36-465/665, Spring 2021
2 March 2021 (Lecture 8)
\[ \Gamma_n = \max_{f \in \mathcal{F}}{\left|\frac{1}{n}\sum_{i=1}^{n}{f(Z_i)} - \mathbb{E}\left[ f \right]\right|} \]
But \(\mathbb{E}\left[ \Gamma_n \right] \leq 2\mathcal{R}_n\) so \[ \mathbb{P}\left( r(\hat{s}) \geq \hat{r}(\hat{s}) + 2\mathcal{R}_n + m\sqrt{\frac{\log{1/\alpha}}{2n}} \right) \leq \alpha \]
\[ \mathcal{R}_n(\mathcal{F}) = \mathbb{E}\left[ \max_{f \in \mathcal{F}}{\left| \frac{1}{n}\sum_{i=1}^{n}{\sigma_i f(Z_i)}\right|} \right] \]
\[ \mathcal{R}_n(\mathcal{F}) = \mathbb{E}\left[ \max_{f \in \mathcal{F}}{\left| \frac{1}{n}\sum_{i=1}^{n}{\sigma_i f(Z_i)}\right|} \right] \]
Bartlett, Peter L., and Shahar Mendelson. 2002. “Rademacher and Gaussian Complexities: Risk Bounds and Structural Results.” Journal of Machine Learning Research 3:463–82. http://jmlr.csail.mit.edu/papers/v3/bartlett02a.html.
Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. 2012. Foundations of Machine Learning. Cambridge, Massachusetts: MIT Press.
Zhu, Xiaojin, Timothy Rogers, and Bryan Gibson. 2009. “Human Rademacher Complexity.” In Advances in Neural Information Processing Systems 22, edited by Y. Bengio, D. Schuurmans, John Lafferty, C. K. I. Williams, and A. Culotta, 2322–30. http://papers.nips.cc/paper/3771-human-rademacher-complexity.