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/ Training Dataset

The training data set is built and used to evaluate the features of objects from known classes and to build a
decision tree. The current training dataset consists of ~7,700 confidently classified X-ray sources with X-ray and
MW features (up to 18 listed in the Table in the next section) extracted from 14 catalogs provided by Vizier. The
current classification scheme uses 9 different object classes: Active Galactic Nuclei (AGN), Neutron Stars (NS),
Neutron Star Binaries (NS BIN), Low Mass X-ray Binaries (LMXB), High Mass X-ray Binaries (HMXB),
Cataclysmic Variables (CV), Stars, Wolf-Rayet Stars (WR), and Young Stellar Objects (YSO).
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AGN NS NSBIN | CV | HMXB | LMXB | STAR | WR | YSO HESS J1741-302
k Number | 5794 85 10 134 21 54 1313 27 212 /
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