After-class exercise for lecture 15

36-313, Fall 2022

Due by 6 pm on Wednesday, 26 October 2022

Consider the following tables which derived from the COMPAS data set. The outcome Y here is being arrested for a violent offense within two years of one's initial arrest. The prediction \hat{Y} was derived by taking the COMPAS score for risk of violence, between 1 and 10, and setting $\hat{Y} = 1$ if the score was ≥ 6 . The "protected attribute" X here is race/ethnicity¹.

##	recid	
##	score_factor 0	1
##	HighRisk 325	208
##	LowRisk 1189	196
Tal	ole 1: Black arrestees	
##	recid	
##	score_factor 0	1
##	HighRisk 117	51
##	LowRisk 1168	123
Tal	ole 2: White arrestees	
##	recid	
##	score_factor 0	1
##	HighRisk 33	7
##	LowRisk 287	28
Table 3: Hispanic arrestees		

- 1. (2 points) What percentage of each group is classified as a risk of violence? (In symbols, $\mathbb{P}(\hat{Y} = 1|X = x)$.) Does this classifier have demographic parity?
- 2. (2) For each of the three groups, what's the classification accuracy? (In symbols, $\mathbb{P}\left(Y = \hat{Y}|X = x\right)$.) Does this classifier have parity of classification accuracy?
- 3. (3) For each of the three groups, what are the false positive and false negative rates? (In symbols, $\mathbb{P}(\hat{Y} = 1|Y = 0, X = x)$ and $\mathbb{P}(\hat{Y} = 0|Y = 1, X = x)$.) Does this classifier have parity of false positive rates? Of false negative rates?
- 4. (3) For each of the three groups, what are the positive predictive value and negative predictive value? (In symbols, $\mathbb{P}(Y = 1|\hat{Y} = 1, X = x)$ and $\mathbb{P}(Y = 0|\hat{Y} = 0, X = x)$.) Does this classifier have parity of positive predictive values? Of negative predictive values?

 $^{^{1}}$ According to the Census Bureau &c., "Hispanic" is about cultural background and "Hispanics can be of any race". In practice, lots of local governments, like this county in Florida, treat "Hispanic" as though it were a race distinct from black, white, Asian, etc.