36-465/665, Spring 2021
9 February 2021 (Lecture 3)
\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Risk}{r} \newcommand{\EmpRisk}{\hat{r}} \newcommand{\Loss}{\ell} \newcommand{\OptimalStrategy}{\sigma} \DeclareMathOperator*{\argmin}{argmin} \]
\[ \hat{s} = \argmin_{s}{\EmpRisk(s)} \] - On the other hand \[ s^* = \argmin_{s}{\Risk(s)} \]
\[ \hat{\theta} \approx \theta^* - \mathbf{k}^{-1} \nabla \EmpRisk(\theta^*) \]
\(f(\theta)\) (solid) vs. \(f(\theta^*) + \frac{1}{2}f^{\prime\prime}(\theta^*) (\theta-\theta^*)^2\) (dashed) around the local minimum \(\theta^*\)