- Reminder about block models
- Stochastic block models
- SBMs and community discovery
- Continuous latent space models
- Extensions and side-lights (time permitting)
\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \DeclareMathOperator*{\logit}{logit} \DeclareMathOperator*{\Tr}{Tr} \]
\[ \Prob{ A_{ij}=1| Z_i = r, Z_j = s } = b_{rs} \]
Independence across edges
Inference as easy as could be hoped
Presumes: block assignments are known
\[ \begin{eqnarray} Z_i & \sim_{IID} & \mathrm{Multinomial}(\rho)\\ A_{ij} | Z_i, Z_j & \sim_{ind} & \mathrm{Bernoulli}(b_{Z_i Z_j}) \end{eqnarray} \]
i.e., block assignment is stochastic (but IID)
\[ \ell(b, \rho) = \log{\sum_{z \in \{1:k\}^n}{\left[\prod_{i=1}^{n}{\prod_{j=1}^{n}{b_{z_i z_j}^{A_{ij}} {(1-b_{z_i z_j})}^{(1-A_{ij})}}} \prod_{i=1}^{n}{\rho_{z_i}}\right]}} \]
Define \(n_r(z)\), \(e_{rs}(z)\), \(n_{rs}(z)\) in the obvious ways
\[ \ell(b, \rho) = \log{\sum_{z \in \{1:k\}^n}{\left[\prod_{r,s}{b_{rs}^{e_{rs}(z)} (1-b_{rs})^{n_{rs}(z) - e_{rs}(z)}} \prod_{r}{\rho_r^{n_r(z)}}\right]}} \]
and \(\log{\sum} \neq \sum{\log} \ldots\)
If we knew \(Z\), estimating \(\mathbf{b}\) and \(\rho\) would be easy
If knew \(\mathbf{b}\) and \(\rho\), getting \(\Prob{Z|A}\) is at least conceivable
\[ \begin{eqnarray} \kappa_{rs} & \equiv & e_{rs}/2m\\ \kappa_{r} & \equiv & \sum_{s}{\kappa_{rs}}\\ Q & \equiv & \sum_{r}{\kappa_{rr} - \kappa_r^2}\\ \end{eqnarray} \]
\[ Q(z) = \sum_{r}{\kappa_{rr}(z) - \kappa_r(z)^2} \]
\[ Q = \frac{1}{2m}\sum_{i,j}{\left[A_{ij} - \frac{k_i k_j}{2m}\right]\delta_{Z_i Z_j}} \]
The classic approach, due to Hoff, Raftery and Handcock:
\(\Rightarrow\)
\(\Rightarrow\)
(D. Asta)
Lots of real networks are tree-like; this leads to non-Euclidean, hyperbolic spaces
(D. Asta)
(M. C. Escher)
Use a hyperbolic space, with link probabilities decaying in distance, and (Krioukov et al. 2005):
\[ Q = \frac{1}{2m}\sum_{i,j}{\left[A_{ij} - \frac{k_i k_j}{2m}\right]\delta_{Z_i Z_j}} \]