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1 Measurement: Some Generalities

The last few lessons have been implicitly about measurement. The goal of tests like the SAT, and even
more specific subject-matter tests is to measure knowledge of facts and/or skills. There are several lines of
evidence for thinking they achieve that goal, at least to some extent:

• “Face validity”: The tasks the tests ask you to do are, in fact, ones that demonstrate that knowledge
and/or skill

• Process: It’s hard to see how you could score high on such tests if you don’t have that sort of knowledge,
and it’s easy to understand how having that knowledge contributes to your getting a high score
– Even so, test scores are going to also be influenced by many other things, like motivation,

fatigue/stress, test-taking-skills (as opposed to the skills we’re really trying to measure), . . .
• Predictive validity: scores on these tests are correlated with other things which (we think) also demand

those sorts of knowledge and/or skill, like SAT predicting college grades

Despite their great similarity (and common historical roots), things like IQ testing are much less convincing
as efforts to measuring “general intelligence”. There is no theory about what should or should not be on such
a test, the way we have criteria for what should or should not be on an arithmetic or geometry test. (And
this is despite a lot of time and effort on the part of intelligence-testers who have been sensitive about this
absence.) Attempts to explain what “general intelligence” might be, and how it might contribute to getting a
high score on a test, usually turn out to be vague generalities or viciously circular (you’re able to solve a lot
of problems because you have a lot of problem-solving ability). There are, also, many other explanations
for patterns in test-results which do not involve there being any such thing as “general intelligence”, which
would also explain why IQ scores correlate with many life outcomes.

This suggests some lessons about measurement:

• What you’re trying to measure should, in fact, exist
• That variable should be a cause of the measured values

– The other causes of the measured values should, ideally, be so much random noise
• Saying “this is how we measure X” doesn’t make it so

Today we’re looking at measuring attitudes towards groups, and/or prejudice against (or even for) groups.
This is a very complicated and tricky thing, once you think it through. For any one person, we’re talking
about their idea or conception of some social group, which is an abstraction in their mind, and then the
emotional tone or coloration or dispositions which go along with that. (If somebody thinks group X is unfairly
discriminated against and oppressed, but that a consequence of that discrimination is that members of group
X are aggressive and lots of them are driven to lives of crime and are dangerous to be around, is that a
sympathetic or unsympathetic attitude towards the group?) How are attitudes about a group, in the abstract,
connected to attitudes towards any particular person who is (someone thinks) a member of the group? How
are either kind of attitude connected to behavior? And now we want to do statistics on this, so we want to
gather measurements from lots of people and hope they are, somehow, comparable.

There are lots of difficulties for every way people have tried to do this. That doesn’t mean it’s not worth
attempting, but it’s important to be clear about those difficulties, and the limitations of what’s been
attempted.
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2 Explicit Attitude Measures

The simplest way you could find out what somebody thinks and feels about a social group is to ask that
person. If you approach them the right way, they will often give you an answer! Since we’re rarely interested
in what one particular person’s attitudes, this is usually done as part of some survey with a sampling scheme.

If you ask someone what they think and feel, they will often tell you — in words. This is a problem for
statisticians. Dealing with free-form text as data is difficult; dealing with free-form text from hundreds or
thousands of people as data is very difficult. (If some people say auto mechanics are “cheats”, and other
people say they are “swindlers”, is that expressing the same attitude, or importantly different ones?) Attitude
surveys therefore try to force people to respond in set, stereotyped ways, which make the data analysis easier.
Some prominent ones are binary questions, ordinal scales, and numerical scales.

2.1 Binary questions

are simple: “Do you feel favorable or unfavorable towards X?” The difficulty is that lots of people might have
more complicated feels.

2.2 Ordinal or Likert Scales

These are questions where the allowed answers are of the form “strongly disagree, disagree, neutral, agree,
strongly agree, no opinion”, or the “strongly disapprove, disapprove, neutral, approve, strongly approve, no
opinion”. These are called Likert scales not (as I thought as an undergrad) because they’re about how much
you like something, but after Likert (1932), which first systematically used them in attitude measurements.
(Those examples are of the common five-point scale; you can imagine how the three-point and seven-point
scales go.)

It’s important to realize that ordinal data are in fact ordinal, so it makes sense to rank them, and we can,
e.g., talk about a median value, but most arithmetic operations aren’t dubious, and so means don’t make a
lot of sense. It’s even not altogether clear that my “agree” and your “agree” on the same question have the
same meaning. Maybe my intensity of feeling when I say “agree” would actually correspond to what you
mean when you say “strongly agree”. But the hope is that most people in the population in question mean
roughly the same things by these familiar words and phrases.

Also, there are usually many Likert-type questions, and then we often want to reduce them to some sort of
over-all estimate of the attitude. At this point people will sometimes start to do unwise things like assigning
numerical scores 1–5 to the levels and summing them or averaging them across questions. A statistically
more sophisticated procedure would be to say that each person i has an attitude αi, and the probability of
giving response k on question j is then some function f(αi, j, k). If we think that different questions are
better or worse at “tapping in to” the underlying attitude, so each question has a βj , we’d then have response
probabilities of the form f(αi, βj , k), and we could try to jointly estimate the αi’s and the βj ’s. This will
usually involve some assumptions about specific algebraic forms for the function f . If this sounds rather
like the item response theory we talked about for achievement tests, that’s no coincidence. Note that if our
model assumes there’s a single, one-dimensional variable α which drives the responses, simply estimating
that model won’t check those assumptions. (Estimation is not goodness-of-fit.)

(A typical model here would be what’s called the “graded response model” (GRM), which would say that the
probability of giving response k or higher is eaj(αi−βjk)

1+eaj(αi−βjk) . The βjk parameter is basically a the threshold
for responding k or higher on question j, and the aj parameter says how sensitive question j is to the trait
being measured over-all. From these cumulative probabilities, we can find the probability of any one response
by subtraction. This gives us the likelihood, and the log of that is what we maximize to estimate all the
parameters.)
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2.3 Quantitative scales

There are also attempts to try to get more directly quantitative measures of attitudes out of people, like
“feeling thermometers” where you’re supposed to say how “warmly” you feel about a group, on a familiar
temperature scale. The obvious problem here is that we don’t really know if my answering “70” really means
the same thing as your answering “70”. (This would be less of a problem if we want to do “within-subject”
comparisons, of how relatively warmly I feel about different groups.) My suspicion is that things like this
aren’t actually any more quantitative than a Likert scale, but I will admit to not being a specialist on this.

2.4 Drawbacks to Explicit Attitude Measures

There are a number of obvious difficulties with surveys which ask people what they think and feel. Some of
these are common to all surveys, others specifically related to these issues.

People who answer surveys may be systematically different from those who don’t. In particular, certain
attitudes may be more or less common among survey-responders than in the population at large. So while
the results are accurate about those who answer, they don’t generalize to the population of interest. This is
one of the various forms of selection bias.

Different ways of phrasing a question can elicit different answers. Whether this is because those different
phrasings carry subtly but importantly different meanings, or because people are suggestible and manipulated
by “framing”, is a difficult question. More practical responses to the problem are to include multiple versions
of the “same” question, perhaps flipping randomly whether it’s asked positively or negatively.

• Telling a survey-worker what you think and feel about some group is a social interaction with another
human being, and people can be very deliberate about how they appear to others. In particular, they
are prone to lying to make themselves look good in the eyes of others. The technical phrase for this is
desirability bias. This is a problem here, because if I think that such-and-such an attitude is widely
disliked, I’m not likely to admit to holding that attitude. (I might be more or less willing to admit it to
a stranger like a survey-worker than to someone I know.)

(The trouble desirability bias creates for us gets worse because desirable attitudes are different in different
times and places. Attitudes that are seen as desirable among young online-magazine writers in Brooklyn will
not be the same as those endorsed among middle aged fundamentalist Mormon farmers in Idaho. This makes
comparisons over time, space, and social groups especially difficult.)

As a concrete example, there are long-running surveys which have asked questions about approval of interracial
marriage over many decades. In the General Social Survey (GSS), the text of the question reads “Do you
think there should be laws against marriages between (Negroes/Blacks/African-Americans) and whites?”
(The text has changed slightly over the decades to reflect trends in group names. Also, the question wasn’t
asked in every year of the survey.)
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What you can see from the figure is that the percentage of people saying that marriages between blacks
and whites should be illegal declined dramatically between 1972 and 2002. Such marriages were, in fact,
illegal in many states, until all those laws were over-ruled by a 1967 Supreme Court case, wonderfully named
Loving versus Virginia. (Notice that this was just five years before the GSS started asking this question.)
The percentage of those saying such marriages should be illegal dropped something like ten points in less
than ten years, so either a lot of people changed their attitudes towards this, or a lot of people changed what
they were willing to say. Or, of course, some of both. Now, in this particular case, we have other reasons to
think attitudes really have changed, because interracial marriages have become much more common (and
the children of such marriages do no worse in life than others and are not despised as mongrels, etc.), etc.
(Alba 2020). But we also have reasons to think that some of the change visible in that graph is increasing
desirability bias.
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3 Not quite so explicit attitude measures

One way to try to get around desirability bias is to ask questions which aren’t so directly about attitudes
towards the group in question, so that people will feel more comfortable giving honest answers.

A very prominent instance of this, since the 1980s, has been the use of “modern racism” or “racial resentment”
tests or scales. The idea here is that, by the 1980s, it was not acceptable in public polite company to express
openly racist attitudes of the kind that had been common in the 1950s and 1960s (to say nothing of earlier)1.
Remember that the civil rights acts were in 1964 and 1965, that interracial marriage only became legal
everywhere in the US in 1967, etc. — there were plenty of Americans in 1980 or 1985 who had been quite
openly racist fifteen or twenty years earlier, but who now felt like they couldn’t be openly racist. “Modern
racism” or “racial resentment” scales are a series of Likert questions where someone could give answers which
don’t necessarily commit them to views like “the reason black people are poor is that they’re lazy and dumb”,
but hint at it. A typical item on the scale asks people to agree or disagree with the following:

Irish, Italian, Jewish, and many other minorities overcame prejudice and worked their way up.
Blacks should do the same without any special favors.

and so on through other, similar items. (For some items, like this one, agreement is the more racist direction,
but for others, e.g., “Over the past few years, blacks have gotten less than they deserve”, disagreement.)
These scales or tests are intended to get at attitudes towards blacks, and specifically at racist attitudes
towards them. These scales certainly predict certain kinds of behavior (Cramer 2020),2 but exactly what
that means is where things get tricky.

If you were a white racist in 1985, and got asked to agree or disagree with that statement, it’s easy to imagine
you’d endorse it. With legal discrimination ended only 20 years before, it’s also plausible to imagine that
most people who endorsed it would be white racists, though that’s a shakier (and see the figure below). (Also:
it’s not exactly certain we’ve gotten away from desirability bias! You have to expect that at least some people
see what the test-makers were driving at with these questions, and adjust their responses accordingly.) But it
is not clear that this is still what the question meant in 2016, or means in 2022, or will mean in 2030.

It’s also not clear that this statement has the same meaning to all groups. As it happens, the “work their
way up” question has been asked in the GSS since 1994, so we can look at trends in it:

1In the homework, you’ll see examples of the kinds of questions used to measure racism in the 1940s and 1950s, which were
much more blunt.

2A very subtle point can arise here. A typical finding is that people who score higher on a “modern racism” scale are also less
likely to vote for black candidates. This is often interpreted as high scorers being prejudiced against blacks. But it’s also logically
possible that low scorers are prejudiced in favor of blacks. It seems to me very hard to distinguish between these alternatives,
since it’s not like we have some known-to-be-complete-unprejudiced people whose support for a given black candidate could be
used as a reference level. Indeed it seems so hard to distinguish between these alternatives that I doubt whether the question is
meaningful at all. But see Agadjanian et al. (2021).
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Here I’ve sub-divided respondents by race, and by their political views as liberals, moderates and conservatives3.
I’ve also collapsed “strongly agree” and “agree” into a single level of “agree”, and likewise with “disagree”.
(You can play with my code to break these out if you like; it doesn’t change things much but does make
the graphs much “busier”.) You can see that whites are more likely to agree with this work-their-way-up
statement than are blacks who declare the same political views, which fits with the idea that this statement is
tapping into racism of some kind. But something like 40% of black liberals agree with the statement. White
liberals are now more likely to dis-agree with this statement than the average of all black people (though
not black liberals)4. It is imaginable that this is all because of deeply internalized anti-black racist views on

3The GSS has a 7-point Likert scale for political views, from very liberal to very conservative, so I’ve grouped 1–3 as “liberal”
and 5–7 as “conservative”. I’m also ignoring people who say it doesn’t fit them, don’t answer, etc.

4Figures like this inevitably suggest that the same group of people is changing their minds about the question being asked.
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the part of many black people, but it’s also imaginable that some black people, at least, give this statement
a different meaning than it was originally intended to have by the test-makers. Maybe they take it as an
expression of black pride, maybe they understand “special favors” differently, maybe they even take it as a
statement of defiance. But if black people can understand this statement differently, maybe other people can
too!

There is currently controversy about whether, today, the “modern racism” scale really measures racism, or
what’s called the “just world assumption”, that people by and large end up with what they deserve. One
line of argument in favor of this is that if you take the same statements and swap out other groups for
“blacks”, e.g., “Nepalese”, you get very similar results. You even get similar results if you swap in “whites” or
“Americans” (Carney and Enos 2017). If this is right, then these tests might not be measuring racism, at
least not any more, but a different attitude towards inequality. People acting on such attitudes might help
perpetuate or create racial inequalities, but it would seem a stretch to say that the attitude was racist. (I do
want to emphasize that this is very much a live point of debate among experts right now, so it’s unwise for
non-experts to hold any very strong opinion here.)

This may be the case, but there can again be selection issues: the set of people who self-identify as “black conservatives” or
“white moderates” changes over time. It could be that lots of white liberals have come to disagree with the statement over the
last ten years, but it’s also possible that white people who agree with it have ceased to call themselves “liberals”. Panel or
longitudinal data, tracking the same people over time, is by far the best way to settle such doubts.
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4 Implicit Attitudes

One big problem with asking people about their attitudes, and even with asking them questions that hint
at their attitudes, is that they can see what you’re getting at, and at least some of them will adjust their
answers to serve their goals, not to tell you the truth. Another big problem is that, people may not know
their own attitudes, and/or that their conscious attitudes may not actually be what shape their behavior5.

This has led people to try to find indirect ways of measuring attitudes. Ideally:

• The attitude is a cause of the performance on the test
• We don’t directly ask about the attitude
• It’s hard for people to control how they respond, and so hard to fake.

The outstanding example of this is the implicit association test (IAT) (Greenwald, McGhee, and Schwartz
1998; Greenwald, Nosek, and Banaji 2003). The basic idea is that very strongly learned associations between
two concepts can be activated very quickly and automatically, without conscious thought, leading to fast
reactions. But if people have to over-ride those very strongly learned associations, that does take conscious
thought, which is slow (and error-prone). So if someone (strongly) associates idea X with idea Y, and we ask
them to do something where they need to link X’s and Y’s. But if we ask people to do something where they
need to link X with Z, that should be slow, especially if Y and Z are somehow opposed. Reversing this, if we
find that linking X with Y is faster than linking X with Z, maybe we can conclude that X and Y were already
more strongly associated in someone’s mind than X and Z.

This leads to the scoring procedure introduced by Greenwald, Nosek, and Banaji (2003) and used about a
bazillion times since then:

• In phase 1, you have to press one key (say a on the left) if the computer shows you a picture from
group A or a positive word, and a different key (say l on the right) if you see a picture from group B
or a negative word

• Phase 2, you press the first key if you see a picture from group B or a positive word, and the other key
if you see a picture from group A or a negative word.

The difference between your average response time in phase 1 and in phase 2 is supposed to measure how
strongly you associate group A with positive things and group B with negative things, versus associating
group A with positive things and group B with positive things.6 That is, to be clear, to be clear, faster
reactions in phase 1 than in phase 2 are supposed to measure the extent to which you have the “A good,
B bad” association. Association strengths are supposed to cause to reaction times, so we can “read back”
from reaction times to associations. Attitudes are supposed to cause associations, so there’s an extra step of
inference there. The A/B pairs where this has been used include: black vs. white, male vs. female, Japanese
vs. Korean, insects vs. flowers, and many others.

This has been a hugely influential procedure, not just in psychology but “in the wild” of daily life. Unfortunately
there are a lot of problems.

We can start with saying that it’s not at all clear what someone’s score on the IAT has measured. What’s
been calculated is the difference in average response times between phase 1 (A/good, B/bad) and phase
2 (A/bad, B/good). That stronger associations imply faster responses is plausible, but it rests on some
psychological ideas which can certainly be disputed (they’re not really detailed enough to call a “theory”).
We certainly don’t have a theory which lets us quantitatively connect association strength with reaction
times, or even an understanding of what other confounding factors would show up in reaction times.

5For example, I had an acquaintance in my 20s who insisted that what he was looking for in a girlfriend was spiritual
companionship from a fellow Catholic. But it was a bit of a joke in our circle that what his girlfriends all actually had in
common were very similar figures and red hair. I don’t think he was lying, or even deceiving himself, but there was clearly
something going on other than his expressed, conscious attitudes.

6I haven’t seen psychologists address what should happen for someone who likes A but has no particular feelings about B, or
who doesn’t like B but really, really hates A. It’d seem like at most the test could measure relative attitudes towards the two
groups. But it’s a huge literature and I could easily have missed this corner of it. (If any reader can send me a pointer, I’d
appreciate it.)
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But even if this procedure measures associations, it doesn’t tell us where the associations come from. Someone’s
personal attitudes might lead to associations between positive and negative words and the objects of those
attitudes. Maybe people who are racists for white people and against black people therefore have an association
between “caress” and “Hank”, and an association between “crash” and “Latisha”. (These are actual examples
from Greenwald, McGhee, and Schwartz (1998).) How those associations would be built up is not exactly
clear. (They certainly wouldn’t actually encounter those names paired with those words many times in their
experience.) It would seem to have to be a very indirect association. But (as many people have pointed out)
another place such associations could come from is simply someone’s knowledge of cultural stereotypes, even
if their own attitudes are very different7. It’s also quite possible that the linkages here are so indirect, and
so many other things can affect reaction times, that there’s no straight-forward interpretation at all of the
difference in reaction times.

Leaving that to one side, the reliability of the IAT is very low. Measurement theorists say a measurement is
“reliable” if it gives the same, or very similar, values on repeated measurement. A scale which gives wildly
different readings every time you step on it is not a reliable measure of weight. A scale which gives the same
measure if you step on it, step off, and then step back on is “reliable” in this sense, even if (say) it’s always
off by 25%, so long as the error is always in the same direction. Reliability, in this sense, is basically the
opposite of measurement noise, not necessarily accuracy8.

A common measure of reliability is the “test-retest correlation”, the correlation coefficient for re-doing the
test after some time has passed. For the IAT, typical values of this, after a few weeks, are about 0.4 (Machery
2021, sec. 4). (For something like the SAT or an IQ test, the test-retest correlation at that time-interval
would be more like 0.8 or 0.9, and even something as dubious as “narcissism” would clock in around 0.7.)

If a measure has low reliability, it’s a bad idea to base any important judgments or decisions on a single
measurement. A low-reliability measure of individuals might still give useful information about groups
averages. So (for example) even if the IAT is an unreliable measure of how sexist (or racist, etc.) any
individual is, aggregating lots of unreliable measurements might still tell us whether (say) doctors or lawyers
are more sexist. Some of the original proponents of the IAT now take more or less this line, though not
always consistently. Similarly, you could imagine averaging many IATs of the same person taken over time, in
the hope that they’ll all fluctuate around their true level of bias. (I don’t know if anyone has advocated this
seriously.) Reporting results to, or on, any one individual about how biased they are on the bias of a single
test this unreliable seems scientifically irresponsible.

But reliability may also be beside the point, because IAT scores do not, in fact, do a great job of predicting
behavior, and changes in IAT scores do not seem to lead to changes in behavior (Machery 2021, sec. 5 and 6):

[T]here is no sugarcoating it; At the individual level, indirect measures are poorly predictive of
behavior, and their incremental validity [over and above explicit measures], while not null, is very
limited. Predictive validity could be higher in some contexts, but compelling evidence is lacking.
The limitation of the significance of indirect measures to a narrow context undermines their social
significance and is definitely at odds with the ambitions of their inventors.

7There are, for instance, negative stereotypes of white people which are common in American culture, most prominently that
they’re boring and uptight: their food is bland, they’re bland, they bad at sports and dance and anything else that uses their
bodies, they’re sexually repressed, they try to make everyone else as boring as they are, etc. Basically anyone who grew up in
the US, exposed to popular culture, has seen many instances of these stereotypes. It would be very interesting to know if a
version of the IAT can detect these associations. (Again, for all I know this has been done somewhere in the huge IAT literature,
and I’d appreciate any pointer from readers.)

8See much more on this below.
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5 Morals

1. Measurement is hard; measuring slippery, complicated things is very hard.
2. It is easy to be mislead by the names people give their procedures into thinking that measurement

has been achieved. If something is called a “racial resentment test”, then it’s easy to presume that it
measures racial resentment. But whether it actually does so is a complicated and debatable scientific
hypothesis9. Measurement is an achievement, not a presumption.

3. The fact that all the ways of measuring attitudes I’ve covered have big problems doesn’t mean we
should give up; but it does mean that we can’t say this is a solved problem and build on its results.

9It might be better if we gave tests like this random identifying strings, so that the question of whether the BGJHD test
measures racism, the belief that everyone gets what they deserve, or something else, might be less heated, and less pre-judged.
Cf. McDermott (1976) on the dangers of “wishful mnemonics” in artificial intelligence research.
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6 “Reliability”, “Validity”, “Precision”, “Accuracy”

Scientists and statisticians have spent a lot of time thinking about measurement, and evolved some fairly
sophisticated theories about it. Some of this theorizing has been done in the physical sciences, and some
in the social sciences, most especially psychology. We won’t go fully into the details, but both traditions
have developed a distinction between measurements being “reliable” or “precise” on the one hand, and being
“valid” or “accurate” on the other. (Psychologists tend to talk about “reliability” and “validity”, physicists
about “precision” and “accuracy”.) Reliability or precision is about whether repeating the same measurement,
under the same condition, will give the same result. Validity and accuracy are about whether we’re measuring
what we claim to be measuring, and coming close to the truth.

To illustrate a little, here are 5 measurements of my body temperature (in Farenheit), made with the same
thermometer at one-minute intervals as I was working on these notes:

97.2, 97.1, 97.0, 97.3, 97.5

Body temperature fluctuates, but probably not by half a degree in two minutes. It’s reasonable to think
my actual temperature wasn’t changing over this period. The difference in these measurements is then just
noise. (Maybe I held the thermometer differently each time and that alters the results, maybe the electronic
circuits in the thermometer keep drifting into and out of alignment, etc.) When we talk about the precision
of a measurement, we’re talking about the extent to which we’d get the same values out of repeating the
measurement. Usually we report some notion of im-precision, like the standard deviation of the measurements
(0.192 degrees F) or their variance (0.037 degrees F squared).

When we talk about the accuracy of a measurement, we’re talking about how close it gets to the truth. This
is often quantified by some notion of in-accuracy, like the mean squared error (MSE) or root-mean-squared
(RMS) error. As you remember, the MSE is equal to the variance plus the square of the bias. More generally,
physicists tend to distinguish between systematic sources of error — ones which show up repeatedly, the way
bias shows up as a difference between the average measurement and the truth — and statistical sources of
error, which follow some distribution but don’t repeat. We can’t get at systematic error sources, like bias, just
from looking at the distribution of measurements. We can get at the magnitude of merely-statistical error by
looking at that distribution. If my body temperature is really 98.6, then the fact that the average thermometer
reading was 97.2 F suggests a bias of 1.38 degrees Farenheit. (This in turn would imply an MSE of 1.93
degrees Farenheit squared, and an RMSE of 1.39 degrees Farenheit.) But if my actual temperature is really
97.4 degrees, there would be a different bias and a different RMSE. Checking instruments and procedures
against cases with known values — of temperature, of mass, of radioactivity, etc. — is an important part of
doing high-quality measurement in the physical sciences for just this reason.

So: physicists like to gauge precision using the variance or standard deviation of measurements, and to gauge
accuracy using the MSE or RMS error. Since, as I just reminded you, MSE is variance plus bias squared,
precision limits accuracy, more exactly variance is a lower bound on MSE. (And so the standard deviation is
a lower bound on RMS error.)

When psychologists talk about the “reliability” of a measurement, they mean basically the same thing as what
physicists mean by “precision”. However, psychologists like to gauge reliability by the correlation between
measurements that should be identical. This is related to the variance of measurements, but it’s not the same.
Say that the true variable (which we’re trying to measure) is F , but our measurement is X = m(F ) + ε,
where m is some function10 and ε is mean-zero noise11. Then the physicists’ notion of precision is Var [ε],
or perhaps Var [ε|F = f ]. If we have two separate measurements, X = m(F ) + ε and X ′ = m(F ) + ε′, the

10The function m is intended to capture systematic errors and distortions. In an ideal case, m(f) = f , the identity function.
(This is the case of what psychologists call “classical test theory”.) Otherwise, there is a bias, since E [X|F = f ]−f = m(f)−f 6= 0.
In many real-world measurement situations, for instance, it’s very common for m(f) to become increasingly nonlinear, usually
increasingly flat, as f moves out of some range.

11If we define m(f) ≡ E [X|F = f ], and further define ε ≡ X − m(F ), then one can show (Shalizi, n.d., ch. 1) that
E [ε|F = f ] = 0 for all f , and so both that E [epsilon] = 0 and that Cov [ε, F ] = 0. It’s not, however, usually the case that ε is
statistically independent of F .
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covariance between them will be

Cov [X,X ′] = Cov [m(F ) + ε,m(F ) + ε′] (1)
= Var [m(F )] + Cov [ε,m(F )] + Cov [ε′,m(F )] + Cov [ε, ε′] (2)
= Var [m(F )] (3)

assuming the noise terms are uncorrelated with each other and with m(F ). So how much covariance there is
between two measurements will depend on the variance of the true values. Reducing this covariance to a
correlation would mean dividing by

√
Var [X] Var [X ′]. Under the assumptions I’ve just made, Var [X] =

Var [X ′] = Var [m(F )] + Var [ε], so

Cor [X,X ′] = Var [m(F )]
Var [m(F )] + Var [ε]

Under the simplifying assumption that m(F ) = F , so there’s no bias,

Cor [X,X ′] = Var [F ]
Var [F ] + Var [ε]

The implication is that when psychologists report the reliability of a measurement by giving the correlation
between two separate measurements, that correlation only holds in a certain population, with a certain
distribution of the true value F . Notice that as Var [m(F )]→ 0, every measure will become “unreliable”, i.e.,
approach zero correlation12. At the other extreme, as Var [m(F )]→∞, every measure will become perfectly
reliable (the correlation will approach 1).

Just as “reliability” means basically the same thing as “precision”, but it’s typically reported differently,
“validity” for a psychologist means basically the same thing as “accuracy”. But validity, too, would typically
be reported by a psychologist as a covariance or correlation, in our symbols as Cov [X,F ] or Cor [X,F ].

Cov [X,F ] = Cov [m(F ) + ε, F ] (4)
= Cov [m(F ), F ] (5)

Cor [X,F ] = Cov [m(F ), F ]√
(Var [m(F )] + Var [ε])Var [F ]

(6)

If we can make the simplifying assumption that there is no bias, m(F ) = F , or that there is a constant bias,
m(F ) = F + b, then

Cov [X,F ] = Var [F ] (7)

Cor [X,F ] = Var [F ]√
(Var [F ] + Var [ε])Var [F ]

(8)

We saw above that “precision bounds accuracy”, because variance bounds MSE. Similarly, comparing this
last expression for the correlation between the measured value and the truth with the correlation between
measurements should explain the saying “reliability bounds validity”. But, again, “validity” in this sense will
be a function of Var [F ], increasing as the latter increases.

Notice, by the way, that validity just isn’t something that can be calculated from the distribution of
measurements alone, while reliability is.

6.1 Does the target of measurement exist?

Accuracy or validity, in this sense, presumes that what we’re trying to measure actually exists. This is
not obvious. In the case of temperature, we’re trying to answer a question which in ordinary, pre-scientific

12In particular, repeated measures, no matter how precise, on a calibrated case with a known value of F will have zero
reliability! It is true that we’re imagining a situation where the differences between measurement outcomes are all so much
noise. . .
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language we’d put something like “how hot is it?” But “hot”, while a simple word children use and understand
correctly, turns out to actually be a very complicated concept! If you’ve taken a physics or chemistry course,
you’ve probably been forced to learn distinctions between the temperature of a body, its heat content, its
heat conduction, etc., which weren’t fully sorted out until the discovery of thermodynamics in the middle of
the 1800s. These concepts were forced on scientists, gradually over centuries, as they tried to give sensible
and exact answers to “how hot is it?” question.13

As I mentioned in class, there used to be a theory — advanced by very serious physicists and chemists —
that “fire” was a chemical element called “phlogiston”. More exactly, the theory was that substances which
can burn contain this element, that when they burn they release this element into the air, and the air has
only a limited capacity to absorb it, which was why fires go out unless their air supply is renewed. This
theory was widely accepted, even though after experiments showed that some substances gained mass by
being burned, which would imply that phlogiston had negative mass. (Some quite eminent scientists were
prepared to accept that.) People tried to develop ways of measuring the phlogiston content of bodies and of
air. These may have been more or less precise and reliable, as measurement theorists use the words, but none
of these were accurate or valid, because phlogiston does not exist14.

In the realm of psychological measurement, and social measurement more generally, it is often unclear if the
variables we’re interested in are like “hot”, or like “temperature”, or like “amount of phlogiston”.

13If you heat an oven to 400 degrees and keep it there for a while, the air inside the oven and a metal rack in the middle will
both be at that temperature. If you stick your bare hand in the oven for a second and wave it around in the air, you’ll be fine. If
you were to be so foolish as to grab the rack and hold on for that same second, you’d get a burn. (Don’t grab a hot oven rack
with your bare hand!) Why the difference, when both the air and the rack have the same temperature?

14The actual explanation is that burning is a process of very rapid combination with oxygen which releases heat; air has
limited oxygen content which can be exhausted by combustion; substances can gain mass on burning because the extra mass
comes from the oxygen. So “fire” is not a distinct kind of substance or element at all, and the phlogiston theory had everything
almost exactly backwards.
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7 Factor Models: Synthesizing Multiple Measurements

This is a good place to lay out some of the math of one of the most common measurement models, which has
come to be called the factor model, or factor analysis. The classic case is shown by the next figure:

F

X1

w1

X2

w2

X3

w3

E1 E2 E3
Here we have one latent or unobserved variable F , which we’re trying to measure, and three observed variables
X1, X2, X3 (also called “manifest variables” or “observables” or “indicators”). The idea is that each observable
is linearly15 related to the latent variable:

Xj = wjF + εj

15There are nonlinear variants as well, but overwhelmingly when people talk about “factor models”, they have this sort of
linear relationship between latent variables and observables in mind.
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where εj is mean-zero noise, uncorrelated with F , Cov [εj , F ] = 0, and uncorrelated across the observables,
Cov [εj , εk] = 0 (unless k = j). The coefficients wj are known as “weights” or “loadings”, and show how
strongly each observable is related to the latent variable. More exactly:

Cov [Xj , F ] = Cov [wjF + ε, F ] (9)
= wjCov [F, F ] = wjVar [F ] (10)

Now at this point I am going to make three customary assumptions, which don’t really limit the model but
do simplify the book-keeping:

• E [F ] = 0
• Var [F ] = 1
• E [Xj ] = 0

The first two assumptions are on the latent variable, and we can always make them true by changing the
scale of the units we use to describe it and where we set the zero point for that scale. The third assumption
is on the observables, we can always make it true by centering them, i.e., subtracting off their mean. So these
really are “without loss of generality” assumptions. Using them, we can boil down the covariance between
the observable Xj and the latent variable F to

Cov [Xj , F ] = wj (11)

Similarly, we can find the covariance between any two observables:

Cov [Xj , Xk] = Cov [wjF + εj , wkF + εk] (12)
= wjwkVar [F ] + wjCov [F, εk] + wkCov [εj , F ] + Cov [εj , εk] (13)
= wjwk + 0 + 0 + 0 = wjwk (14)

A genuinely-restrictive assumption is usually added at this point: the noise variances don’t change with F ,
Var [εj |F = f ] = Var [εj ] ≡ ψj .

7.1 Measuring the factor using the observables

Suppose we take any one of the observables, say Xj . How should we use it to measure F? Let’s suppose that
we know the weights or loadings wj . Then one obvious possibility would be Xj/wj . This would be unbiased:

E [Xj/wj |F ] = E [(wjF + εj)/wj |F ] = F + 1
wj

E [εj |F ] = F

and have certain amount of variance:

Var [Xj/wj |F ] = 1
w2

j

Var [εj |F ] = 1
w2

j

ψj

Overall, the variance of estimates obtained this way will be

V arXj/wj = Var
[
F + 1

wj
εj

]
(15)

= Var [F ] + 1
w2

j

ψj > Var [F ] (16)

Let’s call this the “scaling” estimator, since it just re-scales the observed values.
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The scaling estimator, while simple and natural, is not the most accurate one possible. To find the most
accurate linear estimator, we need to optimize. Any linear estimate will take the form F̂ = bXj , so we want
to minimize the MSE, E

[
(F − F̂ )2

]
. Thus we want

β = argmin
b

E
[
(F − bXj)2] (17)

E
[
(F − bXj)2] = (E [F − bXj ])2 + Var [F − bXj ] (18)

= 02 + Var [F ] + Var [−bXj ] + 2Cov [F,−bXj ] (19)
= Var [F ] + b2Var [wjF + εj ]− 2bCov [F,wjF + εj ] (20)
= 1 + b2(w2

j + ψj)− 2bwj (21)
d

db
E
[
(F − bXj)2] = 2b(w2

j + ψj)− 2wj (22)

β = wj

w2
j + ψj

(23)

Since ψj > 0, the optimal coefficient β will be smaller (closer to zero) than 1/wj . How much smaller depends
on how much of the observable is noise; the more noisy the measurement, the more the coefficient should
be “shrunk” towards zero. I will leave it as character-building exercises to calculate E [βXj |F ], Var [βXj |F ],
Var [βXj ], and the difference in MSEs between this optimal estimate and the simple scaling estimator.

(βXj is the optimal linear estimator, but might there be a more accurate non-linear one? As it happens, no,
not under these assumptions, though that’s surprisingly tricky to show — at least, I don’t know of a way of
doing so that’s short enough to include here.)

7.2 Two (or more) observables

What if we want to use two of the observables together to estimate F? If we use Xj and Xk, scaling would
give us two estimates, Xj/wj and Xk/wk, and we could try doing some sort of average, say a weighted
average that gives more weight to the less-noisy observable. But this is very ad hoc; why don’t we try looking
for the optimal linear combination again? We’ll now have two coefficients to adjust, because our estimate will
take the form bjXj + bkXk. Now we could go through this all again, but if you do so you will quickly get a
pair of simultaneous linear equations for the optimal coefficients:

βj(w2
j + ψj)− βkwjwk − wj = 0 (24)

βk(w2
k + ψk)− βjwjwk − wk = 0 (25)

Trying to solve these by elementary algebraic manipulations is possible but a pain. Trying to do the same
thing with three or more observables is even more of a pain — so painful, in fact, that it was one of the
motivations for the Ancestors to develop linear algebra! Trying to

There is a much more transparent and general procedure, which however requires you to take a factor on
trust:

If F is a random variable, E [F ] = 0, and ~X is a vector of random variables, E
[
~X
]

= 0, then the

optimal linear coefficients, β = argminb E
[
(F − b · ~X)2

]
, are given by β = Var

[
~X
]−1

Cov
[
~X,F

]
.

(See Shalizi (n.d.), ch. 2.) Applied here,
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β =
[

Var [Xj ] Cov [Xj , Xk]
Cov [Xj , Xk] Var [Xk]

]−1 [ Cov [Xj , F ]
Cov [Xk, F ]

]
(26)

=
[
w2

j + ψj wjwk

wjwk w2
k + ψk

]−1 [
wj

wk

]
(27)

= 1
(w2

j + ψj)(w2
k + ψk)− w2

jw
2
k

[
w2

k + ψk −wjwk

−wjwk w2
j + ψj

] [
wj

wk

]
(28)

= 1
(w2

j + ψj)(w2
k + ψk)− w2

jw
2
k

[
wj(w2

k + ψk)− w2
jwk

wk(w2
j + ψj)− wjw

2
k

]
(29)

You can imagine how unhelpful the parallel formulas are for three or more observables. But the important
point is that there are formulas, and so we can calculate the optimal β coefficients knowing the variances and
covariances of the observables (which are all functions of the loadings wj and the noise variances ψj) and the
covariances of the observable and the latent variable (which are all just the loadings wj).

7.3 Some implications of the one-factor model

We have already worked out some basic implications of the one-factor model for the covariances among the
observables:

Cov [Xj , Xk] = wjwk (30)
unless j = k, in which case

Cov [Xj , Xj ] = Var [Xj ] = w2
j + ψj (31)

If we have p observables over all, there is a p× p matrix which gives all the variances and covariances among
observables. In the one-factor model, this has a very peculiar structure:

Var [X] = wT w + ψ (32)

where w is the 1× p matrix of the wj ’s, and ψ is the diagonal matrix of the ψj ’s. A matrix like Var [X] is
called “rank one plus noise”, and it’s a very special and restricted kind of matrix; most covariance matrices
are not of this form.

One way to see how peculiar these covariances are is to consider groups of four variables, say Xj , Xk, Xl, Xm

(all distinct). We have

Cov [Xj , Xl] = wjwl (33)
Cov [Xj , Xm] = wjwm (34)
Cov [Xj , Xl]
Cov [Xj , Xm] = wl

wm
(35)

But also

Cov [Xk, Xl] = wkwl (36)
Cov [Xk, Xm] = wkwm (37)
Cov [Xk, Xl]
Cov [Xk, Xm] = wl

wm
(38)

So
Cov [Xj , Xl]
Cov [Xj , Xm] = Cov [Xk, Xl]

Cov [Xk, Xm] (39)

Notice that this equation doesn’t involve the loadings, just covariances between observables, which are things
we can calculate directly from the data. This is called a “tetrad equation”, because it involves four of the
variables, and is one of the peculiar implications of the one-factor model.
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To be clear on the logic, if the one-factor model is right, then this equation should hold for any four observables.
Turned around: if this equation does not hold, for even one tetrad of variables, the one-factor model cannot
be right. Of course, when we estimate covariances from data, we need to make allowances for the error in
those estimates, but in principle this gives us a way to tell when the one-factor model breaks down.

(You might well ask whether the tetrad equations hold if and only if the one-factor model is right, i.e., if
there are other models which also imply those equations. The answer is that models with more than one
factor do not imply those equations, but that there are non-factor models which do.)

7.4 Fitting the one-factor model

If we want to use our factor model to measure the underlying latent variable, we need to find the loadings wj .
How can we do that?

Let’s go back to the equation for covariance between two observables:

Cov [Xj , Xk] = wjwk (j 6= k) (40)

If we have p different observables, there are p loadings w1, w2, . . . wp to find, but there are p(p− 1)/2 distinct
covariances among the observables. So there will be more equations than unknowns. We could select p of the
equations and solve them for the unknowns, but that throws away the information in the other equations. A
more satisfying approach is to estimate the wj ’s by (nonlinear) least squares,

ŵ = argmin
w

∑
j 6=k

( ̂Cov [Xj , Xk]− wjwk)2 .

Of course, sample covariances between observables aren’t true covariances, and some covariances will be more
accurately estimated than others, so we might really want to do weighted nonlinear least squares, but that
requires using some sampling theory to work out the standard errors of ̂Cov [Xj , Xk].

An alternative is to go back to the equation for the variance matrix as a whole:

Var [X] = wT w + ψ (41)

If we could find ψ, then
wT w = (Var [X]− ψ)

so we could find w by a kind of matrix square root, which computers are now very good at, though in a way
impossible to explain without linear algebra16.

Conversely, if we knew the loadings wj , finding the noise variances ψj would be easy:

ψ = Var [X]−wT w (42)

This suggests an iterative scheme, where we start with a guess at ψ, use that guess to estimate w, then use
that get a better estimate of ψ, and keep alternating until convergence. A common starting guess for ψj is
the variance of the residuals from regressing Xj on all the other X’s17.

There are other ways to estimate factor models. If one is willing to assume that F and the εj ’s are all
Gaussian, then it turns out to be fairly straightforward to write out a likelihood function and maximize it,
though it still involves making a starting guess about the ψj ’s. There are also more modern (and algorithmic)
approaches to low-rank matrix approximation than nonlinear least squares.

16Var [X], being a variance matrix, is symmetric and “positive semi-definite”, uT Var [X]u ≥ 0 for any p-dimensional vector v.
Any such matrices has an eigendecomposition, Var [X] = vT dv, where v is the matrix whose columns are the eigenvectors
of Var [X], and d is the diagonal matrix of eigenvalues, all of which are non-negative. One can show that Var [X] − ψ is
also a symmetric and positive semi-definite matrix. (Symmetry is easy, PSD is a bit more work.) So it, too, will have an
eigendecomposition. But, because wT w is a rank one matrix, Var [X] − ψ can have only one positive eigenvalue, all others
being zero, say λ1, with corresponding eigenvector v1. Then setting w =

√
λ1v1 gives us our solution. (If there is some rounding

and/or estimation error and Var [X]− ψ isn’t exactly rank one, take its leading eigenvalue and eigenvector, and hope the other
eigenvalues are all very close to zero.)

17If we could regress Xj on F , the variance of the residuals would converge on ψj as n→∞. The other observables won’t be
quite as informative about Xj as F would be, so this starting point should tend to over-estimate the noise variances.
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7.5 Model checking

We saw above that the one-factor model imposes some pretty severe restrictions on the covariance
matrix. These are testable. In particular, we can form a test statistic which is something like∑

jk (Var [X]jk − (wT w + ψ)jk)2 and work out its distribution under the null hypothesis that the one-factor
model is indeed correct, though this might involve some simulation or bootstrapping18.

If the one-factor model fails tests like this, it indicates that (with high confidence) the model is wrong. If the
one-factor model passes a test like this, and the test had high power to detect violations of these restrictions,
that is evidence of a kind in favor of the one-factor model. The reason I hedge with “of a kind” is that there
are other models which also imply the same restrictions on the covariance matrix (see further reading). The
reason I hedge with “and the test had high power” is that the power of any test grows with sample size, and
many tests of this form would require very large sample sizes to detect even moderately large departures
from the one-factor model’s assumptions.

7.6 Multiple Factors

If a one-factor model doesn’t fit, a natural thought is that there might be another source of shared variance
among at least some of the observables, i.e., at least one other factor. This gets us into multiple factor models.
Graphically, they look like the next figure:
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The basic equation is now

Xj =
q∑

i=1
wijFi + εj

where there are q distinct factors, F1, F2, . . . Fq, and the noise εj is still mean zero and uncorrelated with
all the factor variables (and all the other noises, Cov [εj , εk] = 0 unless j = k). As in the one-factor case
we can, without any real loss of generality, assume that E [Fi] = 0, and that Var [Fi] = 1. It is less obvious,

18If we’re willing to make assumptions on the distribution of the factor and the noise terms, e.g., that they’re Gaussian,
we can calculate the log-likelihood ratio between the null hypothesis that the one-factor model is right vs. the alternative of
an unrestricted covariance matrix. This will generally be a more powerful test, and has the advantage of having a known
large-sample distribution (twice the log-likelhood ratio is χ2 with p(p+ 1)/2− 2p degrees of freedom), when those assumptions
hold.
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but still true, that we can without loss of generality assume the factors are uncorrelated with each other,
Cov [Fi, F

′
i ] = 0 unless i = i′, but this is nonetheless true19.

The q-factor model still implies restrictions on the covariance matrix of the observables. If we gather up all
the loadings into a q × p matrix, say w, then we get

Var [X] = wT w + ψ

The matrix wT w has rank q < p, so the over-all covariance matrix is said to be “low rank plus noise”.

Estimation of factor scores from observables proceeds much as before — we can find the optimal linear
estimator using the variance matrix of the observables, and the loading-implied covariances between each
observable and each factor. Estimation of the factor loadings wij and noise variances ψj also proceeds much
as before, but with some additional mathematical complications20.

I said above that, mathematically, we lose no generality by assuming the latent factor variables are uncorrelated
with each other. If you start with a model where the factors are correlated, I can always construct another
model with uncorrelated factors, and our two models imply exactly the same distribution over observables.
This means that nothing about the data could decide between them. Substantively, however, if one factor is
what we’re trying to measure and another factor is some confounding variable that systematically messes
with our measurements, it may make more sense to use two (or more) correlated factors. A great deal
of ingenuity has been spent, over the last century, in coming up with procedures which try to transform
factor models so that their loading matrices seem simple, plausible, have lots of zeroes (are “sparse”), or are
otherwise aesthetically pleasing. Little to nothing is known about when these procedures converge on the
truth (assuming there even is such a thing as a true factor structure).

19The trick is that we start with q correlated factor variables, we can always construct q linear combinations of those variables
which are uncorrelated, and express the observables as linear functions of those new, uncorrelated variables; this is observationally
indistinguishable from the original model. See the chapter on factor models in Shalizi (n.d.) for details.

20Notice that in the one-factor model, if we replace all the loadings wj by −wj , nothing changes about the distribution of
observables. With two or more factors, if we replace the loading matrix w by ow, where o is a q × q matrix such that oT o = I,
then again nothing changes about the distribution of observables. Matrices with this property are called “orthogonal” matrices,
and outstanding examples are ones which flip around coordinate axes (as in the one-factor case) and rotate coordinate axes
around the origin. Because of the latter, this issue is called the “rotation problem”. There isn’t really a solution to it, because
it’s the algebra’s way of saying we can use any coordinate system we like for the hidden variables and our choice of coordinates
doesn’t really change anything. For more, see the chapter on factor analysis in Shalizi (n.d.).
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8 Further reading

Measuring attitudes is a specific form of psychological measurement. On psychological measurement in general,
I strongly recommend Borsboom (2005);Borsboom (2006). Zeller and Carmines (1980) is a straightforward
and readable, though now slightly old-fashioned, introduction to psychological and social measurement,
making a lot of use of factor models; it has a lot of sound things to say, but is very optimistic about what
those models can achieve.

On conflicts over the IAT, I’ve given additional references on the class homepage. Among these, I will put in
a specific plug for Machery (2021).

Measurement in psychology has a long and contested history, which has included some truly startlingly bad
ideas being very widely endorsed. Michell (1999) is, as its subtitle says, “a critical history” (sometimes too
critical: [http://bactra.org/reviews/michell-measurement.html]). Borsboom (2005) is, again, an excellent
guide here. Taylor (1997) is a standard introduction to the way people in the physical sciences think about
measurement.

On factor models, the relevant chapter of Shalizi (n.d.) has a lot more from this point of view, including
references to non-factor models which have the same implications for the covariances between observables.
For further statistical details, I recommend Bartholomew (1987).
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