36-465/665, Spring 2021
16 February 2021 (Lecture 5)
\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Risk}{r} \newcommand{\EmpRisk}{\hat{r}} \newcommand{\Loss}{\ell} \newcommand{\OptimalStrategy}{\sigma} \DeclareMathOperator*{\argmin}{argmin} \newcommand{\ModelClass}{S} \newcommand{\OptimalModel}{s^*} \DeclareMathOperator{\tr}{tr} \newcommand{\Indicator}[1]{\mathbb{1}\left\{ #1 \right\}} \newcommand{\myexp}[1]{\exp{\left( #1 \right)}} \]
If we have \(n\) samples, then with probability at least \(1-\alpha\), \[ \Risk(\hat{s}) \leq \EmpRisk(\hat{s}) + g(n,\alpha) \] for some function \(g\) we can calculate
If we have \(n\) samples, then with probability at least \(1-\alpha\), \[ \Risk(\hat{s}) \leq \Risk(s^*) + h(n,\alpha) \] for some function \(h\) we can calculate
\[ \Prob{Z \geq \epsilon} \leq \frac{\Expect{Z}}{\epsilon} \]
\[ \Prob{f(Z) \geq \epsilon} \leq \frac{\Expect{f(Z)}}{\epsilon} \]
(This conclusion is correct but there’s a missing assumption we should be explicit about: what? [see backup])
Suppose \(Z_n\) are random variables with common mean \(\mu\)