
Homework 6: It’s Not the Heat That Gets to
You, It’s the Conjunction of Sustained Heat

with Atmospheric Pollution

36-402, Spring 2024, Section A

Due at 6 pm on Thursday, 14 March 2024

AGENDA: Practice with generalized additive models, including in-
teractions and model-building; practice re-shaping data frames; practice
connecting probability theory to modeling choices.

This week’s assignment revisits the chicago data set, previously seen in HW 1
and HW 5. (You are always welcome to use anything from th solutions to earlier
homeworks, but you are particularly encouraged to do so here.)

We begin with some theory problems, which will help guide the data analysis.
Note that those problems are all show-that problems, so the conclusions are all given
to you.

1. (2) Binary random variables T is a binary variable, either 0 or 1. Show that
E [T ] = P (T = 1), and that Var [T ] =E [T ] (1−E [T ]).

2. Binary to binomial T1,T2, . . .Tq are independent, identically distributed binary
variables, where E [Ti ] = p. Define Sq ≡

∑q
i=1 Ti .

(a) (2) Show that E
�

Sq

�

= q p and Var
�

Sq

�

= q p(1− p).

(b) (2) Show that P
�

Sq = s
�

= q !
s !(q−s)! p s (1− p)q−s .

3. Binomial to Poisson We continue the setting of Q2, but now we let q → ∞
while µ ≡ q p stays constant, that is, p = µ/q . In the following, all the limits
are as q→∞.

(a) (2) Show that E
�

Sq

�

→µ.

(b) (2) Show that Var
�

Sq

�

→µ.

(c) (1; harder math than the rest) Show thatP
�

Sq = s
�

→ µs e−µ

s ! . Hints: (i) you
can take as given that e x = lim (1+ x/q)q ; (ii) you can do this without
using Stirling’s approximation, but if you do use it, you need the form
log k!≈ k log k − k, and not just log k!≈ k log k.
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(d) (3) The random variable Y whose probability mass function isP (Y = y;µ) =
µy e−µ

y! is said to have a Poisson distribution, Y ∼ Pois(µ). Using the earlier
parts of this question, show that E [Y ] =Var [Y ] =µ.

(e) (3) Explain the statement “A Poisson distribution totals up a large number
of individually-rare events”.

4. Poisson likelihood Y1,Y2, . . .Yn are all independent Poisson random variables,
with means µ1,µ2, . . .µn (which may or may not be equal). The log-likelihood
of seeing the data y1, y2, . . . yn is

L(µ1, . . .µn)≡
n
∑

i=1

logP (Yi = yi ;µi ) (1)

(a) (4) Show that each summand in Eq. 1 is itself a sum of three terms: one
term which is a function of yi but not µi , one term which is a function of
µi but not yi , and one term which is proportional to yi logµi .

(b) (1) Assume that eachµi can be adjusted without affecting any of the other
µ j ’s. Show that the log-likelihood is maximized at µ̂i = yi for each i .

5. Theory to modeling

(a) (4) Using the previous problems, explain why it is reasonable to try mod-
eling the number of people who die each day in a large city as a Poisson-
distributed random variable.

(b) (4) Using the previous problems, explain why it is reasonable to try mod-
eling logµ as a function of predictor variables. That is, why is log a natural
link function for Poisson regression? Hint: Think about what we did with
logistic regression (see chapter 11).

(c) (2) If each predictor variable makes an additive contribution to logµ, how
will they combine to produce µ?

6. Time trend Fit a spline smoothing of log(death) on time. (You can use either
smooth.spline or gam.)

(a) (2) Plot the actual values of death (not log(death)) as a function of time.
Add a curve showing the estimates from the smoothing spline.

(b) (3) There should be four large outliers, right next to each other in time.
When are they? For full credit, give calendar dates, not day numbers.
(Day 0 was 31 December 1993.)

(c) (1) Why do I ask you to smooth log(death) against time, but to plot
death against time?

7. First GAM Use gam to fit a generalized additive model for death on pm10median,
o3median, so2median, and tmpd. Use spline smoothing for each of these pre-
dictor variables. Make sure that you treat death as Poisson-distributed, and that
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you use a logarithmic link function. Hint: Because of some missing-data issues,
some plots later may be easier to make if you set the na.action=na.exclude
option when estimating the model.

(a) (4) Plot the partial response functions, with partial residuals. Describe
each partial response functions in words. Carefully describe meaning of
the units on the vertical axes of the plots.

(b) (3) Plot the fitted values as a function of time, along with the actual values
of death. Hint: Be careful about the NA values.

(c) (4) Are the outliers still there? Are they any better?

8. Time averages Medically, it makes more sense to suppose that deaths on day t
are due conditions over the previous few days, and not just on the conditions
on day t . This problem re-shapes the data set to let us model this.

(a) (3) Suppose that on any given day, we want to know the average value
of some variable over today and the previous k days. Explain how the
following code computes that.

lag.mean <- function(x, window) {
n <- length(x)
y <- rep(0,n-window)
for (t in 0:window) {

y <- y + x[(t+1):(n-window+t)]
}
return(y/(window+1))

}

In particular, how is k related to the arguments of lag.mean?

(b) (3) Create a new data frame with the same column names as chicago, but
where, on each day, the value of the pollution concentrations and tempera-
ture is the average of that day’s value with the previous three days. (Hint:
you will want to do different things to different columns of chicago.)
How many rows should this data frame have? Make sure that the time
and death columns are properly aligned with the new, time-average pre-
dictor variables. How can you check that this is working properly?

9. Second GAM Fit a generalized additive model, as in Q7, with the time-averaged
pollution and temperature variables. (Do not average time or death.)

(a) (3) Plot the partial response functions and their partial residuals. Describe
the shapes of the partial response functions.

(b) (3) Plot the fitted values as a function of time, and the actual values. What
has happened to the outliers?

10. Variable examination and re-specification
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(a) (3) Find the rows in the data frame (with the time-averaged values) corre-
sponding to the large-death outliers. Look at all variables for them, and
for three days on either side. Now compare this to the same stretch of
time a year earlier. Which two variables, aside from death, are unusually
high or low around the outliers?

(b) (3) Re-fit the model from problem 9, with an interaction between the two
variables you just picked out. Plot the partial response functions. Hint:
look at examples of interactions in chapter 8.

(c) (3) Plot the fitted values versus time. What has happened to the outliers?

11. Examining residuals

(a) (1) Show that if Y ∼ Pois(µ), then R= Y−µp
µ has E [R] = 0, Var [R] = 1.

(b) (3) For your final estimated model, create plots of the Pearson residuals
against the fitted values, and against each of the predictor variables in your
model. (If you interacted X1 and X2, make a plot of residuals against X1
and another plot of residuals against X2, don’t try to make a 3D plot of
residuals against X1 and X2.) Does it look like the residuals have mean 0
everywhere? How can you tell? Should they have mean 0 everywhere?

(c) (3) Repeat the previous question, but for plots of the squared residuals. Do
they look like they have mean 1 everywhere? How can you tell? Should
they have mean 1 everywhere?

(d) (3) Explain what Q11a has to do with Q11b and with Q11c.

12. (9) Conclusions Pretend that the Chicago city government would like to reduce
the number of deaths in the city, and would especially like to reduce the risk
of episodes where very large numbers of people die suddenly. Write at least
one paragraph, but no more than one page, about what the city should do. For
full credit, be as specific as possible in backing your recommendations up with
findings from your data analysis.

13. (1) Timing How long, roughly, did you spend on this assignment? How much
of that time was spent on math, on coding/debugging, and on writing?

PRESENTATION RUBRIC (10): The text is laid out cleanly, with clear divisions
between problems and sub-problems. The writing itself is well-organized, free of
grammatical and other mechanical errors, and easy to follow. Plots are carefully la-
beled, with informative and legible titles, axis labels, and (if called for) sub-titles and
legends; they are placed near the text of the corresponding problem. All plots and
tables are generated by code included in the R Markdown file. All quantitative and
mathematical claims are supported by appropriate derivations, included in the text,
or calculations in code. Numerical results are reported to appropriate precision. All
parts of all problems are answered with actual coherent sentences, and raw computer
code or output are only shown when explicitly asked for. Text from the homework
assignment, including this rubric, is included only when relevant, not blindly copied.
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