
Homework Assignment 4: How the North
American Mammalian Paleofauna Got a Crook

in Its Regression Line

36-402, Advanced Data Analysis, Spring 2013

Due at 11:59 pm on Monday, 11 February 2013

Turn in a single PDF file, with text and all figures, and a file name
including your Andrew ID. Accompany this with a single plain-text file
with all your R code, also named with your Andrew ID. Word files (doc,
docx) will not be graded. As always, reporting more digits than is justi-
fied by statistical precision will cost you points.

Our problem set this week concerns an important question for evolutionary bi-
ology and paleontology. It has been argued1 that larger organisms tend to have selec-
tive advantage over smaller ones of the same species, but larger bodies demand more
specialized internal structure, more “division of labor”, than small ones, indirectly
driving the evolution of increased biological complexity. To evaluate this, it is impor-
tant to know whether species tend to get larger over evolutionary time, and, if so, to
characterize this accurately.

Our data set this week is taken from the North American Mammalian Paleofau-
nal Database, which contains information on the typical body mass of about 2000
living and extinct species of mammals native to North America. (You can find it
on the website, http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/04/nampd.
csv.) Specifically, the columns of the data give: the scientific name of the species;
the natural logarithm of its typical body mass (measured in grams); the natural log-
arithm of the mass of its ancestor (in grams); how long ago it first appeared in the
fossil record (in millions of years); and how recently it last appeared (in millions of
years; an NA in this column indicates the species is still alive). We will model how
the change body mass is related to the body mass of the ancestral species. In particu-
lar, paleontologists have suggested that the correct model relating change in log mass
to ancestral log mass should be piece-wise linear: a downward-sloping line for small
ancestral log masses, and flat for larger ancestral masses. In this problem set, you will
fit that model, and examine its predictions.

1For instance John Tyler Bonner, , The Evolution of Complexity, by Means of Natural Selection (Prince-
ton University Press, 1988).
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1. (10) Basics

(a) (5) Load the data. Create a vector which gives each species’ change in
log body mass from its ancestor, and add it to the data frame as a new
column. Explain, in your own words, what it would mean for a species
to have a value of +0.7 in this column. Check that this column has NA
values in the correct places. Explain how you know that those are the
correct places.

(b) (5) Plot the change in log body mass versus ancestral log body mass. De-
scribe the plot briefly.

2. (10) Linear model

(a) (2) Linearly regress the change in log body mass on the ancestral log body
mass. Report the coefficients to reasonable precision.

(b) (3) Create a new figure which is the scatter-plot from problem 1b, plus
your fitted regression line.

(c) (5) Based on the estimates 2a and the plot from 2b, does this model sup-
port or undermine the idea that new species tend to be larger than their
ancestors? Explained.

3. (15) Piecewise linear model

(a) (5) The piece-wise linear model predicts the following mean response as a
function of the input x:

ŷ(x) =
�

a+ b x if x ≤ d
c if x ≥ d

Assuming that this is continuous at d , solve for a in terms of b , c and d .
Explain why, in this application, it is reasonable to assume continuity.

(b) (10) Write a function in R, called2 deac, that takes in a vector of numbers
x, and three parameters b, c, and d, and returns the prediction of the
model at each value of x.
Check that your deac function is working properly by seeing that when
b =−1, c = 0.05 and d = 2, giving x=c(1,1.5,3) outputs

[1] 1.05 0.55 0.05

Plot deac, with those parameters, as x goes over the range (0,4). Does it
look right?
Hints: ifelse for writing deac, curve for plotting.

4. (15) Because deac varies nonlinearly with parameter d , we cannot estimate it
by linear regression. However, we can still estimate the parameters by least
squares. To do this, we need to write a function, make a starting guess about

2From the initials of the scientists who proposed this model; they didn’t give it a name.
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the parameters, and use the built-in optimization function optim (see recipe
13.2 in The R Cookbook).3. The following function fits the model to a data set
by numerically minimizing the sum of squared errors:

my.start <- c(b=-1,c=0.2,d=10)
fit.a.deac <- function(data,start=my.start) {

sse <- function(par) {
preds <- deac(data$ln_old_mass,par[1],par[2],par[3])
sum((data$delta_ln_mass - preds)^2)

}
fit <- optim(par=start,fn=sse,method="Nelder-Mead")
coefficients <- fit$par
fitted <- deac(data$ln_old_mass,coefficients[1],coefficients[2],

coefficients[3])
residuals <- data$delta_ln_mass - fitted
mse <- mean(residuals^2)
return(list(coefficients=coefficients,fitted=fitted,residuals=residuals,

mse=mse,data=data))
}

(See online for the commented version; you’ll want to source that, rather than
typing this in and adding original errors.)

(a) (7) Explain what the inner function, sse, does.

(b) (8) What sort of output does fit.a.deac give — a vector, a list, an array,
what? What do the various components of the output represent, in terms
of the statistical problem?

5. (15) Starting positions The code given above looks for a vector of initial param-
eters called my.start, if no other starting point is supplied. The line before
the function makes up some values for my.start; they are bad ones. We will
see in a later problem set that a reasonable guess for d is about 5.

(a) (5) Use this value of d to get a rough guess for c by taking the average
change in log mass over all animals whose ancestral log mass exceeds d .
Explain why this is a reasonable way to guess at c .

(b) (5) Get a rough guess for b by linearly regressing the change in log mass
on ancestral log mass for animals where the ancestral log mass is less than
d . Explain why this is a reasonable way to guess at b .

(c) (5) Re-define my.start to contain your initial guesses for b , c and d . Run
fit.a.deac to get a fitted model, which you should call nampd.deac.
Plot the fitted values as a function of log ancestral mass on a scatter-plot
of change in log mass versus log ancestral mass.

3R has a built-in function, nls, for such “nonlinear least-squares” estimation, working more like lm.
Unfortunately, nls can be flaky when the model doesn’t have continuous derivatives, which is the case
here. Besides, writing your own code builds character.
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6. (20) Bootstrapping will continue until morale improves. Use resampling of resid-
uals, not cases, in both parts. Note: You can use the same resampled data-frames
for both parts of this problem, but it needs more clever programming. 1000
bootstrap replicates takes 1–2 minutes on my computer.

(a) (10) Find bootstrap standard errors, and 95% confidence intervals, for the
parameters b , c and d . Report all these quantities.

(b) (10) Find 95% bootstrap confidence bands for the fitted curve, and add
them to your plot from problem 5c.

7. (15) Linear vs. Piecewise Linear One way to compare two models is to see which
one can predict the other’s parameter values. We will compare the simple lin-
ear model from problem 2a with the piecewise linear model deac model from
problem 5c.

(a) (5) Simulate the fitted deac model, using resampling of residuals, and es-
timate the linear model on the simulation. What coefficients do you esti-
mate? Are they compatible with the ones you estimated from the data?

(b) (5) Simulate the fitted linear model, using resampling of residuals, and
estimate the deac model on the simulation. What coefficients do you
get? Are they compatible with the ones you estimated from the data?

(c) (5) Use five-fold cross-validation to compare the linear model from prob-
lem to the piecewise-linear deac model. Which one predicts mass changes
better?
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