Bounding the Maximum Deviation with Rademacher Complexity

36-465/665, Spring 2021

2 March 2021 (Lecture 8)

Recap

What we really need is the expected maximum deviation

Maximum deviation vs. expected maximum deviation

\[ \Gamma_n = \max_{f \in \mathcal{F}}{\left|\frac{1}{n}\sum_{i=1}^{n}{f(Z_i)} - \mathbb{E}\left[ f \right]\right|} \]

Expected maximum deviation vs. expected maximum discrepancy

Expected maximum deviation vs. expected maximum discrepancy (2)

\[\begin{eqnarray} \Gamma_n = \max_{f \in \mathcal{F}}{\left| \left( \frac{1}{n}\sum_{i=1}^{n}{f(Z_i)} \right) - \mathbb{E}\left[ f \right] \right| } & = & \max_{f \in \mathcal{F}}{ \left| \mathbb{E}\left[ \frac{1}{n}\sum_{i=1}^{n}{f(Z_i) - f(Z^{\prime}_i)} \mid Z_{1:n} \right] \right| }\\ \end{eqnarray}\]

Expected maximum discrepancy to Rademacher complexity

Rademacher complexity

Rademacher complexity (2)

Rademacher complexity and generalization error

How do we calculate the Rademacher complexity?

\[ \mathcal{R}_n(\mathcal{F}) = \mathbb{E}\left[ \max_{f \in \mathcal{F}}{\left| \frac{1}{n}\sum_{i=1}^{n}{\sigma_i f(Z_i)}\right|} \right] \]

How do we calculate the Rademacher complexity?

\[ \mathcal{R}_n(\mathcal{F}) = \mathbb{E}\left[ \max_{f \in \mathcal{F}}{\left| \frac{1}{n}\sum_{i=1}^{n}{\sigma_i f(Z_i)}\right|} \right] \]

Even more approximation

Summing up

Backup: Strategies vs. Losses

References

Bartlett, Peter L., and Shahar Mendelson. 2002. “Rademacher and Gaussian Complexities: Risk Bounds and Structural Results.” Journal of Machine Learning Research 3:463–82. http://jmlr.csail.mit.edu/papers/v3/bartlett02a.html.

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. 2012. Foundations of Machine Learning. Cambridge, Massachusetts: MIT Press.

Zhu, Xiaojin, Timothy Rogers, and Bryan Gibson. 2009. “Human Rademacher Complexity.” In Advances in Neural Information Processing Systems 22, edited by Y. Bengio, D. Schuurmans, John Lafferty, C. K. I. Williams, and A. Culotta, 2322–30. http://papers.nips.cc/paper/3771-human-rademacher-complexity.