36-465/665, Spring 2021
6 April 2021 (Lecture 18)
\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Risk}{r} \newcommand{\EmpRisk}{\hat{\Risk}} \newcommand{\Loss}{\ell} \newcommand{\OptimalStrategy}{\sigma} \DeclareMathOperator*{\argmin}{argmin} \newcommand{\ModelClass}{S} \newcommand{\OptimalModel}{s^*} \DeclareMathOperator{\tr}{tr} \newcommand{\Indicator}[1]{\mathbb{1}\left\{ #1 \right\}} \newcommand{\myexp}[1]{\exp{\left( #1 \right)}} \newcommand{\eqdist}{\stackrel{d}{=}} \newcommand{\Rademacher}{\mathcal{R}} \newcommand{\EmpRademacher}{\hat{\Rademacher}} \newcommand{\Growth}{\Pi} \newcommand{\VCD}{\mathrm{VCdim}} \newcommand{\OptDomain}{\Theta} \newcommand{\OptDim}{p} \newcommand{\optimand}{\theta} \newcommand{\altoptimand}{\optimand^{\prime}} \newcommand{\ObjFunc}{M} \newcommand{\outputoptimand}{\optimand_{\mathrm{out}}} \newcommand{\Hessian}{\mathbf{h}} \newcommand{\Penalty}{\Omega} \newcommand{\Lagrangian}{\mathcal{L}} \newcommand{\HoldoutRisk}{\tilde{\Risk}} \]
For any matrix \(\mathbf{v}\) and any scalar \(\lambda\), \[ \mathbf{v}(\mathbf{v}^T\mathbf{v} + \lambda \mathbf{I})^{-1} = (\mathbf{v}\mathbf{v}^T + \lambda \mathbf{I})^{-1} \mathbf{v} \] when both inverses exist
Proof: \[\begin{eqnarray} \mathbf{v}\mathbf{v}^T\mathbf{v} + \lambda \mathbf{v} & = & \mathbf{v}\mathbf{v}^T\mathbf{v} + \lambda \mathbf{v}\\ (\mathbf{v}\mathbf{v}^T + \lambda \mathbf{I})\mathbf{v} & = & \mathbf{v}(\mathbf{v}^T\mathbf{v} + \lambda \mathbf{I})\\ (\mathbf{v}\mathbf{v}^T + \lambda\mathbf{I})^{-1} (\mathbf{v}\mathbf{v}^T + \lambda \mathbf{I})\mathbf{v} & = & (\mathbf{v}\mathbf{v}^T + \lambda \mathbf{I})^{-1}\mathbf{v}(\mathbf{v}^T\mathbf{v} + \lambda \mathbf{I})\\ \mathbf{v} & = & (\mathbf{v}\mathbf{v}^T + \lambda \mathbf{I})^{-1}\mathbf{v}(\mathbf{v}^T\mathbf{v} + \lambda \mathbf{I})\\ \mathbf{v} (\mathbf{v}^T\mathbf{v} + \lambda \mathbf{I})^{-1} & = & (\mathbf{v}\mathbf{v}^T + \lambda \mathbf{I})^{-1}\mathbf{v}(\mathbf{v}^T\mathbf{v} + \lambda \mathbf{I})(\mathbf{v}^T\mathbf{v} + \lambda \mathbf{I})^{-1}\\ \mathbf{v} (\mathbf{v}^T\mathbf{v} + \lambda \mathbf{I})^{-1} & = & (\mathbf{v}\mathbf{v}^T + \lambda \mathbf{I})^{-1}\mathbf{v} ~ \Box \end{eqnarray}\]