36-465/665, Spring 2021
23 March 2021 (Lecture 14)
\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Risk}{r} \newcommand{\EmpRisk}{\hat{r}} \newcommand{\Loss}{\ell} \newcommand{\OptimalStrategy}{\sigma} \DeclareMathOperator*{\argmin}{argmin} \newcommand{\ModelClass}{S} \newcommand{\OptimalModel}{s^*} \DeclareMathOperator{\tr}{tr} \newcommand{\Indicator}[1]{\mathbb{1}\left\{ #1 \right\}} \newcommand{\myexp}[1]{\exp{\left( #1 \right)}} \newcommand{\eqdist}{\stackrel{d}{=}} \newcommand{\Rademacher}{\mathcal{R}} \newcommand{\EmpRademacher}{\hat{\Rademacher}} \newcommand{\Growth}{\Pi} \newcommand{\VCD}{\mathrm{VCdim}} \newcommand{\OptDomain}{\Theta} \newcommand{\OptDim}{p} \newcommand{\optimand}{\theta} \newcommand{\altoptimand}{\optimand^{\prime}} \newcommand{\ObjFunc}{M} \newcommand{\outputoptimand}{\optimand_{\mathrm{out}}} \newcommand{\Hessian}{\mathbf{h}} \newcommand{\Penalty}{\Omega} \newcommand{\Lagrangian}{\mathcal{L}} \]
Dashed: \(n\)-independent approximation error terms \(\propto 1/c\); dotted lines, estimation error terms proportional to \(c/\sqrt{n}\); solid lines, sum of approximation and estimation error terms; blue smaller \(n\), green larger \(n\). Note log scale on horizontal axis to show details. Observe how the minimum for the solid curves (\(=\) optimal level of the constraint) is larger at larger sample size.
Geer, Sara A. van de. 2000. Empirical Processes in M-Estimation. Cambridge, England: Cambridge University Press.
Geman, Stuart, and Chii-Ruey Hwang. 1982. “Nonparametric Maximum Likelihood Estimation by the Method of Sieves.” Annals of Statistics 10:401–14. https://doi.org/10.1214/aos/1176345782.
Grenander, Ulf. 1981. Abstract Inference. New York: Wiley.
———. 1996. Elements of Pattern Theory. Baltimore, Maryland: Johns Hopkins University Press.
Grenander, Ulf, Y. Chow, and D. M. Keenan. 1991. Hands: A Pattern Theoretic Study of Biological Shapes. New York: Springer-Verlag.
Grenander, Ulf, and Kevin M. Manbeck. 1993. “A Stochastic Shape and Color Model for Defect Detection in Potatoes.” Journal of Computational and Graphical Statistics 2:131–51. https://doi.org/10.2307/1390696.
Grenander, Ulf, and Murray Rosenblatt. 1957. Statistical Analysis of Stationary Time Series. New York: Wiley.
Grünwald, Peter D. 2007. The Minimum Description Length Principle. Cambridge, Massachusetts: MIT Press.