36-467/667, Fall 2020
8 September 2020 (Lecture 3)
\[ \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\TrueRegFunc}{\mu} \newcommand{\EstRegFunc}{\widehat{\TrueRegFunc}} \newcommand{\TrueNoise}{\epsilon} \DeclareMathOperator{\tr}{tr} \DeclareMathOperator*{\argmin}{argmin} \DeclareMathOperator{\dof}{DoF} \]
\[ \TrueRegFunc(r,t) \equiv \Expect{X(r,t)} \]
Random process = trend + fluctuations
\[\begin{eqnarray} X(r,t) & = & \TrueRegFunc(r,t) + \TrueNoise(r,t)\\ \Expect{\TrueNoise(r,t)} & = & 0 \end{eqnarray}\](Sometimes called “signal plus noise” representation)
\(\TrueNoise =\) another random process
\[ \EstRegFunc(t_i) = \frac{1}{3}\sum_{k=-1}^{k=+1}{X(t_{i+k})} \]
Expected fitted values: \[\begin{eqnarray} \Expect{\mathbf{\EstRegFunc}} & = & \Expect{\mathbf{w}\mathbf{X}}\\ & = & \mathbf{w}\Expect{\mathbf{X}}\\ & = & \mathbf{w}\Expect{\mathbf{\TrueRegFunc} + \mathbf{\TrueNoise}}\\ & = & \mathbf{w}\Expect{\mathbf{\TrueRegFunc}} + \mathbf{w}\Expect{\mathbf{\TrueNoise}}\\ & = & \mathbf{w}\mathbf{\TrueRegFunc} \end{eqnarray}\]
A linear smoother is unbiased if, and only if, \(\mathbf{\TrueRegFunc}\) is an eigenvector of \(\mathbf{w}\) with eigenvalue 1
## [1] 1.00000000 0.96261129 0.85490143 0.68968376 0.48651845 -0.31012390
## [7] 0.26920019 -0.23729622 -0.11137134 0.06254301
## [1] 0.3162278 0.3162278 0.3162278 0.3162278 0.3162278 0.3162278 0.3162278
## [8] 0.3162278 0.3162278 0.3162278
(Official White House Council of Economic Advisers tweet, 2020-05-05)
Farebrother, Richard William. 1999. Fitting Linear Relationships: A History of the Calculus of Observations 1750–1900. New York: Springer-Verlag.