Markov Random Fields

36-467/36-667

\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Neighbors}{\mathcal{N}} \]

In our previous episodes

Markov Random Fields

What Does a Markov Random Field Look Like?

The Gibbs Sampler (reprise)

Inference: Basics

Inference: Likelihood

Inference: Uncertainty

Adding Time Back In

Spatio-temporal Markov Random Fields

Cellular Automata

Summary

Backup: Gibbs-Markov Theorem

Backup: Gibbs-Markov Theorem

Backup: Gibbs-Markov Theorem

Backup: A Conditional Likelihood for a Fraction of the Data

References

Bartlett, M. S. 1975. The Statistical Analysis of Spatial Pattern. London: Chapman; Hall.

Griffeath, David. 1976. “Introduction to Markov Random Fields.” In Denumerable Markov Chains, edited by John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Second, 425–57. Berlin: Springer-Verlag.

Kaplan, Andee, Mark S. Kaiser, Soumendra N. Lahiri, and Daniel J. Nordman. 2018. “Simulating Markov Random Fields with a Conclique-Based Gibbs Sampler.” arxiv.org:1808.04739. https://arxiv.org/abs/1808.04739.