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1 Read the syllabus

Seriously, go read [http://www.stat.cmu.edu/~cshalizi/ineq/22/]. It covers the goals of the course, course
mechanics (including grading and the policy on acceptable collaboration and sources), and includes the
detailed schedule of what topics will be covered in lectures in when. Bookmark that page; it’s where homework
will be posted, and where you’ll find links to the readings.
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2 Probability

2.1 Populations

This is a course about inequality, which means its about differences within groups of people, and about
differences between groups of people. (Sometimes we’ll be interested in differences between families or
neighborhoods or the like, rather than people, but basically the same idea will apply.) We need to start with
the idea of a population, and the distribution of some trait within it.

By a “population” in statistics which just mean “a collection of things we are considering together, because
they have something in common”. Originally the word referred to all the people in a given area, say a city
or district or country, but we’ve come to realize we can fruitfully consider many other kinds of population.
As I said, in this course the units of our populations are made from will usually be individual people, but
sometimes they might be, for instance, households. In other statistics courses you might consider populations
of animals or plants, or earthquakes, credit card transactions, or occasions when someone using a web browser
might have clicked on a link.

Every member of the population has one or more traits, attributes, or variables or features we’re
interested in. (These words are all more or less synonyms in data analysis, though sometimes people draw
subtle distinctions between them.) You can start by thinking of things like people’s height, weight, whether
they’re left or right handed, the shape of the fingerprint on their left thumb. . . Generally speaking, every
member of the population will have some value for each variable, even if we have to make up a special “not
applicable” value in some cases1.

You could imagine recording these attributes by just creating a giant list. To be concrete, you could imagine
a gigantic list of everyone alive in the US on August 30, 2022, giving their height, weight, handedness, and a
picture of their left thumb print. If it’s a fancy, searchable, computerized giant list, we call it a “database”.
There are times when this is exactly what you want, but there are two big reasons we don’t usually stop
there: the giant list gives us no insight, and we don’t really care about most of its details.

1. Insight: It’s hard-to-impossible for human beings to understand a giant list or database2. We need
ways of summarizing the data which we can grasp and reason with. Usually this will call for getting rid
of some amount of detail, but that’s OK, because—

2. We don’t really care about the details: Somewhere in that giant list is, perhaps a record of the fact that
Chuckie Johnson of Mound City, Illinois stands 6 feet 4 inches3. This fact matters to Chuckie and
perhaps to some people around him (e.g., the Pulaski County amateur basketball league). But there
are few situations where it would matter to us as statisticians or social scientists or policy analysts.
We’ve already abstracted away almost everything about Chuckie and his life4 (). The next step is to
realize that we usually don’t care about Chuckie at all.

What we care about, as statisticians, is usually the distribution of trait values across the population: how
many members of the population have any given value of the trait, or any given combination of traits. In
fact, we usually don’t even care about the exact number of people, just the fraction of the population which
has those traits.

For discrete traits, like handedness, we can represent the distribution by just saying how many people there are
with each possible value (right-handed, left-handed, ambidextrous, NA). We typically write this as something
like P (H = ”left”) = 0.1, to indicate that 1/10 of the population are left-handed.

For continuous traits, there is the difficulty that usually there’s only one person with that exact height. We
say that Chuckie Johnson is 6 feet 4 inches and that I, Cosma Shalizi of Shadyside, PA am also 6 feet 4

1Some people are ambidextrous, some people don’t have left thumbs, etc.
2Computers also don’t understand the contents of their databses (yet), but they don’t find that upsetting (yet).
3Mr. Johnson is a fictional character, but Mound City is a real place.
4His fondness for purple sneakers, his daily worry about whether his car will break down, the way he likes to put both ranch

dressing and hot sauce on chicken wings, how he gets along with his boss, his memories of the pearl buttons his grandmother
used to sew on to shirts, how he gets along with his exes, the way he casts his reel when fishing from the levee, what he knows
about what really happened in Mermit Swamp on July 27, 1993, etc., etc.
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inches, but that’s just because of rounding. If you were to set Chuckie and me back to back and measure
precisely, we’d have different heights. So what we usually do, as statisticians, is ask what fraction of the
population is between any two given values, say P (6.3 < X ≤ 6.4). You can convince yourself that to work
these proportions out, it’s enough to know P (X ≤ a) for any given a, since

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) (1)

For this reason, P (X ≤ a) is called the cumulative distribution function for the variableX. We abbreviate
it as F (a), or sometimes as FX(a) if we need a reminder of what variable we’re dealing with.

F (a) is an increasing5 function. As a → ∞, F (a) → 1. (If F (a) = 1 for some finite a, then the smallest
solution to F (a) = 1 is the maximum value of the variable.) Similarly, as a→ −∞, F (a)→ 0. Since F (a) is
increasing, the equation F (a) = p has a unique solution6 for each p. This is called the quantile corresponding
to the probability p, often written Q(p). If p is a multiple of 1/100, we talk about percentiles.

2.1.1 Example: Not-that-fat cats

Let’s look at an example of the type of distribution you’re already familiar with from other classes. For
reasons lost to the mists of time, R comes with a data set about the body weight of a group of cats from the
1940s. Here’s the cumulative distribution:

2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of cat body weights

Body weight (kg)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

We can also find quantiles from this data:
5Strictly speaking, just a non-decreasing function. But it’s usually strictly increasing.
6If F (a) is merely non-decreasing and not strictly increasing in a, then F (a) = p might not have a unique solution for a given

p. But it always has a unique smallest solution, which is usually what we pick.

3



0.0 0.2 0.4 0.6 0.8 1.0

2.
0

2.
5

3.
0

3.
5

Quantiles of cat body weights

quantile

B
od

y 
w

ei
gh

t (
kg

)

This distribution has a lot of features you’re probably used to from other classes: there’s a spread of values
for body weight, but it’s fairly small, there aren’t too many very small or very large cats, even the biggest cat
isn’t that much bigger than a typical cat, etc.

2.1.2 Example: Income distribution

Now let’s look instead at data of the kind we’ll be dealing with in the rest of the course, which (for better or
worse) is not about cats. Here is a plot of the cumulative distribution function for the taxable income of each
individual person in the US in 2019, courtesy of the World Inequality Database) (which in turn gets its data
from various countries’ tax authorities, in this case the IRS).
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The quantile plot is basically the same, just turned on its side.
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Let’s zoom in, by limiting ourselves to those who make no more $500,000 a year7 which is a nice round
7These plots might suggest to you that a few percent of individuals had negative incomes in 2019. This is in fact correct.

You might well wonder how anyone could possibly have an income of less than zero. This comes primarily from people who
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number that’s just a bit below the $ 5.44× 105 cut-off to be in the top 1%.
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operated businesses that made net losses (rather than profits) during the year. These businesses typically took in some money
during the year, they just had even higher expenses. There are also some other situations where US tax law can end up giving
people negative incomes for tax purposes — and remember these figures are derived from tax records. In homework 1, we’ll
work with a different data set on gross income, which is necessarily ≥ 0.
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The fact that the curve of F (a) for income is so smooth suggests that it should have a derivative. This is,
strictly speaking, false. There are only a finite number of individual tax-payers in the US (about 246 million
adults in 2019), so even if we used the complete database, rather than the WID’s summary of it, the curve of
F (a) would really just make 246 million (or so) small steps. The derivative of a step function is 0 in between
steps, and infinite8 at the steps. But it’s often convenient to idealize the population as infinite, with some
fraction lying between any two values (no matter how close), so we can talk about the probability density
at a point, as the derivative of the CDF. In symbols,

f(x) = dF (a)
da

∣∣∣∣
a=x

(2)

= lim
h→0

F (x+ h)− F (x)
h

(3)

Going the other way,

F (a) =
∫ a

−∞
f(x)dx (4)

P (a < X ≤ b) =
∫ b

a

f(x)dx (5)

If we have the underlying data, a simple way to estimate or approximate the pdf is to create a histogram:
divide the range of X up into equal-length bins, count what proportion of individuals fall into each range,
and divide proportion by length. Here’s how it looks for the cats:
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Since the figures I downloaded from theWID giveQ(0.01), Q(0.02), . . . Q(0.99), Q(0.991), . . . Q(0.999), . . . Q(0.9999),
I can again calculate (approximate) values for the derivatives of F (a), and plot them9. Again, I’ll limit

8If you’re a mathematical purist, undefined.
9The calculation I’m doing here is almost the opposite of a histogram — I know each of my intervals contains 1% of the

population, and I’m calculating how far apart the two ends of the interval are. If there’s a standard name for this, I don’t know
it, but it’s a crude version of a way people sometimes estimate densities in high-dimensional spaces (Gershenfeld 1999, 170).
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the plot to those earning ≤ $500,000. (The small tick marks on the upper boundary of the plot show the
percentiles, so “98” indicates where the 98th percentile begins, etc.)
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2.1.3 Central tendencies

The median income is the 50th percentile, so exactly as many units are above the median as below it. Here,
the median is $ 41 thousand.

Now, the mean with a finite population is just the ordinary, arithmetic average: add up everyone’s incomes
and divide by the number of people in the population. With our imaginary infinite population, represented
by the pdf, we use an integral, which is the limit of averaging. We write means with respect to this infinite
theoretical population with a special symbol, E (), and talk about expected values or expectation values.

E (X) =
∫ ∞
−∞

xf(x)dx (6)

The same rule applies if we’re thinking about some function or transformation of the variable, say h(X):

E (h(X)) =
∫ ∞
−∞

h(x)f(x)dx (7)

In this case, the mean income is $ 74 thousand, a bit below twice the median.

2.1.4 Skew and heavy tails

Because the mean is bigger than the median, we say that the distribution is right-skewed. (If it was the
other way around we’d say it was left-skewed.) Distributions of variables like income, wealth, etc., are
typically quite right-skewed. In part this is just because there are lower limits to these variables, but no real
upper limit, and there are some people out there in the right tail. But really most of the skew comes from
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the fact that there are usually substantial numbers of people with literally orders of magnitude more money
than the median person. Remember the median income was $ 41 thousand in 2019, but that more than 1%
of the population had incomes over $500,000. In fact, 0.1% of the population, or about 246 thousand people,
had incomes over $ 2.32× 106. To un-skew the distribution and make it symmetric around the median, we’d
need a balancing number of people whose incomes were equally negative, which just doesn’t happen, not
even with the most creative accounting.

Variables like income (and, as we’ll see in latter lectures, wealth) thus have very different distributions than
what you’re probably used to from examples in other statistics classes, or from thinking of biological variables
like height and weight. It’s true that there’s a minimum weight for a cat, while the upper limit on weight is a
lot more open-ended, so the distribution of cat weights is a little bit right-skewed. (The median cat in the
dataset weighs 2.7 kg, while the mean cat weight is 2.72 kg.) The same is true for, say, height in human
beings. But there is no cat which is 56 times heavier than the median cat, just as there is no human being
who is 56 times taller than the median person, let alone a quarter of a million such people in the US. But
there are that many people who make (at least) that multiple of the median income. (For their part, they
look with similar astonishment on the 2500 people in the top 0.001%, which begins at $ 49 million10.)

Distributions like this, where going out to high quantiles keeps taking us to orders-of-magnitude larger values,
are said to be heavy tailed, or to have fat tails. There are some situations where both the right (upper)
and left (lower) tails are heavy11, but in social phenomena there’s usually only one heavy tail, and it’s usually
the one on the right. A somewhat more precise definition would be that the pdf f(x) goes to zero as x→∞,
but does so more slowly than any exponential function12.

When plotting heavy-tailed distributions, it can be helpful to use logarithmic scales on both the vertical and
horizontal axes. Here for instance is the pdf plot again (with negative values of income omitted):
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The long straight-ish segment on the right is one signature of a heavy tail.

10Cf. the now-classic movie Wall Street, where a character is taunted for being an under-achiever who’s content being “a
$400,000 a year working Wall Street stiff flying first class and being comfortable”.

11Many of these occur in the physical sciences, e.g., the branches of physics which study turbulent motion in fluids. Schroeder
(1991) provides a wonderfully-readable introduction.

12If you crave even more mathematical detail, Adler, Feldman, and Taqqu (1998) and Resnick (2006) are good places to start.
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3 Modeling

We’ve already gone from the concrete population, which consists of certain particular individuals, each unique
and potentially infinitely complex, to a more abstract idea, a distribution of traits across a population. This
abstraction makes it easier to grasp the patterns in those traits and that aspect of the population, at the cost
of ignoring almost everything about the individuals.

It’s often useful to abstract even further, and to try to approximate the actual distribution, which still has a
lot of fine-grained detail (all the little bumps and jags in those last few plots), by a simpler model, which
fills in all those details by applying some mathematical rules. Typically those models have some adjustable
settings which go into the rules, the parameters of the model. There are (at least) three reasons for using
probability models like this.

1. Economy of thought: Thinking is painful and expensive and we want to do as little of it as possible.
For human beings, remembering details is an especially expensive form of thinking. If instead of having
to remember hundreds or thousands of little curve segments, you could remember just two or three
numbers, you should be tempted.

2. We don’t care about the details: There are very few conclusions we’d draw from the last figure that would
be different if the little jags and wiggles were slightly differently angles and spaced, or slightly smoother
or slightly rougher. Since those details don’t matter to us, why not replace them with something
simpler?
Said slightly differently, we have every reason to think that some of the details of that distribution
curve are just accidents. How much money people made depended on things like the weather (think of
farmers, rain-coat sellers, etc.), the random ups and downs of the stock market, literally gambling and
lotteries, and innumerable other tiny factors which could just as easily have turned out differently. We
don’t, for these purposes13, care about those accidents, but rather about the more stable or recurring
patterns that would emerge no matter how the weather or the cards turned out. Using models is a way
to (try to) separate the stable pattern (signal) from the accidents (the noise)14.

3. We care about the parameters: In many situations, the parameters of probability models are meaningful,
because they’re also part of a scientific model, a story about how some part of the world works. Much
of statistics was originally invented in the 1700s and 1800s to estimate physical parameters, like “How
strong is gravity?” or “What is the mass of the Earth?” or “How much does the Earth deviate from
being perfectly spherical?” or “Where is that asteroid and which way is it headed?” (and consequently
“Will it hit Earth?”) (Farebrother 1999). In modern applications physical or biological15 parameters
might answer questions like “How old is this species?” or “How quickly does this radioactive waste
decay?” We will see examples later in the course of social parameters which answer meaningful questions
like “How concentrated is wealth in this population?”, or “How much more likely is a job application to
be rejected if it includes a criminal record, all else being equal?” or “How much less likely is someone
to die within a year of drug overdose if they finished college, all else being equal?”

With all that throat-clearing and motivation, let me now briefly present our first probability model. (We’ll
have a lot more to say about this model over the next few lectures.) You remember the Gaussian or “normal”16

13Remember our friend Chuckie Johnson from above. Obviously, Chuckie would care about what I’m calling the accidents
which affect him and those around him. If we were telling the story of his life, those would be incidents, not accidents. But,
again, doing statistics, or social science, involves zooming out from that human scale, not because it doesn’t matter but because
it’s the only way to see the larger patterns in which Chuckie’s is enmeshed. The double vision is not always easy to maintain.

14If you worry that this leads to very difficult questions about how we dcide what’s pattern/signal and what’s accident/noise,
you’re right. A good place to start attacking those difficulties is Ruelle (1991).

15The original point of gathering the data on the cats was to work out the relationship between total body weight and the
weight of the cats’ hearts. If, like me, you are a sentimental cat person, it is not pleasant to think about how they got the data
about heart weights, but when I had a cat who needed a heart medicine, I was glad that there was a rule which let the vet gauge
how much of the drug my pet needed based on her body weight.

16I dislike using the word “normal” here, both because “normal” is used for so many different, unrelated things in mathematics,
and because these distributions are not actually all that common that you should take them as the default, so I will almost
always write “Gaussian” instead. But if I tried to write G(µ, σ2) I’d just be making you confused about the notation you’d
encounter in every other statistics reference.
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family of distributions from your earlier classes; it’s conveniently defined by its pdf,

f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 (8)

We write this particular distribution N (µ, σ2). Here µ is the mean of the distribution, and σ2 is its variance.
The Gaussian distribution is a horrible fit to the data on income, because Gaussians are always symmetric
about their means, which are equal to their medians, and this data plainly looks nothing like that.

What is remarkable, however, is that a simple modification of the Gaussian distribution is actually not bad
here. Let’s define Y = logX as the logarithm of people’s income. (We ignore people who show up has having
incomes ≤ 0, and we’ll use natural logs, though that won’t matter much.) If we go back the very last plot,
and re-do it using only a log scale on the horizontal axis, we’re getting an approximation to the pdf of Y ,
and that looks a lot more like a bell curve (particularly if we leave off some very small incomes):
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Let’s suppose that YN (µ, σ2). The corresponding distribution for X is called the log-normal distribution,
written LN (µ, σ2) or LN(µ, σ2). Be aware that now µ = E (Y ) = E (logX), not E (X), and similarly σ2 is
the variance of logX, not of X. This is actually a pretty good fit to a very large part of the data:

11



1e+02 1e+03 1e+04 1e+05 1e+06 1e+07

1e
−

12
1e

−
10

1e
−

08
1e

−
06

Taxable income ($)

P
ro

ba
bi

lit
y 

de
ns

ity

7 8 9 10 11 12 14 16 19 23 27 32 38 44 51 59 67 75 82 88 92 95 97 98 99 99
.3

99
.5

99
.7

99
.8

99
.9

99
.9

3
99

.9
5

99
.9

7
99

.9
8

99
.9

9
99

.9
93

99
.9

96
99

.9
97

99
.9

98

99
.9

99

Here the blue curve is the pdf of a log-normal distribution with parameters chosen to match the data (in a
way you will learn to do in homework 1). You can see that the log-normal provides a pretty good match
to the pdf we approximated from the data, from about the 10th percentile of income to about the 99.5th;
outside that range it underestimates the number of very poor people17, and the number of very rich people.

This last figure helps illustrate some of the points I made about models above. The blue curve is simpler
than the black one, and definitely easier to remember; most calculations we’d care to make using the two
curves would come out very similarly, especially if they’re just about that 90 percent of the population; and
the fact that the model fits suggests ways we might go about starting to explain, rather than just describe,
the income distribution18.

On the other hand, the model is also definitely imperfect — it makes systematic mistakes for some parts of
the income distribution. In particular, if we’re interested in some question where the very rich matter, then
the log-normal model is going to be misleading, because it only works up to about the 99.5th percentile; it
thinks the top 0.1% have much less money than they really do, to say nothing of the top 0.01%. One way
to deal with this is to try to come up with different, and usually more complicated, models that capture
more of the distribution. Another is to be clear that we’ll use different models as approximations in different
circumstances, and to be clear about the “scope” of each model, about when it’s a good approximation. Thus
in a few lectures, we’ll see a different model, the power-law or Pareto distribution, which is a good fit to
the right tail of very high incomes, but works poorly for the “body” containing most of the distribution.

17More cautiously, the number of people who, under the tax rules, get to report extremely small incomes. There are people in
the US who survive, somehow, on $2 a day or less (Edin and Shaefer 2015) (or about $700 a year), and even people who survive
without any money at all. But it’s not clear how many of the people showing up in this data at these extremely low incomes are
in those situations, and how many are people with large tax write-offs. Again, we’ll look later in the course at other data which
measures gross income more directly, though it misses a lot of what’s going on with very high incomes.

18You remember that the Gaussian distribution is what happens when we add up lots of small, random terms; this is the
“central limit theorem”. Apply this origin myth to Y = logX, so Y = ε1 + ε2 + . . . + εm, for some large number m of small,
random terms εi. It follows that X = eY = eε1+ε2+...+εm = eε1eε2 . . . eεm . This would mean that income X is the outcome
of multiplying a lot of little independent random “shocks”. Whether that’s a good scientific model of income determination is
something social scientists can investigate.
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4 Different Populations; Sub-Populations

When we have multiple traits or attributes, we can use them to split up a population into sub-populations,
defined by one or more of the traits. Alternately, if we have multiple populations, we can imagine combining
them into one bigger population. However we get sub-populations, we can compare them.

With the cats, for instance, we have their sex as well as their body weight. What I showed you before was
the over-all distributed across the whole population, but we can look at (for instance) the histogram across
the two sub-populations, defined by sex.
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Here I’ve plotted the female pdf in pink and the male in blue. There are two things which are notable about
the comparison between these distributions, just from this plot:

1. The two distributions are different: It seems pretty plain that the two distributions are different. They
have different ranges, different means, different medians. Female cats are typically smaller than male
cats. (This is true of most species of mammals.) We are going to develop a lot of techniques for verifying
the plain impression of our eyes that two distributions are different, and for describing the differences.

2. The two distributions aren’t that different: There are plenty of male cats who weigh less than some
female cats. If, in ordinary language, we say “male cats are heavier than female cats”, that sort of
all-or-none statement is at best a rough summary of the actual state of affairs.

(Incidentally, both the male and the female body-weight distributions are well-fit by “gamma” distributions,
where f(x) ∝ xαe−βx, but with different parameters for the two sexes.)

(Incidentally, the WID data doesn’t allow us to split up taxable personal income in the US by the sex of the
tax-payer, though WID does have that information for some countries. We will look later, using other data
sources, at differences in income distributions across different social categories, such as sex, race, ethnicity
and education, and look at how we might, as statisticians, begin to explain those differences.)

13



5 Samples and inference

The income data set we’ve been working with here is somewhat unusual, because it includes every member of
the relevant population, namely US taxpayers in 2019. This sort of complete enumeration of a population,
also called a census of the population, is a very valuable sort of data (nothing’s missing!), but it’s also rare.
Getting everyone in a country to tell the truth, or even something like the truth, about their income is a big
undertaking, which can really only be done by powerful, well-organized, honest and intrusive governments19.

Much more typically in data analysis we deal with a much-smaller sample of the population of interest. This
is the situation with the cats: these r nrow(cats) felines were not the whole of the relevant population, but
just a small part of it, selected in the hope that this part would tell us about the whole.

We want to make guesses about the actual population from the sample. Because “make guesses” sounds
crude, we call this “drawing inferences”, or “drawing statistical inferences” if we want to emphasize that we’re
using partial, noisy, incomplete data and so might be wrong, as opposed to drawing deductive inferences,
which have to be true so long as we’re right about the data and don’t botch any calculations[ˆdeducclarify]

For instance, with the cat data, concluding that the sample mean is 2.7236111 kg is a deductive inference.
It’s a necessary consequence of the data and can’t really be wrong. (I guess that I could have made exactly
the same arithmetic mistake as R did, but that’s about it as far as possibilities for error go.) But this is
just a fact about this sample of cats. It says nothing about any other cat or group of cats. If I go on to
say that the mean adult cat in British laboratories in the 1940s weighed 2.72 kg, that is not a deduction
from the data, but a statistical inference. Whether it’s a reliable20 inference depends on whether this was a
representative sample of adult British lab cats in the 1940s. Even if this sample was representative of
that population, whether I can reliable extrapolate that conclusion to all adult British cats in the 1940s, all
adult cats in the 1940s, or all adult domestic cats ever, would in turn depend on how representative those
various sub-populations were of the broader groups. (It’d obviously be foolish to extrapolate to all cats of all
ages, because lots of cats are very small kittens [proof: Internet].)

In your previous statistics classes, you’ll haver learned about different types of samples, such as convenience,
purpose, random, etc., and learned that the easiest way to ensure that a sample is representative is for it
to be a simple random sample. (If you need refreshers, I strongly recommend the well-written little book
by Cox and Donnelly (2011), which you can download from the university library.) This ideal is often
unattainable, and it’s sometimes undesirable. For instance, in a simple random sample, where every member
of the population has the same probability of being included in the sample, it’s often hard to say much about
the properties of small sub-groups21. Organizations which gather social data often deliberately over-sample
small sub-groups of scientific or policy interest, which gives us more information about them, but also makes
analyzing the survey more complicated.

19In fact, the discipline of statistics has (one of) its origins in analyzing information like tax records collected by governments,
to help them figure out how much money they could expect to raise, how many men they could draft for the army, and so forth;
the very word “statistics” comes from the word “state” (Hacking 1990).

20The qualifier “reliable” is important here. It’s a free country and if you want to make wild and foolish extrapolations, no
one is going to stop you, but this is a class in statistics rather than journalism or activism, so let’s suppose you’d rather be right
than grab attention.

21In a simple random sample, the margin of error for most quantities we’ll calculate will be ∝ 1/
√
n where n is the sample

size. Say we sample 10, 000 individuals. If we’re interested in a sub-group which is only 1% of the population, we’d expect only
≈ 100 members of the sub-group in our sample. The margin of error for the sub-group will then be

√
10000/

√
100 =

√
100 = 10

times larger than the margin of error for the over-all population.
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6 Read the syllabus

In conclusion, read the syllabus and go do homework 0 (about course policies) and after-class exercise 1
(which is just a survey about why you’re taking the course and your previous statistics classes).
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