36-467/667
25 September 2018
\[ \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Prob}[1]{\mathbb{P}\left[ #1 \right]} \newcommand{\TrueRegFunc}{\mu} \newcommand{\EstRegFunc}{\widehat{\TrueRegFunc}} \DeclareMathOperator*{\argmin}{argmin} \newcommand{\TrueNoise}{\epsilon} \newcommand{\EstNoise}{\widehat{\TrueNoise}} \]
If \(\tau < \infty\), then
\[\begin{eqnarray} \Expect{\left(\overline{X}_n - \mu\right)^2} &\rightarrow & 0 + \frac{\gamma(0)\tau}{n} \rightarrow 0 \end{eqnarray}\]\(\Leftrightarrow\) If \(\tau < \infty\), then
\[\begin{eqnarray} \overline{X}_n \rightarrow \mu \end{eqnarray}\](Photo credit: Tom Schneider, downloaded 2008 from an apparently-defunct website)
Boltzmann, Ludwig. 1964. Lectures on Gas Theory. Berkeley: University of California Press.
Castiglione, Patrizia, Massimo Falcioni, Annick Lesne, and Angelo Vulpiani. 2008. Chaos and Coarse Graining in Statistical Mechanics. Cambridge, England: Cambridge University Press.
Cover, Thomas M., and Joy A. Thomas. 2006. Elements of Information Theory. Second. New York: John Wiley.
Gray, Robert M. 1990. Entropy and Information Theory. New York: Springer-Verlag. http://ee.stanford.edu/~gray/it.html.
———. 2009. Probability, Random Processes, and Ergodic Properties. Second. New York: Springer-Verlag. http://ee.stanford.edu/~gray/arp.html.
Grimmett, G. R., and D. R. Stirzaker. 1992. Probability and Random Processes. 2nd ed. Oxford: Oxford University Press.
Lebowitz, Joel L. 1999. “Statistical Mechanics: A Selective Review of Two Central Issues.” Reviews of Modern Physics 71:S346–S357. http://arxiv.org/abs/math-ph/0010018.
Mackey, Michael C. 1992. Time’s Arrow: The Origins of Thermodynamic Behavior. Berlin: Springer-Verlag.
Plato, Jan von. 1994. Creating Modern Probability: Its Mathematics, Physics and Philosophy in Historical Perspective. Cambridge, England: Cambridge University Press.
Ruelle, David. 1991. Chance and Chaos. Princeton, New Jersey: Princeton University Press.
Yu, Bin. 1994. “Rates of Convergence for Empirical Processes of Stationary Mixing Sequences.” Annals of Probability 22:94–116. https://doi.org/10.1214/aop/1176988849.