36-467/36-667
17 November 2020 (Lecture 20)
\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Neighbors}{\mathcal{N}} \]
Reprise from Lecture 12:
mrf2d
package
Multiply the local characteristics of the red sites to get a conditional likelihood \[ \Prob{X(\text{red})=x(\text{red})|X(\text{blue})=x(\text{blue})} = \prod_{r \in \text{red}}{\Prob{X(r)=x(r)|X(\Neighbors(r)) = x(\Neighbors(r))}} \]
Bartlett, M. S. 1975. The Statistical Analysis of Spatial Pattern. London: Chapman; Hall.
Geyer, Charles J. 1991. “Markov Chain Monte Carlo Maximum Likelihood.” In Computing Science and Statistics : Proceedings of the 23rd Symposium on the Interface, Seattle, Washington, April 21-24, 1991, edited by Elaine M Keramidas and Selma M Kaufman, 156–63. Fairfax Station, Virginia: Interface Foundation of North America. http://hdl.handle.net/11299/58440.
Geyer, Charles J., and Elizabeth A. Thompson. 1992. “Constrained Monte Carlo Maximum Likelihood for Dependent Data.” Journal of the Royal Statistical Society: Series B 54:657–83. https://doi.org/10.1111/j.2517-6161.1992.tb01443.x.
Griffeath, David. 1976. “Introduction to Markov Random Fields.” In Denumerable Markov Chains, edited by John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Second, 425–57. Berlin: Springer-Verlag.
Kaplan, Andee, Mark S. Kaiser, Soumendra N. Lahiri, and Daniel J. Nordman. 2019. “Simulating Markov Random Fields with a Conclique-Based Gibbs Sampler.” Journal of Computational and Graphical Statistics 29. https://doi.org/10.1080/10618600.2019.1668800.
Lahiri, S. N. 2003. Resampling Methods for Dependent Data. New York: Springer-Verlag.
Levina, Elizaveta, and Peter J. Bickel. 2006. “Texture Synthesis and Nonparametric Resampling of Random Fields.” Annals of Statistics 34:1751–73. http://projecteuclid.org/euclid.aos/1162567632.