Appendix C

Propagation of Error, and Standard Errors for Derived Quantities

A reminder about how we get approximate standard errors for functions of quantities which are themselves estimated with error.

Suppose we are trying to estimate some quantity θ . We compute an estimate $\widehat{\theta}$, based on our data. Since our data is more or less random, so is $\widehat{\theta}$. One convenient way of measuring the purely statistical noise or uncertainty in $\widehat{\theta}$ is its standard deviation. This is the **standard error** of our estimate of θ . Standard errors are not the only way of summarizing this noise, nor a completely sufficient way, but they are often useful.

Suppose that our estimate $\widehat{\theta}$ is a function of some intermediate quantities $\widehat{\psi}_1, \widehat{\psi}_2, \dots, \widehat{\psi}_p$, which are also estimated:

$$\widehat{\theta} = f(\widehat{\psi_1}, \widehat{\psi_2}, \dots \widehat{\psi_p}) \tag{C.1}$$

For instance, θ might be the difference in expected values between two groups, with ψ_1 and ψ_2 the expected values in the two groups, and $f(\psi_1, \psi_2) = \psi_1 - \psi_2$. If we have a standard error for each of the original quantities $\hat{\psi}_i$, it would seem like we should be able to get a standard error for the **derived quantity** $\hat{\theta}$. There is in fact a simple if approximate way of doing so, which is called **propagation** of error.

We start with (what else?) a Taylor expansion (App. \mathbb{B}). We'll write ψ_i^* for the true (ensemble or population) value which is estimated by $\widehat{\psi}_i$.

$$f(\psi_1^*, \psi_2^*, \dots \psi_p^*) \approx f(\widehat{\psi_1}, \widehat{\psi_2}, \dots \widehat{\psi_p}) + \sum_{i=1}^p (\psi_i^* - \widehat{\psi_i}) \frac{\partial f}{\partial \psi_i} \bigg|_{\psi = \widehat{\psi}}$$
(C.2)

$$f(\widehat{\psi_1}, \widehat{\psi_2}, \dots \widehat{\psi_p}) \approx f(\psi_1^*, \psi_2^*, \dots \psi_p^*) + \sum_{i=1}^p (\widehat{\psi_i} - \psi_i^*) \frac{\partial f}{\partial \psi_i} \Big|_{\psi_i = \widehat{\psi_i}}$$
(C.3)

$$\hat{\theta} \approx \theta^* + \sum_{i=1}^p \left(\hat{\psi}_i - \psi_i^*\right) f_i'(\hat{\psi}) \tag{C.4}$$

introducing f_i' as an abbreviation for $\frac{\partial f}{\partial \psi_i}$. The left-hand side is now the quantity

¹ It is not, of course, to be confused with the standard deviation of the data. It is not even to be confused with the standard error of the mean, unless θ is the expected value of the data and $\hat{\theta}$ is the sample mean.

² Or, sometimes, the **delta method**.

whose standard error we want. I have done this manipulation because now $\hat{\theta}$ is a linear function (approximately!) of some random quantities whose variances we know, and some derivatives which we can calculate.

Remember the rules for arithmetic with variances: if X and Y are random variables, and a, b and c are constants,

$$V[a] = 0 \tag{C.5}$$

$$V[a+bX] = b^2V[X]$$
 (C.6)

$$\mathbb{V}\left[a + bX + cY\right] = b^2 \mathbb{V}\left[X\right] + c^2 \mathbb{V}\left[Y\right] + 2bc \operatorname{Cov}\left[X, Y\right] \tag{C.7}$$

While we don't know $f(\psi_1^*, \psi_2^*, \dots \psi_p^*)$, it's constant, so it has variance 0. Similarly, $\mathbb{V}\left[\widehat{\psi}_i - \psi_i^*\right] = \mathbb{V}\left[\widehat{\psi}_i\right]$. Repeatedly applying these rules to Eq. C.4

$$\mathbb{V}\left[\widehat{\theta}\right] \approx \sum_{i=1}^{p} (f_i'(\widehat{\psi}))^2 \mathbb{V}\left[\widehat{\psi}_i\right] + 2 \sum_{i=1}^{p-1} \sum_{j=i+1}^{p} f_i'(\widehat{\psi}) f_j'(\widehat{\psi}) \operatorname{Cov}\left[\widehat{\psi}_i, \widehat{\psi}_j\right]$$
(C.8)

The standard error for $\widehat{\theta}$ would then be the square root of this.

If we follow this rule for the simple case of group differences, $f(\psi_1, \psi_2) = \psi_1 - \psi_2$, we find that

$$\mathbb{V}\left[\widehat{\theta}\right] = \mathbb{V}\left[\widehat{\psi}_{1}\right] + \mathbb{V}\left[\widehat{\psi}_{2}\right] - 2\operatorname{Cov}\left[\widehat{\psi}_{1}, \widehat{\psi}_{2}\right] \tag{C.9}$$

just as we would find from the basic rules for arithmetic with variances. The approximation in Eq. [C.8] comes from the nonlinearities in f.

If the estimates of the initial quantities are uncorrelated, Eq. C.8 simplifies to

$$\mathbb{V}\left[\widehat{\theta}\right] \approx \sum_{i=1}^{p} \left(f_i'(\widehat{\psi})\right)^2 \mathbb{V}\left[\widehat{\psi}_i\right] \tag{C.10}$$

and, again, the standard error of $\hat{\theta}$ would be the square root of this. The special case of Eq. $\boxed{\text{C.10}}$ is sometimes called *the* propagation of error formula, but I think it's better to use that name for the more general Eq. $\boxed{\text{C.8}}$