From Convergence to Generalization Error via Uniform Convergence

36-465/665, Spring 2021

25 February 2021 (Lecture 7)

\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Risk}{r} \newcommand{\EmpRisk}{\hat{r}} \newcommand{\Loss}{\ell} \newcommand{\OptimalStrategy}{\sigma} \DeclareMathOperator*{\argmin}{argmin} \newcommand{\ModelClass}{S} \newcommand{\OptimalModel}{s^*} \DeclareMathOperator{\tr}{tr} \newcommand{\Indicator}[1]{\mathbb{1}\left\{ #1 \right\}} \newcommand{\myexp}[1]{\exp{\left( #1 \right)}} \]

Previously

Why we’re almost there

Why we’re not quite there

What’s the issue, mathematically?

What’s the issue, mathematically? (2)

How would uniform convergence help?

How would uniform convergence help? (2)

How could we get uniform convergence?

Why the union bound isn’t enough

The route of approximation

The route of approximation (2)

Pros and cons of the approximation / covering route

Pros

Cons

The route of trickery

Summing up