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We will now begin comparing groups to each other. The methods are the same whether we’re comparing two
totally distinct populations, or two sub-sets of the same population. I will assuming that we are comparing a
single quantitative, numerical characteristic. To keep everything suitably abstract and generic, I’ll call the
groups A and B; the values of the characteristic for group A will be X, and values for group B will be Y .

By “typical values”, what I have in mind is some sort of one-number summary of central tendency of a
distribution, or of a sample from a distribution. We’ve looked at a bunch of these: the median, the mean, the
mean of the log, etc. The methods are pretty much the same regardless of which notion of typical value we’re
using, so I’ll keep this pretty generic.
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1 The Setting and the Two Fundamental Problems

We have a sample from group A, say x1, x2, . . . xnA
. We plug these sample values in to the appropriate

formula and get a certain typical value mA. We also have a sample from group B, y1, y2, . . . ynB
, leading to

typical value mB . I need a symbol for the difference mA −mB , so I’ll call it v. When I need to distinguish
this observed v from some other hypothetical or imaginary or possible difference, I’ll write it vobs.

Here, as a running example, is a sample data set for group A

observation value
x1 5
x2 7
x3 8
x4 6

and for group B:

observation value
y1 2
y2 10
y3 4

If we use the median as our typical value, mA = 7, mB = 4, and vobs = 3.

Your own data sets will be fundamentally like this, but larger.

I can now pretty much guarantee you, without looking at your data or knowing anything about your problem
at all, that mA 6= mB . Congratulations, your data shows inequality between the two groups!

The reason I can make that guarantee is that if I take two samples from the same distribution, they will
usually have different means, different medians, etc., unless the population distribution is truly weird.

Here, for instance, I have drawn 10 values from a standard log-normal LN (0, 1) distribution, and then another
10 values from the same standard log-normal, and calculated the difference in medians:
median(rlnorm(10)) - median(rlnorm(10))

## [1] -1.002583

Lo! It’s not 0. This histogram shows what happens when I repeat that exercise 100 times, with little tick
marks on the horizontal axis showing the actual values:
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This gives us our first fundamental question in comparing typical values:

Is the observed difference real, or just sampling noise?

That’s still a bit vague. Here is something which is more precise, and potentially calculable:

How likely is it that we’d see as big a difference as we do, if the two groups really had the same
typical value, and the apparent difference is just sampling noise?

If there really are differences, sampling noise doesn’t go away. Here one of the groups gets drawn from a
LN (1, 1) distribution, while the other is drawn from a LN (0, 1) distribution. At the level of the whole
distribution, the difference in medians is e1 − e0 = 1.72. But if we only draw 10 samples from each group,
we’re not going to be able to see that very precisely:
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Our second question or problem is this:

How can we use our data to attach some measure of uncertainty or margin of error to our estimate
of the difference?

There are a couple of ways of making this question more precise, and we’ll look at two of them later.
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2 Testing for no difference at all

First, let’s think about how we’d test the idea that maybe there’s really no difference at all between group A
and group B, so X and Y follow exactly the same distribution. This is a fairly extreme statistical hypothesis,
it’s rare to find two actual social groups people care about where this is true of anything1, but it can form a
useful baseline, and the trick involved is very pretty.

Start by supposing that the two groups really do have exactly the same distribution. Then we might as well
merge the two data sets. Here is an example of doing so, using our running example:

value group
5 A
7 A
8 A
6 A
2 B
10 B
4 B

I have added an extra column here which records which group each value was originally sampled from. We’ve
pooled the data from the two groups, because doing so gives us a better idea of the common underlying
distribution, assuming, of course, that there is a common underlying distribution.

Now here is the trick. If there really is just one distribution here, then there’s no relationship between
the observed values and the group labels. So we can simulate drawing two samples from this common
distribution, of sizes nA and nB , calculating the typical values for those samples, and looking at the differences.
This gives us an idea of whether the difference we observed is big or small compared to what we’d expect
from pure sampling noise.

The way we do the simulation is to take the entries in the “group” column and shuffle them at random into a
new order. (Back in the day, some statisticians really did write the group labels on cards and then shuffle the
cards.) Now split the data into two parts again, based on the new, shuffled group labels.

value group shuffled group
5 A B
7 A A
8 A B
6 A A
2 B A
10 B B
4 B A

This gives us two new typical values, for the “groups” after shuffling, say m∗
A and m∗

B , in this case m∗
A = 5.5

and m∗
B = 8. The apparent difference after shuffling is v∗ = −2.5.

Now, there is nothing particularly special about this one shuffling of the group labels, but it is representative
of the kind of difference we can get just by sampling from the pooled data. To get a picture of the distribution
of differences that can arise from sampling, we repeat this many times, with a different shuffling of the group
labels each time, getting many values of v∗. We record all the v∗s, and then we see how extreme vobs is
compared to this distribution of sampling differences.

1The technique we’re about to discuss actually originated in the analysis of experiments, specifically in the analysis of
agricultural experiments, where, at least in the early days, it wasn’t so strange to imagine that lots of treatments were just
rubbish and actually did nothing.
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Since “shuffling the group labels at random” is a mouthful, and makes us sound like gamblers, we instead
talk about random permutations. The procedure for a permutation test is then as follows.

0. Start with data x1, . . . xnA
and y1, . . . ynB

, calculate typical values mA and mB and difference vobs =
mA −mB .

1. Repeat b times:
a. Randomly permute the group labels
b. Use the new group labels to divide the data into x∗

1, . . . x
∗
nA

and y∗
1 , . . . y

∗
nB

c. Calculate m∗
A and m∗

B and v∗ = m∗
A −m∗

B

d. Record v∗

2. Find the number m of v∗ values where |v∗| ≥ |vobs|.
3. Return m/b as the (approximate) p-value2.

Step (1) is doing many random permutations, and seeing how big a difference each one generates between the
groups. By construction, in step 1, both groups are sampled from the same distribution, so the difference
between the samples is purely due to sampling noise. In step 2, we ask how many of those simulated differences
are at least as big as the difference we observed3. Step (3) summarizes the test in the form of an approximate
p-value.

I say an “approximate” p-value, because there are two sources of error in this calculation.

1. We only have a limited set of samples, nA of them from the first group and nB from the second. If
those initial samples had been different, we’d have seen a somewhat different distribution for v∗.

2. We have done only b random permutations.

The first source of error is limited information. We can only make it smaller by getting more data. The second
source of error is computational: we decided to do only b permutations. We can make the computational
error as small as we like by making b larger. So how large should we make it?

2.1 How many permutations, i.e., how big should you make b?

Ideally, we’d consider every possible permutation of the group labels exactly once. The difficulty is that there
are

(
nA+nB

nA

)
possible permutations, and this grows very rapidly. Even for our little example,

(7
4
)

= 35, which
is tedious but could be ground through. If we made both samples ten times larger,

(70
40
)

= 6× 1019. Even if
each permutation took the computer a millionth of a second, we’d be looking at about 2 million years.

Now, if we really needed all possible permutations, we’d say that the permutation test is a cute idea but
just not practical. The trick that makes it work is that we don’t need all possible permutations, we can
randomly generate a limited number of them, b. This is like drawing a random sample from the distribution
of permutations, and we know that random samples quickly become representative of the whole distribution.

We’re specifically interested in using the random permutations to approximate a p-value. A reasonable guess,
based on general statistical intuition, is that the approximation error will be inversely proportional to the
square root of the number of permutations, ∝ 1/

√
b. (This is actually true, though it’s a bit more involved to

show than is useful here.) This suggests that there should be diminishing returns to running more and more
permutations. Going from 10 permutations to 100 shrinks our error by a factor of 10, but going from 100
permutations to 200 shrinks it only by another factor of

√
2 ≈ 1.4. But every permutation takes just as long

to run as the one before. So we’re paying the same cost in computer time but getting less and less extra
accuracy for our pains.

The optimal value of b would depend on how much we value accuracy versus how much we value computer
time. It’s rarely worth human time to be precise about this. As a rule of thumb, though, a few hundred

2Notice that this can give 0 if |vobs| is greater than all the simulated |v∗|. It can be a bit embarrassing to report a p-value of
0, so some people prefer to use m+1

b+1 . If b is at all substantial, this will make hardly any difference, except when m is very small.
3Strictly speaking, this is a two-sided permutation test. This is usually what you want if you’re testing the idea that there’s

absolutely no difference between the groups. You can work out how a one-sided test would differ.
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or a few thousand permutations is typically plenty. Unless you have an unusual need for precision, or each
permutation is really slow, b = 5000 is a nice round number4.

2.2 Some code

In R, there is a handy and simple function to permute a vector:
sample(t)

returns a random permutation of the vector t. I’ve used it to generate the random shuffling of the group
labels above.

Let’s build a simple function that we do a permutation test on two vectors.
permutation.test <- function(x, y, n.perm = 5000, fn = mean) {

pooled <- c(x, y)
labels <- c(rep("A", times = length(x)), rep("B", times = length(y)))
v.star <- replicate(n.perm, {

shuffle <- sample(labels)
fn(pooled[shuffle == "A"]) - fn(pooled[shuffle == "B"])

})
v.obs <- fn(x) - fn(y)
p.value <- mean(abs(v.star) >= abs(v.obs))
return(list(p.value = p.value, draws = v.star))

}

The replicate() function takes two arguments. The first is the number of times to repeatedly do something.
The second argument is an R command, or block of R commands, which it will repeat. This is most useful
when the commands do something random. Here, the random thing is permuting the group labels, using
sample().

When I try this out on the running-example data, I get the following histogram of v∗ values.
4Or 4999, if you’re using the add-one trick from a previous footnote.
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Histogram of v.star.values
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I’ve added vertical lines at vobs (solid) and at −vobs (dashed). The p-value corresponds to the area under the
histogram outside of those boundaries. In this case, that’s 0.1958. This means that even if these two data
sets really came from exactly the same distribution, we’ve still got about 1 chance in 5 of producing at least
as big a difference between two samples of that size.

2.3 Interpretation of the p-value

The interpretation of the p-value is asymmetric5. A small p-value is more or less evidence against the two
distributions being equal. The difference between the two samples is so big that it’s really unlikely sheer
sampling noise could have made it.

On the other hand, a large p-value isn’t, on its own, evidence for the two distributions being exactly the
same. It does tell us that it’s quite likely for sampling noise to give us that big a difference (or bigger). But
maybe something else could also give us that big a difference! In particular, maybe the two distributions are
very similar but not, exactly, identical. . .

This suggests that we might well want to know how big a difference between the distributions is compatible
with our data. That is the topic of the next section.

2.4 Avoiding the permutation test

Suppose we use the mean as our typical value. Then the central limit theorem tells us the following: as
nA →∞, if Var (X) <∞, then

mA  N (E (X) ,Var (X) /nA) (1)

Similarly
mB  N (E (Y ) ,Var (Y ) /nA) (2)

5If you find the logic here intriguing, I strongly recommend the works of Deborah Mayo, particular Mayo (1996) and Mayo
and Cox (2006).
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Since we’re assuming independent samples from the two groups,

mA −mB  N (E (X)− E (Y ) ,Var (X) /nA + Var (Y ) /nA) (3)

We could use this to calculate a p-value without having to go through the elaborate ritual of permutation
testing; we’d just need to get estimates of the two variances, say σ̂2

X and σ̂2
Y , and then compare mA −mB to

an N (0, σ̂2
X/nA + σ̂2

Y /nB) distribution. Equivalently, we compare

mA −mB√
σ̂2
X/nA + σ̂2

Y /nB

(4)

to a standard Gaussian N (0, 1) distribution. This is a z-test for the difference in means being 0.6

One advantage of the z-test is that it does not presume the two groups have exactly the same distribution,
just that they have the same mean7.

There are several reasons why I have emphasized the permutation test over the z-test.

1. The permutation test works in exactly the same way if we employ a different notion of “typical value”
than just the mean, e.g., the median. Lots of these other notions of typical value also have central limit
theorems (the sample median does!), but with much more complicated variances that you need to work
out in each case.

2. More seriously, unless both groups follow a Gaussian distribution to start with, the central limit theorem
is an asymptotic approximation, getting better and better as nA and nB both tend toward infinity.
But the less Gaussian the distributions are to start with, the slower the convergence in the CLT. It is
particularly slow for heavy-tailed distributions8. But, as you’re sick of hearing by now, heavy-tailed
distributions are really common whenever we study social inequality.

6I am ignoring the fact that σ̂2
X and σ̂2

Y are both only estimates of Var (X) and Var (Y ). This introduces some extra
uncertainty. If we believe that both groups are Gaussian, one can find the exact distribution for the test statistic, which is
a t-distribution with a number of degrees of freedom depending on nA and nB . Thus we have a t-test rather than a z-test.
While this distinction was historically very important for the development of mathematical statistics, and so it’s emphasized in
every textbook, my experience is that this refinement is rarely worth pursuing unless the sample sizes are very small by modern
standards. (The t distribution rapidly approaches a Gaussian as the number of degrees of freedom grows, though the tails of the
former are always heavier than the tails of the latter.)

7If we’re also willing to believe that the two groups might have the same variance, we should pool the data to estimate one
variance, say σ̂2, and the formulas simplify a little.

8A result called the Berry-Essen theorem gives a bound on how far the CDF of the sample mean can be from the CDF of a
Gaussian. This involves the third absolute moment of the distribution after centering, E

(
|X − E (X) |3

)
, more exactly the ratio

E
(
|X − E (X) |3

)
/Var (X)3/2. For heavy-tailed distributions, this ratio can be extremely large, implying very slow convergence

of sample means to Gaussians. See Complementary Problem 3.
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3 The Bootstrap, Resampling, and Uncertainty Quantification

We saw above that sampling noise can give rise to a whole distribution of apparent differences between two
groups, even when they follow the same distribution. We also saw, in the first section, that when there are
differences between the two groups, sampling noise can make it hard to discern just how big the difference is.
The observed difference between the samples, vobs, is a point estimate of the true difference between the
populations. We would like to say something about how precise or uncertain that estimate is.

The ideal would be to repeat our data-generating process (experiment, survey, . . . ) many times, re-calculating
v each time, and so build up a picture of the sampling distribution of V . The standard deviation of
the sampling distribution would be the standard error of V . Knowing the percentiles of the sampling
distribution would let us find confidence intervals for the true difference, i.e., give interval estimates.

The only drawback is that we can almost never repeat our data-generating process exactly9. What we can do,
however, is to use the data to simulate repeatedly drawing samples and calculating the difference between
them. This procedure is called resampling (for reasons that’ll be clear in a moment) or bootstrapping or
the bootstrap (for reasons I’ll explain later).

Here’s how to do resampling. We treat our sample from group A as though it were the entirely population,
and draw another sample from it, of exactly the same size, with replacement. (That is, we resample group
A.) We do the same thing to group B. This gives us new values x∗

1, . . . x
∗
nA

and y∗
1 , . . . y

∗
nB

. We use these to
calculate new values m∗

A and m∗
B , and the difference v∗ = m∗

A −m∗
B . We repeat this many times, and build

up the distribution of v∗ in this way.

So far, this sounds very much like the permutation test. The small but crucial difference is that we never
swap values between the two groups. Our x∗s all come from resampling the original xs, and our y∗s all
come from resampling the original ys. The x∗s don’t have exactly the same distribution as the xs, but the
distribution is close, and the difference between them will be like the difference between a sample and the
larger population, because we are, after all, drawing a sample.

Having obtained a lot of v∗ values by resampling in this way, there are two common ways to boil the summary
down into a measure of uncertainty, or margin of uncertainty, we can apply to vobs:

1. The bootstrap standard error in vobs is just the standard deviation of the v∗s.
2. The bootstrap confidence interval is a little more involved. If we want a confidence level of 1− α,

we find the α/2 quantile of the v∗s, say v∗
α/2, and likewise v∗

1−α/2, and report (v∗
α/2, v

∗
1−α/2) as the

confidence interval.

There are a lot of variations, extensions and refinements to this basic scheme, but this is the core of it.

3.1 Some code

The boot package offers a powerful and flexible set of functions for doing bootstrapping, even for quite
complicated situations, but it will be character-building, and informative, to roll our own.
bootstrap.comparison <- function(x, y, n.boot = 5000, fn = mean, level = 0.95) {

v.obs <- fn(x) - fn(y)
v.star <- replicate(n.boot, fn(resample(x)) - fn(resample(y)))
std.err <- sd(v.star)
lower <- quantile(v.star, (1 - level)/2)
upper <- quantile(v.star, 1 - (1 - level)/2)
return(list(uncertainty = c(point.estimate = v.obs, std.err = std.err, lower.ci = lower,

upper.ci = upper), draws = v.star))
}

9And, even if we could, we’d certainly be tempted to combine the data sets to improve our estimate of the difference, but
then we’re right back where we started when it comes to uncertainty.
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If you just try to type this in and run it, you’ll get an error. That’s because the code calls a helper function,
resample(), which isn’t part of base R. But I can define that easily enough10:
resample <- function(x) {

sample(x, size = length(x), replace = TRUE)
}

Let’s try this out:
bc.AB <- bootstrap.comparison(samples.from.A, samples.from.B, fn = median)
bc.AB$uncertainty

## point.estimate std.err lower.ci.2.5% upper.ci.97.5%
## 3.000000 3.152245 -4.000000 5.500000

We can also plot the histogram of the bootstrap draws, getting something like this:

Histogram of bootstrapped differences in medians
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(Here I have added a vertical grey line at the observed difference vobs.)

What we learn from this is that there is a lot of uncertainty about the difference in medians. If we insist on
95% confidence, all we can say is that it’s somewhere between NA and NA, which is not very precise. When
the permutation test didn’t reject the hypothesis of no difference, we couldn’t really tell if that was because
we had enough information to measure the difference, and could tell that it was small, or if on the contrary
we had so little information we can’t say squat about the difference. The bootstrap is telling us that we’re in
the we-have-no-idea situation. With only seven data points, this shouldn’t be a surprise!

3.2 Why does the bootstrap work?

This section is a little more theoretical, but still hand-wavy.
10In some languages, I’d have to define resample() earlier in my code than bootstrap.comparison(). R doesn’t care what

order you define functions in, so long as everything’s been defined by the time you run a function.
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Let’s imagine re-sampling from one sample first. We’ve got a collection of data points x1, . . . xn. When
we re-sample, we chose each of these xis with probability 1/n. This probability distribution is called the
empirical distribution of the sample. The CDF of the empirical distribution, the empirical CDF, is
written F̂n. A very important result in statistics11 tells us that the empirical distribution approaches the
true distribution as the sample grows. Specifically, if we write F for the true CDF,

max
x
|F̂n(x)− F (x)| → 0 (5)

This suggests that sampling from the empirical distribution should come closer and closer to sampling from
the true distribution. In particular, if we’re interested in quantities which change smoothly in response to
small changes in the distribution, like means, medians, means of logs, etc.12, then sampling from the empirical
distribution should be an increasingly good approximation to sampling from the true distribution.

In our setting, of caring about comparisons, we’re applying re-sampling from both group A and group B, so
we’re using the empirical distribution of group A to approximate its true distribution, and likewise for group
B.

3.2.1 Alternatives to re-sampling

The argument in the last few paragraphs suggests that re-sampling isn’t the only way to bootstrap. Instead
of sampling from the empirical distribution, we could sample from any distribution which was a good
approximation to the true distribution. The empirical distribution converges on the truth (under a very wide
range of circumstances), and it’s computationally easy to sample from. But we could also use more elaborate
models to estimate the true distribution, and, if we can sample from them, we could use them to bootstrap.
This is the model-based bootstrap, as opposed to the re-sampling bootstrap I’ve gone over above13.

The advantage of the model-based bootstrap is (usually) that if we’ve chosen the right model, it gives us a
better approximation to the true distribution than does re-sampling. (The empirical distribution converges
on the truth, but sometimes it converges very slowly.) The disadvantage is that if our model is wrong, no
amount of data will correct the mistaken modeling assumptions, and we’ll make systematic errors.

3.3 The name “bootstrap”

“Pulling yourself up by your bootstraps” is a proverbially impossible feat; you can’t do it14. We’re using a
single sample to say what the sampling distribution looks like. This sounds similarly impossible. That is why
the inventor of the technique, the great statistician Bradley Efron, chosen it, as a kind of self-deprecating
joke (Efron 1979).

3.4 On confidence intervals

A confidence interval offers a probabilistic guarantee about the parameter we’re estimating. When we build a
1− α interval, one of three things must be true:

11The Glivenko-Cantelli theorem. Pitman (1979) calls it “the fundamental theorem of statistics”.
12These quantities are known as “smooth functionals”. (“Functional” is an old term of a function of a function, in this case a

function of the distribution function.) The classic example of something which is not a smooth functional is the range of a
distribution. If you have a distribution where most of the probability is on the interval [−1, 1], but there’s some probability, no
matter how small, of being at either −1026 or 1026, then the range is [−1026, 1026]. The bootstrap does poorly at handling
non-smooth functionals. More precise statements involve working out derivatives and calculus for functionals; that’s beyond the
scope of this class, but see Davison and Hinkley (1997) if you’re interested.

13Some people call model-based and re-sampling bootstraps “the parametric bootstrap” and “the nonparametric bootstrap”,
respectively. I avoid these phrase, for a number of reasons. The biggest is that I think “model-based” and “re-sampling” are
more descriptive and transparent. The other is that there are such things as nonparametric models, which sometimes get used
to bootstrap.

14It appears to derive from an 18th century satirical novel, The Adventures of Baron Munchhausen, in which it is just one of
the absurd and impossible things the title character boasts of doing.
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1. The true value of the parameter is in the interval, or
2. We’re very unlucky, and something whose probability15 is ≤ α happened, or
3. The model we’re using to calculate probabilities is wrong.

When we lean on a confidence interval to support an argument about what the parameter is, we’re putting a
lot of reliance on the 2nd item, that we’d have to be really unlucky to be wrong. This shines an uncomfortable
light on the conventional use of 95% confidence intervals, since that gives us an error rate of 5%. In more
familiar terms, that’s one working day every month. This might make you prefer a higher confidence level and
a lower error rate, but that comes at a cost, namely a wider confidence interval (unless we get more data).

3.4.1 Confidence intervals and hypothesis tests

Suppose we have a way to test whether or not θ takes on a specific value, say θ0, and that this test gives us a
p-value, say p(θ0) for that particular value. One way to build a 1− α confidence interval16 is to collect the
parameter values we can’t reject at level α:

{θ : p(θ0) > α} (6)

We call this inverting the test. In fact, every confidence interval corresponds to inverting some hypothesis
test, even if we don’t seem to be testing a hypothesis in constructing the interval.

One way to test whether θ takes a specific value, θ0, is to see whether θ0 is included in a 1− α confidence
interval for θ. If so, the hypothesis θ = θ0 passes a test of “size” (false positive rate) α. If we want a p-value,
we keep adjusting α until θ0 is just at the edge of the interval.

3.4.2 A little bit more on sampling distributions, hypothesis tests and confidence intervals

Suppose we’re trying to estimate some parameter or function of the data-generating distribution θ. (For us,
this is the difference in typical values between groups.) Each estimator, say θ̂, will have its own sampling
distribution, with a pdf f(θ̂; θ). This notation indicates that the sampling distribution of θ̂ varies with the
true parameter value θ. (It will also vary with the sample size, but I’m leaving that out for right now17.)
This distribution will have some quantiles, and in particular there will be quantiles qα/2(θ) and q1−α/2(θ).
(Again, notice that these will vary with θ.) The next figure shows a cartoon of what this might look like.

15More precisely, something whose probability is ≤ α no matter what the true value of the parameter is.
16Strictly speaking, the next equation defines a set, which may or may not be an interval. But for most tests it is an interval.
17The sampling distribution might also involve other parameters besides θ, which, in this context, would be called nuisance

parameters. (If we’re trying to estimate the population mean, the population variance is a nuisance parameter.) There are
various ways of handling this, including transforming the data so the nuisance parameter doesn’t matter, or doesn’t matter so
much. (This is what “studentizing” the data does for the mean.) I’m not going over these complications here because this isn’t a
theory-of-statistics course.
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We could use this to test whether θ equals any particular value θ0. Find qα/2(θ0) and q1−α/2(θ0). Then
collect your data and calculate your estimate θ̂. Reject θ = θ0 if, and only if, θ̂ is outside the interval
[qα/2(θ0), q1−α/2(θ0)]. Observe that the false-rejection rate (or size) of this test is, by construction, exactly α.

The corresponding confidence interval consists of all the values of θ which this test does not reject. Thus if
the θ̂ we estimate from the data is given by the grey horizontal line in the figure, the confidence interval
will run from the point where it the line meets the upper blue dashed curve to where it meets the lower red
dotted curve. Now one of three things has to be true:

1. The true parameter θ0 is in that interval; or
2. We were very unlucky and event of probability ≤ α happened; or
3. The model we used to calculate the sampling distribution is wrong.

Of course doing calculations and making plots like this above can get very tedious, and it’d be nicer if there
was a way of directly calculating the confidence interval without going through it. But any such procedure is
logically equivalent to what I’ve just sketched.

3.4.2.1 So why do we just read off the quantiles of the bootstrap distribution?

When we resample, we’re getting an approximation to the sampling distribution at θ = θ̂. You might worry
that we need to somehow do a modified bootstrap where we impose different values of θ and find the sampling
interval for each one, or something complicated like that. I have instead told you to just use the quantiles
of the bootstrap distribution. This is what’s sometimes called a bootstrap percentile interval. It is in
fact somewhat wrong — the probability that the CI contains, or covers, the true parameter isn’t exactly
1− α. The coverage does approach the stated (or nominal) level as the number of data points grows, but
not instantaneously. Statisticians have put a lot of effort over the years into creating modifications of the
percentile interval with more accurate coverage, and while this is an important topic, it’s a bit beyond the
scope of this class. Davison and Hinkley (1997) gives a thorough review of these methods and the associated
theory, while Hesterberg (2014) is more tutorial, and focuses explicitly on comparing group means.
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3.4.3 Asymptotic approximations

If we’re interested in the difference between population means, and we use the sample means of the two
groups to estimate that difference, and neither group has a distribution that’s too heavy tailed18, then

V  N (E (X)− E (Y ) ,Var (X) /nA + Var (Y ) /nB) (7)

A large-sample approximate confidence interval for the difference in population means is therefore[
vobs − zα/2

√
σ̂2
X/nA + σ̂2

Y /nB , vobs + z1−α/2

√
σ̂2
X/nA + σ̂2

Y /nB

]
(8)

where zp is the p quantile of the standard Gaussian distribution. Other ways of measuring typical values lead
to other, similar central limit theorems, usually with even more complicated expressions for the variance.
You should think of these expressions as shot-cuts which let you avoid having to use the bootstrap, when the
assumptions hold. Hesterberg (2014) has some detailed numerical examples which show that when the data
distribution is highly skewed, these Gaussian approximations don’t become accurate until both nA and nB
are very, very large. And we’ve seen, at length, that variables link income and wealth are usually very, very
skewed. (See Complementary Problem 3.)

18If the distribution in one group or the other is too heavy-tailed, the variance, and even the expectation value, need not exist.
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4 Complementary Problems

As usual, these are optional problems to think through or practice on, not to turn in.

0. Throughout, I’ve said that we’re interested in v = mA −mB , the difference in typical values. What, if
anything, would have to change if we were interested in the ratio mA/mB?

1. Suppose that we consider larger and larger samples from our two groups, but the two samples are
always in the sample proportion to each other, so that nA = p(nA + nB) even as nA + nB = n grows.
Use Stirling’s formula19 to approximate the number of permutations in terms of n and p.

2. Find and read Arthur C. Clarke’s short story “The Nine Billion Names of God” (from 1953; dated
language is dated). Explain its relevance to permutation testing and bootstrapping.

3. Convergence of sample means to Gaussians Write code to draw a sample of 10 values from a standard
log-normal distribution and calculate the sample mean. Run this for 1000 replicates and verify that the
sample mean does not have a Gaussian distribution (e.g., using a Q-Q plot). Now increase the sample
size to 30; you should see that it’s closer to Gaussian but not a lot. How big to you have to make the
sample size to get close to Gaussian?

19log (n!) ≈ n logn. (There are also smaller-order terms, but they don’t matter for this problem.)
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