36-465/665, Spring 2021
4 March 2021 (Lecture 9)
Suppose our \(\mathbb{P}\left( \|X\| \leq r \right) = 1\), and we’re using linear models, so \(s(x) = x\cdot \beta\), with \(\| \beta \| \leq b\). Then \(\hat{\mathcal{R}}_n \leq \frac{rb}{\sqrt{n}}\), so the same bound holds for \(\mathcal{R}_n\)
If \(\mathrm{VCdim}(S) = d < \infty\), then for \(n \geq d\), \[ \Pi_{S}(n) \leq \left( \frac{en}{d} \right)^d = O(n^d) \] while if \(\mathrm{VCdim}(S) = \infty\), then \(\Pi_{S}(n) = 2^n\) for all \(n\)
(Popper’s book is actually from 1934 but R Markdown’s bibliography processor isn’t doesn’t understand how to handle translated works)
Anthony, Martin, and Peter L. Bartlett. 1999. Neural Network Learning: Theoretical Foundations. Cambridge, England: Cambridge University Press.
Lunde, Robert, and Cosma Rohilla Shalizi. 2017. “Bootstrapping Generalization Error Bounds for Time Series.” arxiv:1711.02834. https://arxiv.org/abs/1711.02834.
Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. 2012. Foundations of Machine Learning. Cambridge, Massachusetts: MIT Press.
Popper, Karl R. n.d. The Logic of Scientific Discovery. London: Hutchinson.
Vidyasagar, Mathukumalli. 2003. Learning and Generalization: With Applications to Neural Networks. Second. Berlin: Springer-Verlag.