Markov Random Fields

36-467/36-667

17 November 2020 (Lecture 20)

\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Neighbors}{\mathcal{N}} \]

In our previous episodes

Markov Random Fields

What Does a Markov Random Field Look Like?

An Example: The Ising Model

The Gibbs Sampler

Reprise from Lecture 12:

The Gibbs Sampler (actually running)

Changing dependence strength

Inference: Basics

Inference: Likelihood (1)

Inference: Likelihood vs. Matching Sufficient Statistics

Inference: Likelihood (3)

Inference: Uncertainty

Adding Time Back In

  1. \(X(r,t)\) should be conditioned on \(X(\Neighbors(r), t-1)\) and \(X(r,t-1)\)
    • So \(X(r,t)\) and \(X(q,t)\) are independent given \(X(\cdot, t-1)\)
  2. Condition on \(X(\Neighbors(r), t-1)\), \(X(r,t-1)\) and \(X(\Neighbors(r), t)\)
    • Neighbors at time \(t\) are still dependent given \(X(\cdot, t-1)\)

Spatio-temporal Markov Random Fields

Cellular Automata

Summary

Backup: Gibbs-Markov Theorem

Backup: Gibbs-Markov Theorem

Backup: Gibbs-Markov Theorem

Backup: A Conditional Likelihood for a Fraction of the Data

References

Bartlett, M. S. 1975. The Statistical Analysis of Spatial Pattern. London: Chapman; Hall.

Geyer, Charles J. 1991. “Markov Chain Monte Carlo Maximum Likelihood.” In Computing Science and Statistics : Proceedings of the 23rd Symposium on the Interface, Seattle, Washington, April 21-24, 1991, edited by Elaine M Keramidas and Selma M Kaufman, 156–63. Fairfax Station, Virginia: Interface Foundation of North America. http://hdl.handle.net/11299/58440.

Geyer, Charles J., and Elizabeth A. Thompson. 1992. “Constrained Monte Carlo Maximum Likelihood for Dependent Data.” Journal of the Royal Statistical Society: Series B 54:657–83. https://doi.org/10.1111/j.2517-6161.1992.tb01443.x.

Griffeath, David. 1976. “Introduction to Markov Random Fields.” In Denumerable Markov Chains, edited by John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Second, 425–57. Berlin: Springer-Verlag.

Kaplan, Andee, Mark S. Kaiser, Soumendra N. Lahiri, and Daniel J. Nordman. 2019. “Simulating Markov Random Fields with a Conclique-Based Gibbs Sampler.” Journal of Computational and Graphical Statistics 29. https://doi.org/10.1080/10618600.2019.1668800.

Lahiri, S. N. 2003. Resampling Methods for Dependent Data. New York: Springer-Verlag.

Levina, Elizaveta, and Peter J. Bickel. 2006. “Texture Synthesis and Nonparametric Resampling of Random Fields.” Annals of Statistics 34:1751–73. http://projecteuclid.org/euclid.aos/1162567632.