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Agenda

Chaining together random variables
Natural orderings
Markov chains

Monte Carlo approximation of integrals and expectations
Markov Chain Monte Carlo

READING: Handouts on the class webpage
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Multiple Random Variables

rnorm, runif, etc., give independent and identically distributed
(IID) random variables
Most stochastic models don’t call for IID random variables
Varying distributions, dependence

How do we generate such things?
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Putting the Variables in Order

Try to arrange the variables in order of priority and/or time
Who someone votes for might change with their age or their race, but not vice versa

Generate the exogenous variables first
Then all the endogenous variables which only depend on
exogenous ones
Then all the variables which depend only on first-generation
endogenous ones, etc.
You’ll see more of this with graphical models in 36-402
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Time Series

Can have a sequence of variables going on in time, X1,X2, . . .Xn
Earlier ones can cause later but not other way

p(X1,X2, . . .Xn) = p(X1)p(X2|X1)p(X3|X2,X1) . . .p(Xn|Xn−1,Xn−2, . . .X1)
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Markov Property
Variations on the Theme
Invariance and the Long Run

Markov Processes

The Markov property: Given the current state Xt, earlier states
Xt−1,Xt−2, . . . are irrelevant to the future states Xt+1,Xt+2, . . .

⇔

p(X1,X2, . . .Xn) = p(X1)p(X2|X1)p(X3|X2) . . .p(Xn|Xn−1)

This is an assumption, not a law of nature
To simulate a Markov chain, we need to

Draw the initial state X1 from p(X1)
Draw Xt from p(Xt|Xt−1)— inherently sequential
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Inputs: number of steps, drawing function for initial distribution,
drawing function for transition distribution

rmarkov <- function(n,rinitial,rtransition) {
x <- vector(length=n)
x[1] <- rinitial()
for (t in 2:n) {

x[t] <- rtransition(x[t-1])
}
return(x)

}
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Markov Chains

Each Xt is discrete, not continuous
Represent p(Xt|Xt−1) in a transition matrix,
qij = Pr (Xt = j|Xt−1 = i)
Each row sums to 1 (stochastic matrix)

Represent p(X1) as a vector p0, summing to 1
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Graph vs. matrix

1

0.5

20.5
0.75

0.25

⇔
q=

�

0.5 0.5
0.75 0.25

�
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Your Basic Markov Chain

rmarkovchain <- function(n,p0,q) {
k <- length(p0)
stopifnot(k==nrow(q),k==ncol(q),all.equal(rowSums(q),rep(1,time=k)))
rinitial <- function() { sample(1:k,size=1,prob=p0) }
rtransition <- function(x) { sample(1:k,size=1,prob=q[x,]) }
return(rmarkov(n,rinitial,rtransition))

}

It runs:

> x <- rmarkovchain(1e4,c(0.5,0.5),q)
> head(x)
[1] 1 1 2 1 2 2

How do we know it works?
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> ones <- which(x[-1e4]==1)
> twos <- which(x[-1e4]==2)
> signif(table(x[ones+1])/length(ones),3)

1 2
0.489 0.511
> signif(table(x[twos+1])/length(twos),3)

1 2
0.752 0.248

vs. (0.5,0.5) and (0.75,0.25) ideally
Uses law of large numbers + conditional independence
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Hidden Markov Model (HMM)

Xt is Markov, but we see Yt = h(Xt)+noise, not Markov
e.g.

> means <- c(10,-10)
> sds <- c(1,5)
> y <- rnorm(n=length(x),mean=means[x],sd=sds[x])
> signif(head(y),3)
[1] 11.00 10.00 -10.60 11.80 -16.30 -2.41

(noise and distortion might be much more complicated)
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Variations

Interacting/coupled Markov chains: transition probability for chain
1 depends on its state and chain 2’s state

Continuous-time Markov chain: stay in the state for a random time,
with exponential distribution, then take a chain step
Semi-Markov chain: like CTMC, but non-exponential holding times
Chain with complete connections: as in HMM, Yt = h(Xt)+noise,
but then Xt+1 = r(Xt,Yt) (with no noise)
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Invariant Distributions

p1 = p0q
p2 = p1q= p0q2

pt = pt−1q= p0qt

Fact: If the chain can go from any state to any other and back, and
there are no fixed periods, then

pt→ p∞ = p∞q

p∞ = left eigenvector of q of eigenvalue 1
This is the invariant distribution
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> table(rmarkovchain(1e4,c(0.5,0.5),q))
1 2

5999 4001
> table(rmarkovchain(1e4,c(0.5,0.5),q))

1 2
5996 4004
> table(rmarkovchain(1e4,c(0,1),q))

1 2
5989 4011
> table(rmarkovchain(1e4,c(1,0),q))

1 2
5996 4004
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> eigen(t(q))
$values
[1] 1.00 -0.25

$vectors
[,1] [,2]

[1,] 0.8320503 -0.7071068
[2,] 0.5547002 0.7071068

> eigen(t(q))$vectors[,1]/sum(eigen(t(q))$vectors[,1])
[1] 0.6 0.4
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The Long Run of a Markov Chain

In the long run, all the Xt come close to having the same
distribution, the invariant distribution
They’re still dependent, though
Ergodic theorem:

1

n

n
∑

t=1
f (Xt)→

∑

x
p∞(x)f (x) =Ep∞

[f (X)]

time averages converge on expected values
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Why Take Integrals Anyway?
Monte Carlo Converges Rapidly
Importance Sampling

Random Samples and Integrals

Law of large numbers: if X1,X2, . . .Xn all IID with p.d.f. p,

1

n

n
∑

i=1

f (Xi)→Ep[f (X)] =
∫

f (x)p(x)dx

The Monte Carlo principle: to find
∫

g(x)dx, draw from p and take
the sample mean of f (x) = g(x)/p(x)
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Why Take Integrals Anyway?
Monte Carlo Converges Rapidly
Importance Sampling

Examples

Buffon’s needle (homework!)

Area of a complicated shape C: draw X uniformly from box around
C, take average of 1C(X)
Any expectation value, variance, . . .
Anything your other classes teach you as integrals or expectations:
significance levels, risk of portfolios, revenue of ads, thresholds for
epidemics, . . .
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Bayes’s Rule and Integrals

Bayes’s rule:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)
∫

p(y|x′)p(x′)dx′

Seems like we need to know the integral

p(y) =
∫

p(y|x′)p(x′)dx′
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Monte Carlo can be very accurate

Central limit theorem:

1

n

n
∑

i=1

g(xi)

p(xi)
 N







∫

g(x)dx,
σ2

g/p

n







Monte Carlo approximation to the integral is unbiased
RMS error ∝ n−1/2

∴ Just keep taking Monte Carlo draws, and the error gets as small as
you like, even if g or x are very complicated
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Importance Sampling

∫

f (x)p(x)dx=
∫

f (x)
p(x)

q(x)
q(x)dx

∴ draw X1,X2, . . .Xn IID from q and

1

n

n
∑

i=1

f (xi)
p(xi)

q(xi)
≈
∫

f (x)p(x)dx

p(x)/q(x) = importance weights (ideally close to 1)
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Metropolis and Bayes
Gibbs Sampler

How Do We Do Monte Carlo?

Lots of Monte Carlo needs us to sample from an ugly distribution p
None of the methods from last time might work well for p
Markov chain Monte Carlo, MCMC: build a Markov chain whose
invariant distribution is p
Run the chain, take its values
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The Metropolis Algorithm

We know p(x) = f (x)/c but we don’t know c
Suppose

p(x)q(y|x) = p(y)q(x|y)

then p would be invariant (“detailed balance”)

q(y|x)
q(x|y)

=
p(y)

p(x)
=

f (y)

f (x)

We don’t need to know c!
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Metropolis Algorithm (cont’d)

1 Set X1 however, t← 1
2 Proposal: Draw Zt from some r(·|Xt)
3 Draw Ut ∼Unif(0,1)
4 If Ut < f (Zt)/f (Xt), then Xt+1← Zt, else Xt+1←Xt
5 Increase t, go back to 2

Close to, but not quite, rejection method
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rmetropolis <- function(n,rinitial,rproposal,f) {
metrostep <- function(x) {

z <- rproposal(x)
u <- runif(1)
return(if(u < f(z)/f(x)) { z } else { x } )

}
return(rmarkov(n,rinitial,metrostep))

}

Typically, discard first k values (burn-in), then only use every mth

value (low correlation), or average blocks of length m
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Sampling from Bayes’s Rule

p(x|y)∝ p(y|x)p(x)

so we can use Metropolis to draw a sample from p(x|y) without
really knowing it!
Key to modern Bayesian statistics
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Gibbs Sampling

If X has many dimensions s, even writing f (x)∝ p(x) can be hard
Could try to turn X1,X2, . . .Xs into a Markov chain but that might
not work
Might be able to get p(Xi|X1, . . .Xi−1,Xi+1,Xs) = p(Xi|X−i)
The Gibbs sampler:

1 Set X1,X2, . . .Xs somehow
2 Pick a random i
3 Update Xi by drawing from p(Xi|X−i)
4 Go back to (2)

The sampler is a Markov chain on X
The invariant distribution is p
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Summary

1 Break complicated simulations into many draws from basic
distributions

Make later draws depend on earlier ones
Use the Markov property when you can

2 Monte Carlo is a stochastic way of evaluating integrals
Or expectation values or probabilities or. . .
Extra useful when the integrand is complicated or the space is
high-dimensional

3 Markov chain Monte Carlo approximates integrals as averages
over a Markov process with the right invariant distribution
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