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High-energy astrophysics is currently in a golden era with observatories such as Chandra, Fermi-LAT, and 
H.E.S.S. viewing the sky over a multitude of wavelengths. Large amounts of data are continuously being 
produced and this amount will continue to grow as new, more sensitive observatories are brought online (e.g., 
CTA, Astro-H, eROSITA, Athena). This is leading to a rapid increase in the number of discovered high-energy 
sources, many of which have uncertain classifications or remain entirely unidentified. One example of this 
problem are the ∼3,000 sources discovered by the Fermi-LAT, of which about 1/3 are unidentified (according to 
the 3FGL catalog produced by the Fermi-LAT Collaboration 2015). Since the gamma-ray positions are very 
uncertain, one promising approach is to classify all X-ray sources within the gamma-ray source fields in order to 
find the X-ray counterpart of the gamma-ray source. Classifying GeV and TeV γ-ray sources enables population 
studies (e.g., evolution, spatial distribution) and offers an opportunity to find remarkable outliers which may 
represent new classes of high-energy objects. In order to maximize the scientific return and observing power of 
current (and future) instruments, automated and accurate methods of classification must be developed and tested.  

IntroducKon	  

To classify these objects, ML algorithms using multi-wavelength (MW) data can be applied. We use the Random 
Forest (RF) algorithm, which is similar in structure to decision trees (e.g., C4.5, CART), but has considerable 
gains. Specifically, this algorithm works by taking a sample of the training dataset with replacement (i.e., 
bootstrapping), building a decision tree by randomly selecting a small subset of parameters to maximize on, and 
then repeating the process. By doing this, the RF algorithm builds an ensemble of decision trees, each one 
different from the rest. This method is much less prone to overfitting when compared to a single decision tree 
(Breiman et al. 2001) and is generally more robust due to the larger number of decision trees. 

Machine	  Learning	  

XMM-Newton observations of Draco were fed through our pipeline in order to probe the X-ray source 
population of this dwarf galaxy. There was a high level of similarity between our algorithms classifications and 
classifications done manually (see Manni et al. 2015). See Sonbas et al. (2016). The two parameter plots can be 
seen below. 

Draco	  

Outlook	  
With the growing number of all sky and wide-field observatories coming online in the near future (e.g. LSST, 
eRosita, Athena) developing and understanding these methods is crucial. These methods will also allow us to get 
a larger return on the data from current telescopes as well (e.g., Fermi-LAT, Chandra, H.E.S.S., VERITAS). By 
automating this procedure we can classify sources in near real-time in the data streams from future 
observatories , which will allow for the identification and multi-wavelength follow-up of interesting sources. 
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Chandra	  ACIS-‐I	  

ApplicaKons:	  HESS	  J1741-‐302	  &	  Draco	  

•  Classifications from our pipeline (which reliably detects Stars and AGN) allowed us to rule out many X-ray 
sources in the fields  

•  HESS J1741 field contains an likely WR binary system, which have been hypothesized to produce TeV 
emission (Aliu et al. 2008). The only other potential counterpart is the offset 20-kyr-old pulsar B1737-30. 

•  See Hare et al.( 2015) for the detailed analysis description from this HESS source. 

HESS	  J1741-‐302	  
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Chandra	  ACIS-‐I	  

The training data set is built and used to evaluate the features of objects from known classes and to build a 
decision tree. The current training dataset consists of ∼7,700 confidently classified X-ray sources with X-ray and 
MW features (up to 18 listed in the Table in the next section) extracted from 14 catalogs provided by Vizier. The 
current classification scheme uses 9 different object classes: Active Galactic Nuclei (AGN), Neutron Stars (NS), 
Neutron Star Binaries (NS_BIN), Low Mass X-ray Binaries (LMXB), High Mass X-ray Binaries (HMXB), 
Cataclysmic Variables (CV), Stars, Wolf-Rayet Stars (WR), and Young Stellar Objects (YSO).  

Training	  Dataset	  

TeV	  
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Tibolla	  et	  al.	  (2009)	  

Our current training dataset is heavily imbalanced, which can lead to skewed classifications if not accounted for. 
We account for this imbalance in two ways. The first is by weighting the RF algorithm based on the number of 
sources in a particular class. This means that the algorithm assigns a higher cost to the rarer source classes.  The 
second method we use is the Synthetic Minority Over-sampling Technique (SMOTE; Chawla et. al 2011). This 
methods find the 5 nearest class neighbors to a minority class and selects one of these 5 at random. Then the 
algorithm creates a new synthetic source that is scaled to lie between the two originally selected sources (see 
Figure below). This process is repeated until all sources have the same number of samples.  

Imbalanced	  Data	  

AGN	   NS	   NS_BIN	   CV	   HMXB	   LMXB	   STAR	   WR	   YSO	  

Number	   5794	   85	   10	   134	   21	   54	   1313	   27	   212	  

SMOTE	  sample	  

Cross-‐validaKon	  
We have used 10 fold cross-validation with a weighted RF algorithm and have gotten an overall accuracy of 
91%. The weighted RF algorithm provides a superior overall classification confidence when compared with the 
SMOTE’d training dataset (86%). However, the SMOTE’d training dataset is more accurate at predicting 
minority classes (i.e., NS, LMXB, YSO, WR). Above you can see the SMOTE’d confusion matrix for 
confidently (>70% classification confidence) classified sources our training dataset. In total, out of the sources 
that had confident classifications, 93% were confidently classified as the correct class.  

Features	  used	  for	  ClassificaKon	  

Confident	  Confusion	  Matrix	  
(50%	  trained	  /	  50%	  test)	  

Two	  parameter	  plots	  showing	  separaDon	  of	  classes.	  AGN:	  Grey,	  YSO:	  Orange,	  Star:	  Yellow,	  
Draco	  UnidenDfied:	  Black	  

•   Unidentified galactic VHE sources observed with Chandra X-ray Observatory; 
•  19 sources were found in the Chandra ACIS-I fields of view  marked by white squares on top of the TeV 

images shown below. 
•  We used our automated classification pipeline to look for potential X-ray counterparts of the TeV sources and 

to classify all X-ray sources in the ACIS-I  fields.  


