Linear Generative Models for Spatial and Spatio-Temporal Data

36-467/667

8 October 2020 (Lecture 12)

\[ \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Neighbors}{N} \]

In our last episode

Today

In space, no one can decide which way to go

Conditional autoregressive (CAR) spatial models

The Gaussian CAR model

Some points about CAR models

The “Gibbs sampler” trick

Simultaneous autoregressions (SAR):

Simultaneous autoregressions (SAR):

Spatio-temporal

Estimating AR(1)

Estimating \(b\): Yule-Walker approach

Estimating \(b\): Ordinary least squares approach

Estimating \(b\): Maximum likelihood approach

Estimating AR(1)

Summary

Backup: Converting an SAR to a CAR

After discussion at the end of class

Q: When will a CAR with coefficient matrix \(\mathbf{b}\) have the same distribution as a SAR with coefficient matrix \(\mathbf{b}\)?

A: Use the last equation above but require \(\mathbf{\beta} = \mathbf{b}\): \[\begin{eqnarray} \mathbf{b} & = & 2 \mathbf{b} + \mathbf{b}^2\\ \mathbf{0} & = & \mathbf{b} + \mathbf{b}^2\\ \mathbf{0} & = & \mathbf{b}(\mathbf{I} + \mathbf{b}) \end{eqnarray}\] so \(\mathbf{0} = 0\) or \(\mathbf{b} = - \mathbf{I}\)

Backup: Intuition for \((\mathbf{I} - \mathbf{b})^{-1}\)

Backup: Deriving the global distribution of a linear-Gaussian CAR

(after Guttorp (1995, 206–7))

\[\begin{eqnarray} \log{\frac{p(\mathbf{X}=\mathbf{x})}{p(\mathbf{X}=\mathbf{0})}} & = & \sum_{i=1}^{n}{\log{p(X_i=x_i|X_{-i}=x_{-i;i+1})} - \log{p(X_i=0|X_{-i}=x_{-i;i+1})}} ~ \text{(Brooks representation, see backup)}\\ & = & -\frac{1}{2\tau^2}\left(\sum_{i=1}^{n}{\left(x_i - \sum_{j=1}^{i-1}{b_{ij} x_j}\right)^2 - \left(0 - \sum_{j=1}^{i-1}{b_{ij} x_j}\right)^2}\right)\\ & = & -\frac{1}{2\tau^2}\left(\sum_{i=1}^{n}{x_i^2 - 2 x_i \sum_{j=1}^{i-1}{b_{ij} x_j}}\right)\\ & = & \frac{1}{2\tau^2}\left(\sum_{i=1}^{n}{x_i^2 - x_i (\mathbf{b} \mathbf{x})_{i}}\right) ~ \text{(symmetry of}~\mathbf{b})\\ & = & \frac{1}{2\tau^2}\mathbf{x}^T(\mathbf{I}-\mathbf{b})\mathbf{x}\\ \end{eqnarray}\]

Backup: Deriving the global distribution of a linear-Gaussian SAR

(after Guttorp (1995, 219–21, Exercise 4.1))

Backup: The “Brooks representation” result

After Guttorp (1995, 7, Proposition 1.1)

\(\mathbf{X}\) is an \(n\)-dimensional random vector. Assume \(p(\mathbf{x}) > 0\) for all \(\mathbf{x}\). Then \[ \frac{p(\mathbf{x})}{p(\mathbf{y})} = \prod_{i=1}^{n}{\frac{p(x_i|x_{1:i-1}, y_{i+1:n})}{p(y_i|x_{1:i-1}, y_{i+1:n})}} \] Since \(\sum_{\mathbf{x}}{p(\mathbf{x})}=1\), this implies that the conditional distributions uniquely fix the whole distribution

Backup: Proof of the Brooks representation result

Again, after Guttorp (1995, 7)

\[\begin{eqnarray} p(\mathbf{x}) & = & p(x_n|x_{1:n-1}) p(x_{1:n-1})\\ & = & p(x_n|x_{1:n-1})p(x_{1:n-1})\frac{p(y_n|x_{1:n-1})}{p(y_n|x_{1:n-1})}\\ & = & \frac{p(x_n|x_{1:n-1})}{p(y_n|x_{1:n-1})}p(x_{1:n-1}, y_n)\\ & = & \frac{p(x_n|x_{1:n-1})}{p(y_n|x_{1:n-1})} p(x_{n-1}| x_{1:n-2}, y_n) p(x_{1:n-2}, y_n)\\ & = & \frac{p(x_n|x_{1:n-1})}{p(y_n|x_{1:n-1})} \frac{p(x_{n-1}| x_{1:n-2}, y_n)}{p(y_{n-1}| x_{1:n-2}, y_n)}p(x_{1:n-2}, y_{n-1:n})\\ & \vdots &\\ & = & \frac{p(x_n|x_{1:n-1})}{p(y_n|x_{1:n-1})} \frac{p(x_{n-1}| x_{1:n-2}, y_n)}{p(y_{n-1}| x_{1:n-2}, y_n)} \ldots \frac{p(x_1|y_{2:n})}{p(y_1|y_{2:n})} \end{eqnarray}\]

Backup: The Gibbs Sampler…

References

Geman, Stuart, and Donald Geman. 1984. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721–41. https://doi.org/10.1109/TPAMI.1984.4767596.

Griffeath, David. 1976. “Introduction to Markov Random Fields.” In Denumerable Markov Chains, edited by John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Second, 425–57. Berlin: Springer-Verlag.

Guttorp, Peter. 1995. Stochastic Modeling of Scientific Data. London: Chapman; Hall.

Mandelbrot, Benoit. 1962. “The Role of Sufficiency and of Estimation in Thermodynamics.” Annals of Mathematical Statistics 33:1021–38. http://projecteuclid.org/euclid.aoms/1177704470.

Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. 1953. “Equations of State Calculations by Fast Computing Machines.” Journal of Chemical Physics 21:1087–92. https://doi.org/10.1063/1.1699114.

Reichenbach, Hans. 1956. The Direction of Time. Berkeley: University of California Press.