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Regression: Predicting and Relating
Quantitative Features

1.1 Statistics, Data Analysis, Regression

Statistics is the branch of mathematical engineering which designs and analyses
methods for drawing reliable inferences from imperfect data.

The subject of most sciences is some aspect of the world around us, or within
us. Psychology studies minds; geology studies the Earth’s composition and form;
economics studies production, distribution and exchange; mycology studies mush-
rooms. Statistics does not study the world, but some of the ways we try to under-
stand the world — some of the intellectual tools of the other sciences. Its utility
comes indirectly, through helping those other sciences.

This utility is very great, because all the sciences have to deal with imperfect
data. Data may be imperfect because we can only observe and record a small
fraction of what is relevant; or because we can only observe indirect signs of what
is truly relevant; or because, no matter how carefully we try, our data always
contain an element of noise. Over the last two centuries, statistics has come
to handle all such imperfections by modeling them as random processes, and
probability has become so central to statistics that we introduce random events
deliberately (as in sample surveys).1

Statistics, then, uses probability to model inference from data. We try to mathe-
matically understand the properties of di↵erent procedures for drawing inferences:
Under what conditions are they reliable? What sorts of errors do they make, and
how often? What can they tell us when they work? What are signs that some-
thing has gone wrong? Like other branches of engineering, statistics aims not
just at understanding but also at improvement: we want to analyze data better:
more reliably, with fewer and smaller errors, under broader conditions, faster,
and with less mental e↵ort. Sometimes some of these goals conflict — a fast,
simple method might be very error-prone, or only reliable under a narrow range
of circumstances.

One of the things that people most often want to know about the world is how
di↵erent variables are related to each other, and one of the central tools statistics
has for learning about relationships is regression.2 In your linear regression class,

1 Two excellent, but very di↵erent, histories of how statistics came to this understanding are Hacking

(1990) and Porter (1986).
2 The origin of the name is instructive (Stigler, 1986). It comes from 19th century investigations into

the relationship between the attributes of parents and their children. People who are taller (heavier,

faster, . . . ) than average tend to have children who are also taller than average, but not quite as tall.
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20 Regression Basics

you learned about how it could be used in data analysis, and learned about its
properties. In this book, we will build on that foundation, extending beyond
basic linear regression in many directions, to answer many questions about how
variables are related to each other.

This is intimately related to prediction. Being able to make predictions isn’t the
only reason we want to understand relations between variables — we also want to
answer “what if?” questions — but prediction tests our knowledge of relations.
(If we misunderstand, we might still be able to predict, but it’s hard to see how
we could understand and not be able to predict.) So before we go beyond linear
regression, we will first look at prediction, and how to predict one variable from
nothing at all. Then we will look at predictive relationships between variables,
and see how linear regression is just one member of a big family of smoothing
methods, all of which are available to us.

1.2 Guessing the Value of a Random Variable

We have a quantitative, numerical variable, which we’ll imaginatively call Y .
We’ll suppose that it’s a random variable, and try to predict it by guessing a
single value for it. (Other kinds of predictions are possible — we might guess
whether Y will fall within certain limits, or the probability that it does so, or
even the whole probability distribution of Y . But some lessons we’ll learn here
will apply to these other kinds of predictions as well.) What is the best value to
guess? More formally, what is the optimal point forecast for Y ?

To answer this question, we need to pick a function to be optimized, which
should measure how good our guesses are — or equivalently how bad they are,
i.e., how big an error we’re making. A reasonable, traditional starting point is
the mean squared error:

MSE(m) ⌘ E
h
(Y �m)2

i
(1.1)

So we’d like to find the value µ where MSE(m) is smallest. Start by re-writing
the MSE as a (squared) bias plus a variance:

MSE(m) = E
h
(Y �m)2

i
(1.2)

= (E [Y �m])2 + V [Y �m] (1.3)

= (E [Y �m])2 + V [Y ] (1.4)

= (E [Y ]�m)2 + V [Y ] (1.5)

Notice that only the first, bias-squared term depends on our prediction m. We
want to find the derivative of the MSE with respect to our prediction m, and

Likewise, the children of unusually short parents also tend to be closer to the average, and similarly

for other traits. This came to be called “regression towards the mean,” or even “regression towards

mediocrity”; hence the line relating the average height (or whatever) of children to that of their

parents was “the regression line,” and the word stuck.
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then set that to zero at the optimal prediction µ:

dMSE

dm
= �2 (E [Y ]�m) + 0 (1.6)

dMSE

dm

����
m=µ

= 0 (1.7)

2(E [Y ]� µ) = 0 (1.8)

µ = E [Y ] (1.9)

So, if we gauge the quality of our prediction by mean-squared error, the best
prediction to make is the expected value.

1.2.1 Estimating the Expected Value

Of course, to make the prediction E [Y ] we would have to know the expected value
of Y . Typically, we do not. However, if we have sampled values, y1, y2, . . . yn, we
can estimate the expectation from the sample mean:

bµ ⌘ 1

n

nX

i=1

yi (1.10)

If the samples are independent and identically distributed (IID), then the law of
large numbers tells us that

bµ! E [Y ] = µ (1.11)

and algebra with variances (Exercise 1.1) tells us something about how fast the
convergence is, namely that the squared error will typically be V [Y ] /n.

Of course the assumption that the yi come from IID samples is a strong one,
but we can assert pretty much the same thing if they’re just uncorrelated with a
common expected value. Even if they are correlated, but the correlations decay
fast enough, all that changes is the rate of convergence (§23.2.2.1). So “sit, wait,
and average” is a pretty reliable way of estimating the expectation value.

1.3 The Regression Function

Of course, it’s not very useful to predict just one number for a variable. Typically,
we have lots of variables in our data, and we believe they are related somehow.
For example, suppose that we have data on two variables, X and Y , which might
look like Figure 1.1.3 The feature Y is what we are trying to predict, a.k.a.
the dependent variable or output or response or regressand, and X is
the predictor or independent variable or covariate or input or regressor.
Y might be something like the profitability of a customer and X their credit
rating, or, if you want a less mercenary example, Y could be some measure of
improvement in blood cholesterol and X the dose taken of a drug. Typically we

3 Problem set 27 features data that looks rather like these made-up values.
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won’t have just one input feature X but rather many of them, but that gets
harder to draw and doesn’t change the points of principle.

Figure 1.2 shows the same data as Figure 1.1, only with the sample mean
added on. This clearly tells us something about the data, but also it seems like
we should be able to do better — to reduce the average error — by using X,
rather than by ignoring it.

Let’s say that the we want our prediction to be a function of X, namely f(X).
What should that function be, if we still use mean squared error? We can work
this out by using the law of total expectation, i.e., the fact that E [U ] = E [E [U |V ]]
for any random variables U and V .

MSE(f) = E
h
(Y � f(X))2

i
(1.12)

= E
⇥
E
⇥
(Y � f(X))2|X

⇤⇤
(1.13)

= E
h
V [Y � f(X)|X] + (E [Y � f(X)|X])2

i
(1.14)

= E
h
V [Y |X] + (E [Y � f(X)|X])2

i
(1.15)

When we want to minimize this, the first term inside the expectation doesn’t
depend on our prediction, and the second term looks just like our previous opti-
mization only with all expectations conditional on X, so for our optimal function
µ(x) we get

µ(x) = E [Y |X = x] (1.16)

In other words, the (mean-squared) optimal conditional prediction is just the
conditional expected value. The function µ(x) is called the regression function.
This is what we would like to know when we want to predict Y .

Some Disclaimers

It’s important to be clear on what is and is not being assumed here. Talking
about X as the “independent variable” and Y as the “dependent” one suggests
a causal model, which we might write

Y  µ(X) + ✏ (1.17)

where the direction of the arrow, , indicates the flow from causes to e↵ects, and
✏ is some noise variable. If the gods of inference are very kind, then ✏ would have a
fixed distribution, independent of X, and we could without loss of generality take
it to have mean zero. (“Without loss of generality” because if it has a non-zero
mean, we can incorporate that into µ(X) as an additive constant.) However, no
such assumption is required to get Eq. 1.16. It works when predicting e↵ects from
causes, or the other way around when predicting (or “retrodicting”) causes from
e↵ects, or indeed when there is no causal relationship whatsoever between X and
Y 4. It is always true that

Y |X = µ(X) + ✏(X) (1.18)

4 We will cover causal inference in detail in Part III.
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plot(all.x, all.y, xlab = "x", ylab = "y")
rug(all.x, side = 1, col = "grey")
rug(all.y, side = 2, col = "grey")

Figure 1.1 Scatterplot of the (made up) running example data. rug() adds
horizontal and vertical ticks to the axes to mark the location of the data;
this isn’t necessary but is often helpful. The data are in the
basics-examples.Rda file.

where ✏(X) is a random variable with expected value 0, E [✏|X = x] = 0, but as
the notation indicates the distribution of this variable generally depends on X.

It’s also important to be clear that if we find the regression function is a con-
stant, µ(x) = µ0 for all x, that this does not mean that X and Y are statistically
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plot(all.x, all.y, xlab = "x", ylab = "y")
rug(all.x, side = 1, col = "grey")
rug(all.y, side = 2, col = "grey")
abline(h = mean(all.y), lty = "dotted")

Figure 1.2 Data from Figure 1.1, with a horizontal line at y.

independent. If they are independent, then the regression function is a constant,
but turning this around is the logical fallacy of “a�rming the consequent”5.

5 As in combining the fact that all human beings are featherless bipeds, and the observation that a

cooked turkey is a featherless biped, to conclude that cooked turkeys are human beings.
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1.4 Estimating the Regression Function

We want the regression function µ(x) = E [Y |X = x], but what we have is a pile
of training examples, of pairs (x1, y1), (x2, y2), . . . (xn, yn). What should we do?

If X takes on only a finite set of values, then a simple strategy is to use the
conditional sample means:

bµ(x) =
1

# {i : xi = x}
X

i:xi=x

yi (1.19)

Reasoning with the law of large numbers as before, we can be confident that
bµ(x)! E [Y |X = x].
Unfortunately, this only works when X takes values in a finite set. If X is

continuous, then in general the probability of our getting a sample at any par-
ticular value is zero, as is the probability of getting multiple samples at exactly
the same value of x. This is a basic issue with estimating any kind of function
from data — the function will always be undersampled, and we need to fill
in between the values we see. We also need to somehow take into account the
fact that each yi is a sample from the conditional distribution of Y |X = xi, and
generally not equal to E [Y |X = xi]. So any kind of function estimation is going
to involve interpolation, extrapolation, and de-noising or smoothing.

Di↵erent methods of estimating the regression function — di↵erent regression
methods, for short — involve di↵erent choices about how we interpolate, extrapo-
late and smooth. These are choices about how to approximate µ(x) with a limited
class of functions which we know (or at least hope) we can estimate. There is no
guarantee that our choice leads to a good approximation in the case at hand,
though it is sometimes possible to say that the approximation error will shrink as
we get more and more data. This is an extremely important topic and deserves
an extended discussion, coming next.

1.4.1 The Bias-Variance Trade-o↵

Suppose that the true regression function is µ(x), but we use the function bµ to
make our predictions. Let’s look at the mean squared error at X = x in a slightly
di↵erent way than before, which will make it clearer what happens when we can’t
use µ to make predictions. We’ll begin by expanding (Y � bµ(x))2, since the MSE
at x is just the expectation of this.

(Y � bµ(x))2 (1.20)

= (Y � µ(x) + µ(x)� bµ(x))2

= (Y � µ(x))2 + 2(Y � µ(x))(µ(x)� bµ(x)) + (µ(x)� bµ(x))2 (1.21)

Eq. 1.18 tells us that Y � µ(X) = ✏, a random variable which has expectation
zero (and is uncorrelated with X). Taking the expectation of Eq. 1.21, nothing
happens to the last term (since it doesn’t involve any random quantities); the
middle term goes to zero (because E [Y � µ(X)] = E [✏] = 0), and the first term
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becomes the variance of ✏, call it �2(x):

MSE(bµ(x)) = �2(x) + (µ(x)� bµ(x))2 (1.22)

The �2(x) term doesn’t depend on our prediction function, just on how hard it is,
intrinsically, to predict Y at X = x. The second term, though, is the extra error
we get from not knowing µ. (Unsurprisingly, ignorance of µ cannot improve our
predictions.) This is our first bias-variance decomposition: the total MSE
at x is decomposed into a (squared) bias µ(x) � bµ(x), the amount by which
our predictions are systematically o↵, and a variance �2(x), the unpredictable,
“statistical” fluctuation around even the best prediction.

All this presumes that bµ is a single fixed function. Really, of course, bµ is some-
thing we estimate from earlier data. But if those data are random, the regression
function we get is random too; let’s call this random function cMn, where the
subscript reminds us of the finite amount of data we used to estimate it. What
we have analyzed is really MSE(cMn(x)|cMn = bµ), the mean squared error condi-
tional on a particular estimated regression function. What can we say about the
prediction error of the method, averaging over all the possible training data sets?

MSE(cMn(x)) = E
h
(Y � cMn(X))2|X = x

i
(1.23)

= E
h
E
h
(Y � cMn(X))2|X = x, cMn = bµ

i
|X = x

i
(1.24)

= E
h
�2(x) + (µ(x)� cMn(x))

2|X = x
i

(1.25)

= �2(x) + E
h
(µ(x)� cMn(x))

2|X = x
i

(1.26)

= �2(x) + E
h
(µ(x)� E

h
cMn(x)

i
+ E

h
cMn(x)

i
� cMn(x))

2
i
(1.27)

= �2(x) +
⇣
µ(x)� E

h
cMn(x)

i⌘2
+ V

h
cMn(x)

i
(1.28)

This is our second bias-variance decomposition — I pulled the same trick as
before, adding and subtracting a mean inside the square. The first term is just
the variance of the process; we’ve seen that before and it isn’t, for the moment,
of any concern. The second term is the bias in using cMn to estimate µ — the
approximation bias or approximation error. The third term, though, is the
variance in our estimate of the regression function. Even if we have an unbiased

method (µ(x) = E
h
cMn(x)

i
), if there is a lot of variance in our estimates, we can

expect to make large errors.
The approximation bias depends on the true regression function. For exam-

ple, if E
h
cMn(x)

i
= 42 + 37x, the error of approximation will be zero at all x if

µ(x) = 42+37x, but it will be larger and x-dependent if µ(x) = 0. However, there
are flexible methods of estimation which will have small approximation biases for
all µ in a broad range of regression functions. The catch is that, at least past
a certain point, decreasing the approximation bias can only come through in-
creasing the estimation variance. This is the bias-variance trade-o↵. However,
nothing says that the trade-o↵ has to be one-for-one. Sometimes we can lower
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the total error by introducing some bias, since it gets rid of more variance than
it adds approximation error. The next section gives an example.

In general, both the approximation bias and the estimation variance depend
on n. A method is consistent6 when both of these go to zero as n ! 1 —
that is, if we recover the true regression function as we get more and more data.7

Again, consistency depends not just on the method, but also on how well the
method matches the data-generating process, and, again, there is a bias-variance
trade-o↵. There can be multiple consistent methods for the same problem, and
their biases and variances don’t have to go to zero at the same rates.

1.4.2 The Bias-Variance Trade-O↵ in Action

Let’s take an extreme example: we could decide to approximate µ(x) by a con-
stant µ0. The implicit smoothing here is very strong, but sometimes appropriate.
For instance, it’s appropriate when µ(x) really is a constant! Then trying to es-
timate any additional structure in the regression function is just wasted e↵ort.
Alternately, if µ(x) is nearly constant, we may still be better o↵ approximating
it as one. For instance, suppose the true µ(x) = µ0 + a sin (⌫x), where a⌧ 1 and
⌫ � 1 (Figure 1.3 shows an example). With limited data, we can actually get
better predictions by estimating a constant regression function than one with the
correct functional form.

1.4.3 Ordinary Least Squares Linear Regression as Smoothing

Let’s revisit ordinary least-squares linear regression from this point of view. We’ll
assume that the predictor variable X is one-dimensional, just to simplify the
book-keeping.

We choose to approximate µ(x) by b0+b1x, and ask for the best values �0,�1 of
those constants. These will be the ones which minimize the mean-squared error.

MSE(a, b) = E
h
(Y � b0 � b1X)2

i
(1.29)

= E
h
E
h
(Y � b0 � b1X)2|X

ii
(1.30)

= E
h
V [Y |X] + (E [Y � b0 � b1X|X])2

i
(1.31)

= E [V [Y |X]] + E
h
(E [Y � b0 � b1X|X])2

i
(1.32)

6 To be precise, consistent for µ, or consistent for conditional expectations. More generally, an

estimator of any property of the data, or of the whole distribution, is consistent if it converges on

the truth.
7 You might worry about this claim, especially if you’ve taken more probability theory — aren’t we

just saying something about average performance of the cMn, rather than any particular estimated

regression function? But notice that if the estimation variance goes to zero, then by Chebyshev’s

inequality, Pr (|X � E [X] | � a)  V [X] /a2, each cMn(x) comes arbitrarily close to E
h
cMn(x)

i
with

arbitrarily high probability. If the approximation bias goes to zero, therefore, the estimated

regression functions converge in probability on the true regression function, not just in mean.
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1 + 0.1sin(100x)
y
â + b̂sin(100x)

ugly.func <- function(x) {
1 + 0.01 * sin(100 * x)

}
x <- runif(20)
y <- ugly.func(x) + rnorm(length(x), 0, 0.5)
plot(x, y, xlab = "x", ylab = "y")
curve(ugly.func, add = TRUE)
abline(h = mean(y), col = "red", lty = "dashed")
sine.fit = lm(y ~ 1 + sin(100 * x))
curve(sine.fit$coefficients[1] + sine.fit$coefficients[2] * sin(100 * x), col = "blue",

add = TRUE, lty = "dotted")
legend("topright", legend = c(expression(1 + 0.1 * sin(100 * x)), expression(bar(y)),

expression(hat(a) + hat(b) * sin(100 * x))), lty = c("solid", "dashed", "dotted"),
col = c("black", "red", "blue"))

Figure 1.3 When we try to estimate a rapidly-varying but small-amplitude
regression function (solid black line, µ = 1 + 0.01 sin 100x+ ✏, with
mean-zero Gaussian noise of standard deviation 0.5), we can do better to use
a constant function (red dashed line at the sample mean) than to estimate a
more complicated model of the correct functional form â+ b̂ sin 100x (dotted
blue line). With just 20 observations, the mean predicts slightly better on
new data (square-root MSE, RMSE, of 0.54) than does the estimate sine
function (RMSE of 0.55). The bias of using the wrong functional form is less
than the extra variance of estimation, so using the true model form hurts us.

The first term doesn’t depend on b0 or b1, so we can drop it for purposes of
optimization. Taking derivatives, and then bringing them inside the expectations,

@MSE

@b0
= E [2(Y � b0 � b1X)(�1)] (1.33)

0 = E [Y � �0 � �1X] (1.34)

�0 = E [Y ]� �1E [X] (1.35)
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So we need to get �1:

@MSE

@b1
= E [2(Y � b0 � b1X)(�X)] (1.36)

0 = E [XY ]� �1E
⇥
X2
⇤
+ (E [Y ]� �1E [X])E [X] (1.37)

= E [XY ]� E [X]E [Y ]� �1(E
⇥
X2
⇤
� E [X]2) (1.38)

�1 =
Cov [X,Y ]

V [X]
(1.39)

using our equation for �0. That is, the mean-squared optimal linear prediction is

µ(x) = E [Y ] +
Cov [X,Y ]

V [X]
(x� E [X]) (1.40)

Now, if we try to estimate this from data, there are (at least) two approaches.
One is to replace the true, population values of the covariance and the variance
with their sample values, respectively

1

n

X

i

(yi � y)(xi � x) (1.41)

and

1

n

X

i

(xi � x)2 ⌘ bV [X] . (1.42)

The other is to minimize the in-sample or empirical mean squared error,

1

n

X

i

(yi � b0 � b1xi)
2 (1.43)

You may or may not find it surprising that both approaches lead to the same
answer:

c�1 =
1
n

P
i (yi � y)(xi � x)

bV [X]
(1.44)

c�0 = y �c�1x (1.45)

(1.46)

Provided that V [X] > 0, these will converge with IID samples, so we have a
consistent estimator.

We are now in a position to see how the least-squares linear regression model
is really a weighted averaging of the data. Let’s write the estimated regression
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function explicitly in terms of the training data points.

bµ(x) =c�0 +c�1x (1.47)

= y +c�1(x� x) (1.48)

=
1

n

nX

i=1

yi +

 
1
n

P
i (yi � y)(xi � x)
1
n

P
i (xi � x)2

!

(x� x) (1.49)

=
1

n

nX

i=1

yi +
(x� x)

n�̂2
X

nX

i=1

(xi � x)(yi � y) (1.50)

=
1

n

nX

i=1

yi +
(x� x)

n�̂2
X

nX

i=1

(xi � x)yi �
(x� x)

n�̂2
X

(nx� nx)y (1.51)

=
nX

i=1

1

n

✓
1 +

(x� x)(xi � x)

�̂2
X

◆
yi (1.52)

In words, our prediction is a weighted average of the observed values yi of the
regressand, where the weights are proportional to how far xi and x both are from
the center of the data (relative to the variance of X). If xi is on the same side of
the center as x, it gets a positive weight, and if it’s on the opposite side it gets a
negative weight.

Figure 1.4 adds the least-squares regression line to Figure 1.1. As you can see,
this is only barely slightly di↵erent from the constant regression function (the
slope is X is �0.046). Visually, the problem is that there should be a positive
slope in the left-hand half of the data, and a negative slope in the right, but the
slopes and the densities are balanced so that the best single slope is near zero.8

Mathematically, the problem arises from the peculiar way in which least-
squares linear regression smoothes the data. As I said, the weight of a data point
depends on how far it is from the center of the data, not how far it is from the
point at which we are trying to predict. This works when µ(x) really is a straight
line, but otherwise — e.g., here — it’s a recipe for trouble. However, it does sug-
gest that if we could somehow just tweak the way we smooth the data, we could
do better than linear regression.

8 The standard test of whether this coe�cient is zero is about as far from rejecting the null hypothesis

as you will ever see, p = 0.64. Remember this the next time you look at linear regression output.
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plot(all.x, all.y, xlab = "x", ylab = "y")
rug(all.x, side = 1, col = "grey")
rug(all.y, side = 2, col = "grey")
abline(h = mean(all.y), lty = "dotted")
fit.all = lm(all.y ~ all.x)
abline(fit.all)

Figure 1.4 Data from Figure 1.1, with a horizontal line at the mean
(dotted) and the ordinary least squares regression line (solid).
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1.5 Linear Smoothers

The sample mean and the least-squares line are both special cases of linear
smoothers, which estimates the regression function with a weighted average:

bµ(x) =
X

i

yi bw(xi, x) (1.53)

These are called linear smoothers because the predictions are linear in the re-
sponses yi; as functions of x they can be and generally are nonlinear.

As I just said, the sample mean is a special case; see Exercise 1.7. Ordinary
linear regression is another special case, where bw(xi, x) is given by Eq. 1.52. Both
of these, as remarked earlier, ignore how far xi is from x. Let us look at some
linear smoothers which are not so silly.

1.5.1 k-Nearest-Neighbors Regression

At the other extreme from ignoring the distance between xi and x, we could do
nearest-neighbor regression:

bw(xi, x) =

⇢
1 xi nearest neighbor of x
0 otherwise

(1.54)

This is very sensitive to the distance between xi and x. If µ(x) does not change
too rapidly, and X is pretty thoroughly sampled, then the nearest neighbor of
x among the xi is probably close to x, so that µ(xi) is probably close to µ(x).
However, yi = µ(xi) + noise, so nearest-neighbor regression will include the noise
into its prediction. We might instead do k-nearest-neighbors regression,

bw(xi, x) =

⇢
1/k xi one of the k nearest neighbors of x
0 otherwise

(1.55)

Again, with enough samples all the k nearest neighbors of x are probably close
to x, so their regression functions there are going to be close to the regression
function at x. But because we average their values of yi, the noise terms should
tend to cancel each other out. As we increase k, we get smoother functions —
in the limit k = n and we just get back the constant. Figure 1.5 illustrates this
for our running example data.9 To use k-nearest-neighbors regression, we need to
pick k somehow. This means we need to decide how much smoothing to do, and
this is not trivial. We will return to this point in Chapter 3.

Because k-nearest-neighbors averages over only a fixed number of neighbors,
each of which is a noisy sample, it always has some noise in its prediction, and is
generally not consistent. This may not matter very much with moderately-large
data (especially once we have a good way of picking k). If we want consistency,

9 The code uses the k-nearest neighbor function provided by the package FNN (Beygelzimer et al.,

2013). This requires one to give both a set of training points (used to learn the model) and a set of

test points (at which the model is to make predictions), and returns a list where the actual

predictions are in the pred element — see help(knn.reg) for more, including examples.
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we need to let k grow with n, but not too fast; it’s enough that as n!1, k !1
and k/n! 0 (Györfi et al., 2002, Thm. 6.1, p. 88).
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library(FNN)
plot.seq <- matrix(seq(from = 0, to = 1, length.out = 100), byrow = TRUE)
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 1)$pred, col = "red")
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 3)$pred, col = "green")
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 5)$pred, col = "blue")
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 20)$pred,

col = "purple")
legend("center", legend = c("mean", expression(k == 1), expression(k == 3), expression(k ==

5), expression(k == 20)), lty = c("dashed", rep("solid", 4)), col = c("black",
"red", "green", "blue", "purple"))

Figure 1.5 Points from Figure 1.1 with horizontal dashed line at the mean
and the k-nearest-neighbors regression curves for various k. Increasing k
smooths out the regression curve, pulling it towards the mean. — The code
is repetitive; can you write a function to simplify it?
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1.5.2 Kernel Smoothers

Changing k in a k-nearest-neighbors regression lets us change how much smooth-
ing we’re doing on our data, but it’s a bit awkward to express this in terms of a
number of data points. It feels like it would be more natural to talk about a range
in the independent variable over which we smooth or average. Another problem
with k-NN regression is that each testing point is predicted using information
from only a few of the training data points, unlike linear regression or the sample
mean, which always uses all the training data. It’d be nice if we could somehow
use all the training data, but in a location-sensitive way.

There are several ways to do this, as we’ll see, but a particularly useful one is
kernel smoothing, a.k.a. kernel regression or Nadaraya-Watson regres-
sion. To begin with, we need to pick a kernel function10 K(xi, x) which satisfies
the following properties:

1. K(xi, x) � 0;
2. K(xi, x) depends only on the distance xi � x, not the individual arguments;
3.
R
xK(0, x)dx = 0; and

4. 0 <
R
x2K(0, x)dx <1.

These conditions together (especially the last one) imply that K(xi, x) ! 0 as
|xi�x|!1. Two examples of such functions are the density of the Unif(�h/2, h/2)
distribution, and the density of the standard Gaussian N (0,

p
h) distribution.

Here h can be any positive number, and is called the bandwidth. Because
K(xi, x) = K(0, xi � x), we will often write K as a one-argument function,
K(xi�x). Because we often want to consider similar kernels which di↵er only by
bandwidth, we’ll either write K(xi�x

h
), or Kh(xi � x).

The Nadaraya-Watson estimate of the regression function is

bµ(x) =
X

i

yi
K(xi, x)P
j K(xj, x)

(1.56)

i.e., in terms of Eq. 1.53,

bw(xi, x) =
K(xi, x)P
j K(xj, x)

(1.57)

(Notice that here, as in k-NN regression, the sum of the weights is always 1.
Why?)11

What does this achieve? Well, K(xi, x) is large if xi is close to x, so this will
place a lot of weight on the training data points close to the point where we are
trying to predict. More distant training points will have smaller weights, falling

10 There are many other mathematical objects which are also called “kernels”. Some of these meanings

are related, but not all of them. (Cf. “normal”.)
11 What do we do if K(xi, x) is zero for some xi? Nothing; they just get zero weight in the average.

What do we do if all the K(xi, x) are zero? Di↵erent people adopt di↵erent conventions; popular

ones are to return the global, unweighted mean of the yi, to do some sort of interpolation from

regions where the weights are defined, and to throw up our hands and refuse to make any

predictions (computationally, return NA).
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o↵ towards zero. If we try to predict at a point x which is very far from any of
the training data points, the value of K(xi, x) will be small for all xi, but it will
typically be much, much smaller for all the xi which are not the nearest neighbor
of x, so bw(xi, x) ⇡ 1 for the nearest neighbor and ⇡ 0 for all the others.12 That is,
far from the training data, our predictions will tend towards nearest neighbors,
rather than going o↵ to ±1, as linear regression’s predictions do. Whether this
is good or bad of course depends on the true µ(x) — and how often we have to
predict what will happen very far from the training data.

Figure 1.6 shows our running example data, together with kernel regression
estimates formed by combining the uniform-density, or box, and Gaussian kernels
with di↵erent bandwidths. The box kernel simply takes a region of width h around
the point x and averages the training data points it finds there. The Gaussian
kernel gives reasonably large weights to points within h of x, smaller ones to points
within 2h, tiny ones to points within 3h, and so on, shrinking like e�(x�xi)

2/2h.
As promised, the bandwidth h controls the degree of smoothing. As h!1, we
revert to taking the global mean. As h ! 0, we tend to get spikier functions —
with the Gaussian kernel at least it tends towards the nearest-neighbor regression.

If we want to use kernel regression, we need to choose both which kernel to
use, and the bandwidth to use with it. Experience, like Figure 1.6, suggests that
the bandwidth usually matters a lot more than the kernel. This puts us back
to roughly where we were with k-NN regression, needing to control the degree
of smoothing, without knowing how smooth µ(x) really is. Similarly again, with
a fixed bandwidth h, kernel regression is generally not consistent. However, if
h! 0 as n!1, but doesn’t shrink too fast, then we can get consistency.

12 Take a Gaussian kernel in one dimension, for instance, so K(xi, x) / e�(xi�x)2/2h2
. Say xi is the

nearest neighbor, and |xi � x| = L, with L � h. So K(xi, x) / e�L2/2h2
, a small number. But now

for any other xj , K(xi, x) / e�L2/2h2
e�(xj�xi)L/2h2

e�(xj�xi)
2/2h2

⌧ e�L2/2h2
. — This assumes

that we’re using a kernel like the Gaussian, which never quite goes to zero, unlike the box kernel.
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Box Gaussian

lines(ksmooth(all.x, all.y, "box", bandwidth = 2), col = "red")
lines(ksmooth(all.x, all.y, "box", bandwidth = 1), col = "green")
lines(ksmooth(all.x, all.y, "box", bandwidth = 0.1), col = "blue")
lines(ksmooth(all.x, all.y, "normal", bandwidth = 2), col = "red", lty = "dashed")
lines(ksmooth(all.x, all.y, "normal", bandwidth = 1), col = "green", lty = "dashed")
lines(ksmooth(all.x, all.y, "normal", bandwidth = 0.1), col = "blue", lty = "dashed")
legend("bottom", ncol = 3, legend = c("", expression(h == 2), expression(h == 1),

expression(h == 0.1), "Box", "", "", "", "Gaussian", "", "", ""), lty = c("blank",
"blank", "blank", "blank", "blank", "solid", "solid", "solid", "blank", "dashed",
"dashed", "dashed"), col = c("black", "black", "black", "black", "black", "red",
"green", "blue", "black", "red", "green", "blue"), pch = NA)

Figure 1.6 Data from Figure 1.1 together with kernel regression lines, for
various combinations of kernel (box/uniform or Gaussian) and bandwidth.
Note the abrupt jump around x = 0.75 in the h = 0.1 box-kernel (solid blue)
line — with a small bandwidth the box kernel is unable to interpolate
smoothly across the break in the training data, while the Gaussian kernel
(dashed blue) can.
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1.5.3 Some General Theory for Linear Smoothers

Some key parts of the theory you are familiar with for linear regression models
carries over more generally to linear smoothers. They are not quite so important
any more, but they do have their uses, and they can serve as security objects
during the transition to non-parametric regression.

Throughout this sub-section, we will temporarily assume that Y = µ(X) + ✏,
with the noise terms ✏ having constant variance �2, no correlation with the noise
at other observations. Also, we will define the smoothing, influence or hat
matrix ŵ by ŵij = ŵ(xi, xj). This records how much influence observation yj
had on the smoother’s fitted value for µ(xi), which (remember) is bµ(xi) or bµi for
short13, hence the name “hat matrix” for ŵ.

1.5.3.1 Standard error of predicted mean values

It is easy to get the standard error of any predicted mean value bµ(x), by first
working out its variance:

V [bµ(x)] = V
"

nX

j=1

w(xj, x)Yj

#

(1.58)

=
nX

j=1

V [w(xj, x)Yj] (1.59)

=
nX

j=1

w2(xj, x)V [Yj] (1.60)

= �2
nX

j=1

w2(xj, x) (1.61)

The second line uses the assumption that the noise is uncorrelated, and the last
the assumption that the noise variance is constant. In particular, for a point xi

which appeared in the training data, V [bµ(xi)] = �2
P

j w
2
ij.

Notice that this is the variance in the predicted mean value, bµ(x). It is not an
estimate of V [Y | X = x], though we will see how conditional variances can be
estimated using nonparametric regression in Chapter 10.

Notice also that we have not had to assume that the noise is Gaussian. If we
did add that assumption, this formula would also give us a confidence interval
for the fitted value (though we would still have to worry about estimating �).

1.5.3.2 (E↵ective) Degrees of Freedom

For linear regression models, you will recall that the number of “degrees of free-
dom” was just the number of coe�cients (including the intercept). While degrees
of freedom are less important for other sorts of regression than for linear models,
they’re still worth knowing about, so I’ll explain here how they are defined and

13 This is often written as ŷi, but that’s not very logical notation; the quantity is a function of yi, not

an estimate of it; it’s an estimate of µ(xi).
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calculated. In general, we can’t use the number of parameters to define degrees of
freedom, since most linear smoothers don’t have parameters. Instead, we have to
go back to the reasons why the number of parameters actually matters in ordinary
linear models. (Linear algebra follows.)

We’ll start with an n⇥p data matrix of predictor variables x (possibly including
an all-1 column for an intercept), and an n⇥ 1 column matrix of response values
y. The ordinary least squares estimate of the p-dimensional coe�cient vector �
is

�̂ =
�
xTx

��1
xTy (1.62)

This lets us write the fitted values in terms of x and y:

bµ = x�̂ (1.63)

=
⇣
x
�
xTx

��1
xT
⌘
y (1.64)

= wy (1.65)

where w is the n ⇥ n matrix, with wij saying how much of each observed yj
contributes to each fitted bµi. This is what, a little while ago, I called the influence
or hat matrix, in the special case of ordinary least squares.

Notice that w depends only on the predictor variables in x; the observed re-
sponse values in y don’t matter. If we change around y, the fitted values bµ will
also change, but only within the limits allowed by w. There are n independent
coordinates along which y can change, so we say the data have n degrees of free-
dom. Once x (and thus w) are fixed, however, bµ has to lie in a p-dimensional
linear subspace in this n-dimensional space, and the residuals have to lie in the
(n� p)-dimensional space orthogonal to it.

Geometrically, the dimension of the space in which bµ = wy is confined is the
rank of the matrix w. Since w is an idempotent matrix (Exercise 1.5), its rank
equals its trace. And that trace is, exactly, p:

trw = tr
⇣
x
�
xTx

��1
xT
⌘

(1.66)

= tr
⇣
xTx

�
xTx

��1
⌘

(1.67)

= tr Ip = p (1.68)

since for any matrices a,b, tr (ab) = tr (ba), and xTx is a p⇥ p matrix14.
For more general linear smoothers, we can still write Eq. 1.53 in matrix form,

bµ = wy (1.69)

We now define the degrees of freedom15 to be the trace of w:

df(bµ) ⌘ trw (1.70)

This may not be an integer.

14 This all assumes that x
T
x has an inverse. Can you work out what happens when it does not?

15 Some authors prefer to say “e↵ective degrees of freedom”, to emphasize that we’re not just counting

parameters.
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Covariance of Observations and Fits

Eq. 1.70 defines the number of degrees of freedom for linear smoothers. A yet more
general definition includes nonlinear methods, assuming that Yi = µ(xi)+ ✏i, and
the ✏i consist of uncorrelated noise of constant16 variance �2. This is

df(bµ) ⌘ 1

�2

nX

i=1

Cov [Yi, bµ(xi)] (1.71)

In words, this is the normalized covariance between each observed response Yi and
the corresponding predicted value, bµ(xi). This is a very natural way of measuring
how flexible or stable the regression model is, by seeing how much it shifts with
the data.

If we do have a linear smoother, Eq. 1.71 reduces to Eq. 1.70.

Cov [Yi, bµ(xi)] = Cov

"

Yi,
nX

j=1

wijYj

#

(1.72)

=
nX

j=1

wijCov [Yi, Yj] (1.73)

= wiiV [Yi] = �2wii (1.74)

Here the first line uses the fact that we’re dealing with a linear smoother, and
the last line the assumption that ✏i is uncorrelated and has constant variance.
Therefore

df(bµ) =
1

�2

nX

i=1

�2wii = trw (1.75)

as promised.

1.5.3.3 Prediction Errors

Bias

Because linear smoothers are linear in the response variable, it’s easy to work out
(theoretically) the expected value of their fits:

E [bµi] =
nX

j=1

wijE [Yj] (1.76)

In matrix form,

E [bµ] = wE [Y] (1.77)

This means the smoother is unbiased if, and only if, wE [Y] = E [Y], that is, if
E [Y] is an eigenvector of w. Turned around, the condition for the smoother to
be unbiased is

(In �w)E [Y] = 0 (1.78)

16 But see Exercise 1.10.
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In general, (In�w)E [Y] 6= 0, so linear smoothers are more or less biased. Di↵erent
smoothers are, however, unbiased for di↵erent families of regression functions.
Ordinary linear regression, for example, is unbiased if and only if the regression
function really is linear.

In-sample mean squared error

When you studied linear regression, you learned that the expected mean-squared
error on the data used to fit the model is �2(n � p)/n. This formula generalizes
to other linear smoothers. Let’s first write the residuals in matrix form.

y � bµ = y �wy (1.79)

= Iny �wy (1.80)

= (In �w)y (1.81)

The in-sample mean squared error is n�1 ky � bµk2, so
1

n
ky � bµk2 = 1

n
k(In �w)yk2 (1.82)

=
1

n
yT (In �wT )(In �w)y (1.83)

Taking expectations17,

E

1

n
ky � bµk2

�
=

�2

n
tr
�
(In �wT )(In �w)

�
+

1

n
k(In �w)E [y]k2 (1.84)

=
�2

n

�
tr In � 2 trw + tr (wTw)

�
+

1

n
k(In �w)E [y]k2(1.85)

=
�2

n

�
n� 2 trw + tr (wTw)

�
+

1

n
k(In �w)E [y]k2 (1.86)

The last term, n�1 k(In �w)E [y]k2, comes from the bias: it indicates the dis-
tortion that the smoother would impose on the regression function, even without
noise. The first term, proportional to �2, reflects the variance. Notice that it in-
volves not only what we’ve called the degrees of freedom, trw, but also a second-
order term, trwTw. For ordinary linear regression, you can show (Exercise 1.9)
that tr (wTw) = p, so 2 trw� tr (wTw) would also equal p. For this reason, some
people prefer either tr (wTw) or 2 trw� tr (wTw) as the definition of degrees of
freedom for linear smoothers, so be careful.

1.5.3.4 Inferential Statistics

Many of the formulas underlying things like the F test (for whether a regression
predicts significantly better than the global mean) carry over from linear regres-
sion to linear smoothers, if one uses the right definitions of degrees of freedom,
and one believes that the noise is always IID and Gaussian. However, we will

17 By using the general result that E
h
~X · a ~X

i
= tr (aV

h
~X
i
) + E

h
~X
i
· aE

h
~X
i
for any random vector

~X and non-random square matrix a.
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see ways of doing inference on regression models which don’t rely on Gaussian
assumptions at all (Ch. 6), so I won’t go over these results.

1.6 Further Reading

In Chapter 2, we’ll look more at the limits of linear regression and some ex-
tensions; Chapter 3 will cover some key aspects of evaluating statistical models,
including regression models; and then Chapter 4 will come back to kernel regres-
sion, and more powerful tools than ksmooth. Chapters 10–8 and 13 all introduce
further regression methods, while Chapters 11–12 pursue extensions.

Good treatments of regression, emphasizing linear smoothers but not limited
to linear regression, can be found in Wasserman (2003, 2006), Simono↵ (1996),
Faraway (2006) and Györfi et al. (2002). The last of these in particular provides
a very thorough theoretical treatment of non-parametric regression methods.

On generalizations of degrees of freedom to non-linear models, see Buja et al.
(1989, §2.7.3), and Ye (1998).

Historical notes

All the forms of nonparametric regression covered in this chapter are actually
quite old. Kernel regression was introduced independently by Nadaraya (1964)
and Watson (1964). The origin of nearest neighbor methods is less clear, and
indeed they may have been independently invented multiple times — Cover and
Hart (1967) collects some of the relevant early citations, as well as providing a pi-
oneering theoretical analysis, extended to regression problems in Cover (1968a,b).

Exercises

1.1 Suppose Y1, Y2, . . . Yn are random variables with the same mean µ and standard deviation

�, and that they are all uncorrelated with each other, but not necessarily independent18

or identically distributed. Show the following:

1. V
⇥Pn

i=1 Yi
⇤
= n�

2.

2. V
⇥
n
�1Pn

i=1 Yi
⇤
= �

2
/n.

3. The standard deviation of n�1Pn
i=1 Yi is �/

p
n.

4. The standard deviation of µ� n
�1Pn

i=1 Yi is �/
p
n.

Can you state the analogous results when the Yi share mean µ but each has its own

standard deviation �i? When each Yi has a distinct mean µi? (Assume in both cases that

the Yi remain uncorrelated.)

1.2 Suppose we use the mean absolute error instead of the mean squared error:

MAE(m) = E [|Y �m|] (1.87)

Is this also minimized by taking m = E [Y ]? If not, what value µ̃ minimizes the MAE?

Should we use MSE or MAE to measure error?

1.3 Derive Eqs. 1.45 and 1.44 by minimizing Eq. 1.43.

18 See Appendix ?? for a refresher on the di↵erence between “uncorrelated” and “independent”.
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1.4 What does it mean to say that Gaussian kernel regression approaches nearest-neighbor

regression as h ! 0? Why does it do so? Is this true for all kinds of kernel regression?

1.5 Prove that w from Eq. 1.65 is idempotent, i.e., that w2 = w.

1.6 Show that for ordinary linear regression, Eq. 1.61 gives the same variance for fitted values

as the usual formula.

1.7 Consider the global mean as a linear smoother. Work out the influence matrix w, and

show that it has one degree of freedom, using the definition in Eq. 1.70.

1.8 Consider k-nearest-neighbors regression as a linear smoother. Work out the influence ma-

trix w, and find an expression for the number of degrees of freedom (in the sense of Eq.

1.70) in terms of k and n. Hint: Your answers should reduce to those of the previous

problem when k = n.

1.9 Suppose that Yi = µ(xi) + ✏i, where the ✏i are uncorrelated have mean 0, with constant

variance �
2. Prove that, for a linear smoother, n�1Pn

i=1V [µ̂i] = (�2
/n) tr (wwT ). Show

that this reduces to �
2
p/n for ordinary linear regression.

1.10 Suppose that Yi = µ(xi) + ✏i, where the ✏i are uncorrelated and have mean 0, but

each has its own variance �
2
i . Consider modifying the definition of degrees of freedom

to
Pn

i=1 Cov [Yi, µ̂i] /�
2
i (which reduces to Eq. 1.71 if all the �

2
i = �

2). Show that this

still equals trw for a linear smoother with influence matrix w.


