income and school performance — is not
what our regression estimates. Typically, adding noise to the input features makes
them less predictive of the response — in linear regression, it tends to push b�
closer to zero than it would be if we could regress Y on ~U .

On account of the error-in-variables problem, some people get very upset when
they see imprecisely-measured features as inputs to a regression. Some of them,
in fact, demand that the input variables be measured exactly, with no noise
whatsoever. This position, however, is crazy, and indeed there’s a sense in which
errors-in-variables isn’t a problem at all. Our earlier reasoning about how to
find the optimal linear predictor of Y from ~X remains valid whether something
like Eq. 2.38 is true or not. Similarly, the reasoning in Ch. 1 about the actual
regression function being the over-all optimal predictor, etc., is una↵ected. If we
will continue to have ~X rather than ~U available to us for prediction, then Eq. 2.38
is irrelevant for prediction. Without better data, the relationship of Y to ~U is just
one of the unanswerable questions the world is full of, as much as “what song the
sirens sang, or what name Achilles took when he hid among the women”.

Now, if you are willing to assume that ~⌘ is a very well-behaved Gaussian with
known variance, then there are solutions to the error-in-variables problem for
linear regression, i.e., ways of estimating the coe�cients you’d get from regressing
Y on ~U . I’m not going to go over them, partly because they’re in standard
textbooks, but mostly because the assumptions are hopelessly demanding.9

2.2.4 Transformation

Let’s look at a simple non-linear example, Y | X ⇠ N (logX, 1). The problem
with smoothing data like this on to a straight line is that the true regression
curve isn’t straight, E [Y | X = x] = log x. (Figure 2.5.) This suggests replacing

8 One common proxy is to ask the child what they think their family income is. (I didn’t believe that

either when I first read about it.)
9 Non-parametric error-in-variable methods are an active topic of research (Carroll et al., 2009).
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x <- runif(100)
y <- rnorm(100, mean = log(x), sd = 1)
plot(y ~ x)
curve(log(x), add = TRUE, col = "grey")
abline(lm(y ~ x))

Figure 2.5 Sample of data for Y | X ⇠ N (logX, 1). (Here X ⇠ Unif(0, 1),
and all logs are natural logs.) The true, logarithmic regression curve is
shown in grey (because it’s not really observable), and the linear regression
fit is shown in black.

the variables we have with ones where the relationship is linear, and then undoing
the transformation to get back to what we actually measure and care about.

We have two choices: we can transform the response Y , or the predictorX. Here
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transforming the response would mean regressing expY on X, and transforming
the predictor would mean regressing Y on logX. Both kinds of transformations
can be worth trying. The best reasons to use one kind rather than another are
those that come from subject-matter knowledge: if we have good reason to think
that that f(Y ) = �X + ✏, then it can make a lot of sense to transform Y . If
genuine subject-matter considerations are not available, however, my experience
is that transforming the predictors, rather than the response, is a better bet, for
several reasons.

1. Mathematically, E [f(Y )] 6= f(E [Y ]). A mean-squared optimal prediction of
f(Y ) is not necessarily close to the transformation of an optimal prediction of
Y . And Y is, presumably, what we really want to predict.

2. Imagine that Y =
p
X + logZ. There’s not going to be any particularly nice

transformation of Y that makes everything linear, though there will be trans-
formations of the features. This generalizes to more complicated models with
features built from multiple covariates.

3. Suppose that we are in luck and Y = µ(X) + ✏, with ✏ independent of X,
and Gaussian, so all the usual default calculations about statistical inference
apply. Then it will generally not be the case that f(Y ) = s(X) + ⌘, with ⌘
a Gaussian random variable independent of X. In other words, transforming
Y completely messes up the noise model. (Consider the simple case where
we take the logarithm of Y . Gaussian noise after the transformation implies
log-normal noise before the transformation. Conversely, Gaussian noise before
the transformation implies a very weird, nameless noise distribution after the
transformation.)

Figure 2.6 shows the e↵ect of these transformations. Here transforming the
predictor does, indeed, work out more nicely; but of course I chose the example
so that it does so.

To expand on that last point, imagine a model like so:

µ(~x) =
qX

j=1

cjfj(~x) (2.39)

If we know the functions fj, we can estimate the optimal values of the coe�cients
cj by least squares — this is a regression of the response on new features, which
happen to be defined in terms of the old ones. Because the parameters are out-
side the functions, that part of the estimation works just like linear regression.
Models embraced under the heading of Eq. 2.39 include linear regressions with
interactions between the regressors (set fj = xixk, for various combinations of
i and k), and polynomial regression. There is however nothing magical about
using products and powers of the regressors; we could regress Y on sinx, sin 2x,
sin 3x, etc.

To apply models like Eq. 2.39, we can either (a) fix the functions fj in advance,
based on guesses about what should be good features for this problem; (b) fix the
functions in advance by always using some “library” of mathematically convenient
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Figure 2.6 Transforming the predictor (left column) and the response
(right) in the data from Figure 2.5, shown in both the transformed
coordinates (top) and the original coordinates (middle). The bottom figure
super-imposes the two estimated curves (transformed X in black,
transformed Y in blue). The true regression curve is always in grey. (R code
deliberately omitted; reproducing this is Exercise 2.4.)

functions, like polynomials or trigonometric functions; or (c) try to find good
functions from the data. Option (c) takes us beyond the realm of linear regression
as such, into things like splines (Chapter 7) and additive models (Chapter 8).
It is also possible to search for transformations of both sides of a regression model;
see Breiman and Friedman (1985) and, for an R implementation, Spector et al.
(2013).
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2.3 Adding Probabilistic Assumptions

The usual treatment of linear regression adds many more probabilistic assump-
tions, namely that

Y | ~X ⇠ N ( ~X · �,�2) (2.40)

and that Y values are independent conditional on their ~X values. So now we
are assuming that the regression function is exactly linear; we are assuming that
at each ~X the scatter of Y around the regression function is Gaussian; we are
assuming that the variance of this scatter is constant; and we are assuming that
there is no dependence between this scatter and anything else.

None of these assumptions was needed in deriving the optimal linear predictor.
None of them is so mild that it should go without comment or without at least
some attempt at testing.

Leaving that aside just for the moment, why make those assumptions? As
you know from your earlier classes, they let us write down the likelihood of the
observed responses y1, y2, . . . yn (conditional on the covariates ~x1, . . . ~xn), and then
estimate � and �2 by maximizing this likelihood. As you also know, the maximum
likelihood estimate of � is exactly the same as the � obtained by minimizing the
residual sum of squares. This coincidence would not hold in other models, with
non-Gaussian noise.

We saw earlier that b� is consistent under comparatively weak assumptions
— that it converges to the optimal coe�cients. But then there might, possibly,
still be other estimators are also consistent, but which converge faster. If we
make the extra statistical assumptions, so that b� is also the maximum likelihood
estimate, we can lay that worry to rest. The MLE is generically (and certainly
here!) asymptotically e�cient, meaning that it converges as fast as any other
consistent estimator, at least in the long run. So we are not, so to speak, wasting
any of our data by using the MLE.

A further advantage of the MLE is that, as n ! 1, its sampling distribution is
itself a Gaussian, centered around the true parameter values. This lets us calculate
standard errors and confidence intervals quite easily. Here, with the Gaussian
assumptions, much more exact statements can be made about the distribution of
b� around �. You can find the formulas in any textbook on regression, so I won’t
get into that.

We can also use a general property of MLEs for model testing. Suppose we have
two classes of models, ⌦ and !. ⌦ is the general case, with p parameters, and !
is a special case, where some of those parameters are constrained, but q < p of
them are left free to be estimated from the data. The constrained model class !
is then nested within ⌦. Say that the MLEs with and without the constraints
are, respectively, b⇥ and b✓, so the maximum log-likelihoods are L(b⇥) and L(b✓).
Because it’s a maximum over a larger parameter space, L(b⇥) � L(b✓). On the
other hand, if the true model really is in !, we’d expect the constrained and
unconstrained estimates to be converging. It turns out that the di↵erence in log-
likelihoods has an asymptotic distribution which doesn’t depend on any of the
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model details, namely

2
h
L(b⇥)� L(b✓)

i
; �2

p�q (2.41)

That is, a �2 distribution with one degree of freedom for each extra parameter
in ⌦ (that’s why they’re called “degrees of freedom”).10

This approach can be used to test particular restrictions on the model, and so
it is sometimes used to assess whether certain variables influence the response.
This, however, gets us into the concerns of the next section.

2.3.1 Examine the Residuals

By construction, the errors of the optimal linear predictor have expectation 0
and are uncorrelated with the regressors. Also by construction, the residuals of a
fitted linear regression have sample mean 0, and are uncorrelated, in the sample,
with the regressors.

If the usual probabilistic assumptions hold, however, the errors of the optimal
linear predictor have many other properties as well.

1. The errors have a Gaussian distribution at each ~x.
2. The errors have the same Gaussian distribution at each ~x, i.e., they are in-

dependent of the regressors. In particular, they must have the same variance
(i.e., they must be homoskedastic).

3. The errors are independent of each other. In particular, they must be uncor-
related with each other.

When these properties — Gaussianity, homoskedasticity, lack of correlation —
hold, we say that the errors are white noise. They imply strongly related prop-
erties for the residuals: the residuals should be Gaussian, with variances and
covariances given by the hat matrix, or more specifically by I � x(xTx)�1xT

(§1.5.3.2). This means that the residuals will not be exactly white noise, but they
should be close to white noise. You should check this! If you find residuals which
are a long way from being white noise, you should be extremely suspicious of
your model. These tests are much more important than checking whether the
coe�cients are significantly di↵erent from zero.

Every time someone uses linear regression with the standard assumptions for
inference and does not test whether the residuals are white noise, an angel loses
its wings.

2.3.2 On Significant Coe�cients

If all the usual distributional assumptions hold, then t-tests can be used to decide
whether particular coe�cients are statistically-significantly di↵erent from zero.

10 If you assume the noise is Gaussian, the left-hand side of Eq. 2.41 can be written in terms of various

residual sums of squares. However, the equation itself remains valid under other noise distributions,

which just change the form of the likelihood function.
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Pretty much any piece of statistical software, R very much included, reports the
results of these tests automatically. It is far too common to seriously over-interpret
those results, for a variety of reasons.

Begin with exactly what hypothesis is being tested when R (or whatever) runs
those t-tests. Say, without loss of generality, that there are p predictor variables,
~X = (X1, . . . Xp), and that we are testing the coe�cient on Xp. Then the null
hypothesis is not just “�p = 0”, but “�p = 0 in a linear, Gaussian-noise model
which also includes X1, . . . Xp�1, and nothing else”. The alternative hypothesis
is not just “�p 6= 0”, but “�p 6= 0 in a linear, Gaussian-noise model which also
includes X1, . . . Xp�1, but nothing else”. The optimal linear coe�cient on Xp will
depend not just on the relationship between Xp and the response Y , but also on
which other variables are included in the model. The test checks whether adding
Xp really improves predictions more than would be expected, under all these
assumptions, if one is already using all the other variables, and only those other
variables. It does not, cannot, test whether Xp is important in any absolute sense.

Even if you are willing to say “Yes, all I really want to know about this variable
is whether adding it to the model really helps me predict in a linear approxima-
tion”, remember that the question which a t-test answers is whether adding that
variable will help at all. Of course, as you know from your regression class, and
as we’ll see in more detail in Chapter 3, expanding the model never hurts its
performance on the training data. The point of the t-test is to gauge whether
the improvement in prediction is small enough to be due to chance, or so large,
compared to what noise could produce, that one could confidently say the variable
adds some predictive ability. This has several implications which are insu�ciently
appreciated among users.

In the first place, tests on individual coe�cients can seem to contradict tests on
groups of coe�cients. Adding multiple variables to the model could significantly
improve the fit (as checked by, say, a partial F test), even if none of the coe�cients
is significant on its own. In fact, every single coe�cient in the model could be
insignificant, while the model as a whole is highly significant (i.e., better than a
flat line).

In the second place, it’s worth thinking about which variables will show up as
statistically significant. Remember that the t-statistic is b�i/se(b�i), the ratio of the

estimated coe�cient to its standard error. We saw above that V
h
b� | X = x

i
=

�2

n
(n�1xTx)

�1 ! n�1�2v�1. This means that the standard errors will shrink as
the sample size grows, so more and more variables will become significant as we
get more data — but how much data we collect is irrelevant to how the process
we’re studying actually works. Moreover, at a fixed sample size, the coe�cients
with smaller standard errors will tend to be the ones whose variables have more
variance, and whose variables are less correlated with the other predictors. High
input variance and low correlation help us estimate the coe�cient precisely, but,
again, they have nothing to do with whether the input variable actually influences
the response a lot.

To sum up, it is never the case that statistical significance is the same as
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scientific, real-world significance. The most important variables are not those with
the largest-magnitude t statistics or smallest p-values. Statistical significance is
always about what “signals” can be picked out clearly from background noise11.
In the case of linear regression coe�cients, statistical significance runs together
the size of the coe�cients, how bad the linear regression model is, the sample
size, the variance in the input variable, and the correlation of that variable with
all the others.

Of course, even the limited “does it help linear predictions enough to bother
with?” utility of the usual t-test (and F -test) calculations goes away if the stan-
dard distributional assumptions do not hold, so that the calculated p-values are
just wrong. One can sometimes get away with using bootstrapping (Chapter 6)
to get accurate p-values for standard tests under non-standard conditions.

2.4 Linear Regression Is Not the Philosopher’s Stone

The philosopher’s stone, remember, was supposed to be able to transmute base
metals (e.g., lead) into the perfect metal, gold (Eliade, 1971). Many people treat
linear regression as though it had a similar ability to transmute a correlation
matrix into a scientific theory. In particular, people often argue that:

1. because a variable has a significant regression coe�cient, it must influence the
response;

2. because a variable has an insignificant regression coe�cient, it must not influ-
ence the response;

3. if the input variables change, we can predict how much the response will change
by plugging in to the regression.

All of this is wrong, or at best right only under very particular circumstances.
We have already seen examples where influential variables have regression coef-

ficients of zero. We have also seen examples of situations where a variable with no
influence has a non-zero coe�cient (e.g., because it is correlated with an omitted
variable which does have influence). If there are no nonlinearities and if there are
no omitted influential variables and if the noise terms are always independent of
the predictor variables, are we good?

No. Remember from Equation 2.5 that the optimal regression coe�cients de-
pend on both the marginal distribution of the predictors and the joint distribution
(covariances) of the response and the predictors. There is no reason whatsoever to
suppose that if we change the system, this will leave the conditional distribution
of the response alone.

A simple example may drive the point home. Suppose we surveyed all the cars
in Pittsburgh, recording the maximum speed they reach over a week, and how
often they are waxed and polished. I don’t think anyone doubts that there will
be a positive correlation here, and in fact that there will be a positive regression

11 In retrospect, it might have been clearer to say “statistically detectable” rather than “statistically

significant”.
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coe�cient, even if we add in many other variables as predictors. Let us even
postulate that the relationship is linear (perhaps after a suitable transformation).
Would anyone believe that polishing cars will make them go faster? Manifestly
not. But this is exactly how people interpret regressions in all kinds of applied
fields — instead of saying polishing makes cars go faster, it might be saying
that receiving targeted ads makes customers buy more, or that consuming dairy
foods makes diabetes progress faster, or . . . . Those claims might be true, but the
regressions could easily come out the same way were the claims false. Hence, the
regression results provide little or no evidence for the claims.

Similar remarks apply to the idea of using regression to “control for” extra
variables. If we are interested in the relationship between one predictor, or a few
predictors, and the response, it is common to add a bunch of other variables to
the regression, to check both whether the apparent relationship might be due to
correlations with something else, and to “control for” those other variables. The
regression coe�cient is interpreted as how much the response would change, on
average, if the predictor variable were increased by one unit, “holding everything
else constant”. There is a very particular sense in which this is true: it’s a predic-
tion about the di↵erence in expected responses (conditional on the given values
for the other predictors), assuming that the form of the regression model is right,
and that observations are randomly drawn from the same population we used to
fit the regression.

In a word, what regression does is probabilistic prediction. It says what will
happen if we keep drawing from the same population, but select a sub-set of
the observations, namely those with given values of the regressors. A causal or
counter-factual prediction would say what would happen if we (or Someone)
made those variables take those values. Sometimes there’s no di↵erence between
selection and intervention, in which case regression works as a tool for causal
inference12; but in general there is. Probabilistic prediction is a worthwhile en-
deavor, but it’s important to be clear that this is what regression does. There are
techniques for doing causal prediction, which we will explore in Part III.

Every time someone thoughtlessly uses regression for causal inference, an angel
not only loses its wings, but is cast out of Heaven and falls in extremest agony
into the everlasting fire.

12 In particular, if our model was estimated from data where Someone assigned values of the predictor

variables in a way which breaks possible dependencies with omitted variables and noise — either by

randomization or by experimental control — then regression can, in fact, work for causal inference.
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2.5 Further Reading

If you would like to read a lot more — about 400 pages more — about linear
regression from this perspective, see The Truth About Linear Regression, at http:
//www.stat.cmu.edu/~cshalizi/TALR/. That manuscript began as class notes
for the class before this one, and has some overlap.

There are many excellent textbooks on linear regression. Among them, I would
mention Weisberg (1985) for general statistical good sense, along with Faraway
(2004) for R practicalities, and Hastie et al. (2009) for emphasizing connections
to more advanced methods. Berk (2004) omits the details those books cover, but
is superb on the big picture, and especially on what must be assumed in order
to do certain things with linear regression and what cannot be done under any
assumption.

For some of the story of how the usual probabilistic assumptions came to have
that status, see, e.g., Lehmann (2008). On the severe issues which arise for the
usual inferential formulas when the model is incorrect, see Buja et al. (2014).

Linear regression is a special case of both additive models (Chapter 8), and of
locally linear models (§10.5). In most practical situations, additive models are a
better idea than linear ones.

Historical notes

Because linear regression is such a big part of statistical practice, its history has
been extensively treated in general histories of statistics, such as Stigler (1986)
and Porter (1986). Farebrother (1999) is especially clear on transition from the
first appearance of the method of least squares, where it was used to find param-
eters when there were more equations than unknowns13, to more general linear
modeling. I would particularly recommend Klein (1997) for a careful account of
how regression, on its face a method for doing comparisons at one time across
a population, came to be used to study causality and dynamics. The paper by
Lehmann (2008) mentioned earlier is also informative.

13 The classic cases where astronomy and “geodesy”, the measurement of the exact shape of the Earth

(important for physics and for navigation). Take astronomy: if you have a model of the orbit of a

planet, and plug in values for the parameters, you get a prediction for the the (apparent) position of

the planet in the sky every night. Going the other direction, every observation gives you an equation

with the unknown parameters on one side, and known, measured values on the other side. Even

with a very complicated model with dozens of adjustable parameters, a few years worth of nightly

observations gives you more equations than unknowns. With more equations than unknowns, there’s

usually no solution that fits all the data exactly. The literally-ancient approach to this embarrassing

problem, going back to the ancient Greeks and Babylonians, was to try to select the best, most

reliable observations, discarding the bad ones until you had just as many observations as unknowns,

and then solving for the parameters. The crucial innovation in the 1700s was to realize that least

squares gave us a way of trying to use all the observations, giving parameter values that generally fit

well but not perfectly, because even the best observations are imperfect. In this context, the

emphasis on linear equations made sense, because of the form of the models the astronomers and

geodesists were using.
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Exercises

2.1 1. Write the expected squared error of a linear predictor with slopes ~b and intercept b0

as a function of those coe�cients.

2. Find the derivatives of the expected squared error with respect to all the coe�cients.

3. Show that when we set all the derivatives to zero, the solutions are Eq. 2.5 and 2.6.

2.2 Show that the expected error of the optimal linear predictor, E
h
Y � ~X · �

i
, is zero.

2.3 Convince yourself that if the real regression function is linear, � does not depend on the

marginal distribution of X. You may want to start with the case of one predictor variable.

2.4 Run the code from Figure 2.5. Then replicate the plots in Figure 2.6.

2.5 Which kind of transformation is superior for the model where Y | X ⇠ N (
p
X, 1)?


