36-467/36-667
18 October 2018
\[ \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Neighbors}{N} \]
\[ X(t) = a+b X(t-1) + \epsilon(t) \]
(after Guttorp (1995, 206–7))
(after Guttorp (1995, 219–21, Exercise 4.1))
So a nearest-neighbors SAR corresponds to a CAR with next-nearest-neighbors, etc.
Query: Can you always find an SAR matrix to match a CAR?
After Guttorp (1995, 7, Proposition 1.1)
\(\mathbf{X}\) is an \(n\)-dimensional random vector. Assume \(p(\mathbf{x}) > 0\) for all \(\mathbf{x}\). Then \[ \frac{p(\mathbf{x})}{p(\mathbf{y})} = \prod_{i=1}^{n}{\frac{p(x_i|x_{1:i-1}, y_{i+1:n})}{p(y_i|x_{1:i-1}, y_{i+1:n})}} \] Since \(\sum_{\mathbf{x}}{p(\mathbf{x})}=1\), this implies that the conditional distributions uniquely fix the whole distribution
Again, after Guttorp (1995, 7)
\[\begin{eqnarray} p(\mathbf{x}) & = & p(x_n|x_{1:n-1}) p(x_{1:n-1})\\ & = & p(x_n|x_{1:n-1})p(x_{1:n-1})\frac{p(y_n|x_{1:n-1})}{p(y_n|x_{1:n-1})}\\ & = & \frac{p(x_n|x_{1:n-1})}{p(y_n|x_{1:n-1})}p(x_{1:n-1}, y_n)\\ & = & \frac{p(x_n|x_{1:n-1})}{p(y_n|x_{1:n-1})} p(x_{n-1}| x_{1:n-2}, y_n) p(x_{1:n-2}, y_n)\\ & = & \frac{p(x_n|x_{1:n-1})}{p(y_n|x_{1:n-1})} \frac{p(x_{n-1}| x_{1:n-2}, y_n)}{p(y_{n-1}| x_{1:n-2}, y_n)}p(x_{1:n-2}, y_{n-1:n})\\ & \vdots &\\ & = & \frac{p(x_n|x_{1:n-1})}{p(y_n|x_{1:n-1})} \frac{p(x_{n-1}| x_{1:n-2}, y_n)}{p(y_{n-1}| x_{1:n-2}, y_n)} \ldots \frac{p(x_1|y_{2:n})}{p(y_1|y_{2:n})} \end{eqnarray}\]Guttorp, Peter. 1995. Stochastic Modeling of Scientific Data. London: Chapman; Hall.