Inference II — Ergodic Theory

36-467/667

15 October 2020 (Lecture 14)

\[ \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Prob}[1]{\mathbb{P}\left[ #1 \right]} \newcommand{\TrueRegFunc}{\mu} \newcommand{\EstRegFunc}{\widehat{\TrueRegFunc}} \DeclareMathOperator*{\argmin}{argmin} \newcommand{\TrueNoise}{\epsilon} \newcommand{\EstNoise}{\widehat{\TrueNoise}} \]

In our last episode…

Agenda for today

Ergodic theory

Second-order stationary and not-too-correlated

Our first ergodic theorem

\[\begin{eqnarray} \overline{X}_n & \equiv & \frac{1}{n}\sum_{t=1}^{n}{X(t)}\\ \Expect{\left(\overline{X}_n - \mu\right)^2} & = & \left(\Expect{\overline{X}_n - \mu}\right)^2 + \Var{\overline{X}_n}\\ \Expect{\overline{X}_n} & = & \frac{1}{n}\sum_{t=1}^{n}{\Expect{X(t)}} = \mu\\ \Var{\overline{X}_n} & = & \frac{1}{n^2}\left(\sum_{t=1}^{n}{\Var{X(t)}} + 2\sum_{t=1}^{n-1}{\sum_{s=t+1}^{n}{\Cov{X(t), X(s)}}}\right)\\ & = & \frac{1}{n^2}\left(n \gamma(0) + \sum_{t=1}^{n}{\sum_{s\neq t}{\gamma(t-s)}}\right)\\ & = & \frac{1}{n^2}\sum_{t=1}^{n}{\sum_{s=1}^{n}{\gamma(t-s)}}\\ & = & \frac{1}{n^2}\sum_{t=1}^{n}{\sum_{h=1-t}^{n-t}{\gamma(h)}} \\ & \rightarrow & \frac{1}{n^2}\sum_{t=1}^{n}{\sum_{h=-\infty}^{\infty}{\gamma(h)}} = \frac{1}{n^2}\sum_{t=1}^{n}{\gamma(0)\tau} = \frac{\gamma(0)\tau}{n} \end{eqnarray}\]

Our first ergodic theorem

If \(\tau < \infty\), then

\[\begin{eqnarray} \Expect{\left(\overline{X}_n - \mu\right)^2} &\rightarrow & 0 + \frac{\gamma(0)\tau}{n} \rightarrow 0 \end{eqnarray}\]

\(\Leftrightarrow\) If \(\tau < \infty\), then

\[\begin{eqnarray} \overline{X}_n \rightarrow \mu \end{eqnarray}\]

How sensible is \(\tau < \infty\)?

Not every process has \(\tau < \infty\):

Effective sample size

Generalizing: non-stationary case

Application: Stationary AR(1)

Application: Not-necessarily-stationary AR(1)

Application: AR(1)

Looking beyond the simplest ergodic theorem

Convergence of the log-likelihood

Convergence of the log-likelihood (II)

Central limit theorems and weak dependence

Summary

Backup: Boltzmann

(Photo credit: Tom Schneider, downloaded 2008 from an apparently-defunct website)

Backup: “Ergodic”, “Ergodicity”

Backup: More on ergodic theory

Backup: Weak dependence and central limit theorems

References

Batchelor, G. K. 1996. The Life and Legacy of G. I. Taylor. Cambridge, England: Cambridge University Press.

Boltzmann, Ludwig. 1964. Lectures on Gas Theory. Berkeley: University of California Press.

Castiglione, Patrizia, Massimo Falcioni, Annick Lesne, and Angelo Vulpiani. 2008. Chaos and Coarse Graining in Statistical Mechanics. Cambridge, England: Cambridge University Press.

Cover, Thomas M., and Joy A. Thomas. 2006. Elements of Information Theory. Second. New York: John Wiley.

Frisch, Uriel. 1995. Turbulence: The Legacy of a. N. Kolmogorov. Cambridge, England: Cambridge University Press.

Gray, Robert M. 1990. Entropy and Information Theory. New York: Springer-Verlag. http://ee.stanford.edu/~gray/it.html.

———. 2009. Probability, Random Processes, and Ergodic Properties. Second. New York: Springer-Verlag. http://ee.stanford.edu/~gray/arp.html.

Grimmett, G. R., and D. R. Stirzaker. 1992. Probability and Random Processes. 2nd ed. Oxford: Oxford University Press.

Lebowitz, Joel L. 1999. “Statistical Mechanics: A Selective Review of Two Central Issues.” Reviews of Modern Physics 71:S346–S357. http://arxiv.org/abs/math-ph/0010018.

Mackey, Michael C. 1992. Time’s Arrow: The Origins of Thermodynamic Behavior. Berlin: Springer-Verlag.

Plato, Jan von. 1994. Creating Modern Probability: Its Mathematics, Physics and Philosophy in Historical Perspective. Cambridge, England: Cambridge University Press.

Ruelle, David. 1991. Chance and Chaos. Princeton, New Jersey: Princeton University Press.

Taylor, G. I. 1922. “Diffusion by Continuous Movements.” Proceedings of the London Mathematical Society, 2nd ser., 20:196–212. https://doi.org/10.1112/plms/s2-20.1.196.

Yu, Bin. 1994. “Rates of Convergence for Empirical Processes of Stationary Mixing Sequences.” Annals of Probability 22:94–116. https://doi.org/10.1214/aop/1176988849.