Significance Testing etc.

36-402, Section A

7 February 2019

\[ \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\StdErr}[1]{\mathrm{se}\left[ #1 \right]} \newcommand{\EstStdErr}[1]{\widehat{\mathrm{se}}\left[ #1 \right]} \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Var}[1]{\mathbb{V}\left[ #1 \right]} \]

Linear Regression and Hypothesis Testing (Once More with Feeling)

stocks <- read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/19/hw/03/stock_history.csv")
stocks$MAPE <- with(stocks, Price/Earnings_10MA_back)
returns.on.mape.transforms <- lm(Return_10_fwd ~ I(1/MAPE) + MAPE + I(MAPE^2), data=stocks)
summary(returns.on.mape.transforms)
## 
## Call:
## lm(formula = Return_10_fwd ~ I(1/MAPE) + MAPE + I(MAPE^2), data = stocks)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.110743 -0.029043  0.002934  0.028354  0.099453 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.550e-02  2.612e-02   0.976    0.329    
## I(1/MAPE)    7.356e-01  1.268e-01   5.801 8.07e-09 ***
## MAPE        -2.194e-04  1.559e-03  -0.141    0.888    
## I(MAPE^2)   -3.578e-05  2.679e-05  -1.336    0.182    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0421 on 1480 degrees of freedom
##   (240 observations deleted due to missingness)
## Multiple R-squared:  0.358,  Adjusted R-squared:  0.3567 
## F-statistic: 275.1 on 3 and 1480 DF,  p-value: < 2.2e-16

What Is the Model? What Are the Hypotheses?

\[ R_i = \beta_0 + \beta_1\frac{1}{M_i} + \beta_2 M_i + \beta_3 M_i^2 + \epsilon_i, ~ \Expect{\epsilon|M} = 0 \] lm also assumes \(\epsilon_i\) IID Gaussian, \(~ \mathcal{N}(0, \sigma^2)\)

What Hypotheses Does lm Test?

How Does R Test These Hypotheses?

What “Statistically Significant” Means

What Tends to Make Things Significant?

What Tends to Make Things Significant?

What Tends to Make Things Significant?

x <- with(na.omit(stocks), cbind(1/MAPE, MAPE, MAPE^2))
colnames(x) <- c("1/MAPE", "MAPE", "MAPE^2")
var(x)
##               1/MAPE         MAPE       MAPE^2
## 1/MAPE  0.0009283645   -0.1662826    -5.736245
## MAPE   -0.1662826454   42.2134165  1736.549657
## MAPE^2 -5.7362445792 1736.5496566 77562.536040
cor(x)
##            1/MAPE       MAPE     MAPE^2
## 1/MAPE  1.0000000 -0.8399673 -0.6759933
## MAPE   -0.8399673  1.0000000  0.9597010
## MAPE^2 -0.6759933  0.9597010  1.0000000

What Makes Things Significant? (cont’d)

Star-Gazing Is a Bad Way to Pick Variables

n <- 1e4; p <- 40
predictors <- matrix(rnorm(n*p), nrow=n, ncol=p); response<-rnorm(n) # no relationship at all
summary(lm(response ~ predictors))
## 
## Call:
## lm(formula = response ~ predictors)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3460 -0.6627  0.0075  0.6704  3.7687 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  -0.0041641  0.0100825  -0.413   0.6796  
## predictors1   0.0121260  0.0100739   1.204   0.2287  
## predictors2   0.0069030  0.0100144   0.689   0.4906  
## predictors3   0.0086452  0.0101618   0.851   0.3949  
## predictors4  -0.0021411  0.0100596  -0.213   0.8315  
## predictors5   0.0007777  0.0099655   0.078   0.9378  
## predictors6   0.0081664  0.0100775   0.810   0.4177  
## predictors7  -0.0039913  0.0100751  -0.396   0.6920  
## predictors8   0.0125959  0.0100846   1.249   0.2117  
## predictors9  -0.0012746  0.0100264  -0.127   0.8988  
## predictors10  0.0207467  0.0100252   2.069   0.0385 *
## predictors11  0.0078052  0.0099835   0.782   0.4343  
## predictors12 -0.0134649  0.0100076  -1.345   0.1785  
## predictors13  0.0054900  0.0101045   0.543   0.5869  
## predictors14  0.0034054  0.0100011   0.341   0.7335  
## predictors15 -0.0043387  0.0101054  -0.429   0.6677  
## predictors16 -0.0134847  0.0101699  -1.326   0.1849  
## predictors17  0.0172360  0.0100663   1.712   0.0869 .
## predictors18  0.0097484  0.0100367   0.971   0.3314  
## predictors19  0.0045021  0.0099840   0.451   0.6520  
## predictors20  0.0073811  0.0100638   0.733   0.4633  
## predictors21  0.0183324  0.0099965   1.834   0.0667 .
## predictors22  0.0101453  0.0101195   1.003   0.3161  
## predictors23 -0.0072479  0.0100816  -0.719   0.4722  
## predictors24  0.0010313  0.0101461   0.102   0.9190  
## predictors25 -0.0064636  0.0100027  -0.646   0.5182  
## predictors26 -0.0123409  0.0101139  -1.220   0.2224  
## predictors27  0.0129432  0.0100371   1.290   0.1972  
## predictors28 -0.0081849  0.0099898  -0.819   0.4126  
## predictors29  0.0040183  0.0101693   0.395   0.6927  
## predictors30  0.0076783  0.0100893   0.761   0.4467  
## predictors31  0.0024647  0.0099502   0.248   0.8044  
## predictors32  0.0058126  0.0099462   0.584   0.5590  
## predictors33  0.0063024  0.0100313   0.628   0.5298  
## predictors34  0.0079884  0.0099747   0.801   0.4232  
## predictors35 -0.0046969  0.0100587  -0.467   0.6405  
## predictors36  0.0212055  0.0100044   2.120   0.0341 *
## predictors37 -0.0138073  0.0099478  -1.388   0.1652  
## predictors38 -0.0028815  0.0100857  -0.286   0.7751  
## predictors39 -0.0201438  0.0101221  -1.990   0.0466 *
## predictors40  0.0173406  0.0101536   1.708   0.0877 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.006 on 9959 degrees of freedom
## Multiple R-squared:  0.0043, Adjusted R-squared:  0.000301 
## F-statistic: 1.075 on 40 and 9959 DF,  p-value: 0.344

What’s the Point of Significance Testing?

Confidence Sets

Simulations

Bootstrapping

Summing Up

References

From discussion: “P-Hacking”

From discussion: What about the F test?

What hypothesis does this test?

Bibliography

Bahadur, R. R. 1967. “Rates of Convergence of Estimates and Test Statistics.” Annals of Mathematical Statistics 38:303–24. https://doi.org/10.1214/aoms/1177698949.

———. 1971. Some Limit Theorems in Statistics. Philadelphia: SIAM Press.

Borges, Jorge Luis. n.d. Ficciones. New York: Grove Press.

Mayo, Deborah G. 1996. Error and the Growth of Experimental Knowledge. Chicago: University of Chicago Press.

Mayo, Deborah G., and D. R. Cox. 2006. “Frequentist Statistics as a Theory of Inductive Inference.” In Optimality: The Second Erich L. Lehmann Symposium, edited by Javier Rojo, 77–97. Bethesda, Maryland: Institute of Mathematical Statistics. http://arxiv.org/abs/math.ST/0610846.

Seber, George A. F., and Alan J. Lee. 2003. Linear Regression Analysis. Second. New York: Wiley.

Vaart, A. W. van der. 1998. Asymptotic Statistics. Cambridge, England: Cambridge University Press.