Regression with Dependent Noise and Observations

36-467/667, Fall 2020

7 December 2020 (Lecture 26)

\[ \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \newcommand{\Y}{\mathbf{Y}} \newcommand{\NoiseVar}{\mathbf{\Sigma}} \DeclareMathOperator*{\argmin}{argmin} \newcommand{\w}{\mathbf{w}} \]

Agenda

The basic linear model

\[ Y_i= X_i \cdot \beta + \epsilon_i \]

Adding Correlations to the Noise

Generalized/weighted least squares

So how do we estimate \(\Var{\epsilon}\)?

  1. \(\Var{\epsilon}\) is diagonal, but not \(\sigma^2 \mathbf{I}\) (heteroskedasticity)
    • or heteroscedasticity
  2. \(\Var{\epsilon}\) has off-diagonal entries (correlated noise)
    • possibly heteroskedastic as well

Estimating \(\Var{\epsilon}\): heteroskedastic but not autocorrelated

Estimating \(\Var{\epsilon}\): autocorrelated

Summing Up on Regression with Correlated Noise

“Spurious” Correlations and Regressions

Situations Where This Matters

This is an old problem but it keeps happening

Advice