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Abstract

With the arrival of the R packages nlme and lme4, linear mixed mod-
els (LMMs) have come to be widely used in experimentally-driven areas
like psychology, linguistics, and cognitive science. This tutorial provides a
practical introduction to fitting LMMs in a Bayesian framework using the
probabilistic programming language Stan. We choose Stan (rather than
WinBUGS or JAGS) because it provides an elegant and scalable frame-
work for fitting models in most of the standard applications of LMMs. We
ease the reader into fitting increasingly complex LMMs, first using a two-
condition repeated measures self-paced reading study, followed by a more
complex 2× 2 repeated measures factorial design that can be generalized
to much more complex designs.

1 Introduction

Linear mixed models, or hierarchical/multilevel linear models, have become the
main workhorse of experimental research in psychology, linguistics, and cogni-
tive science, where repeated measures designs are the norm. Within the pro-
gramming environment R [24], the nlme package [22] and its successor, lme4
[3] have revolutionized the use of linear mixed models (LMMs) due to their
simplicity and speed: one can fit fairly complicated models relatively quickly,
often with a single line of code. A great advantage of LMMs over traditional
approaches such as repeated measures ANOVA and paired t-tests is that there
is no need to aggregate over subjects and items to compute two sets of F-scores
(or several t-scores) separately; a single model can take all sources of variance
into account simultaneously. Furthermore, comparisons between conditions can
easily be implemented in a single model through appropriate contrast coding.
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Other important developments related to LMMs have been unfolding in
computational statistics. Specifically, probabilistic programming languages like
WinBUGS [18], JAGS [23] and Stan [27], among others, have made it possible to
fit Bayesian LMMs quite easily. However, one prerequisite for using these pro-
gramming languages is that some background statistical knowledge is needed
before one can define the model. This difficulty is well-known; for example,
Spiegelhalter and colleagues [26, 4] write: “Bayesian statistics has a (largely
deserved) reputation for being mathematically challenging and difficult to put
into practice. . . ”.

The purpose of this paper is to facilitate a first encounter with model spec-
ification in one of these programming languages, Stan. The tutorial is aimed
primarily at psychologists, linguists, and cognitive scientists who have used
lme4 to fit models to their data, but may have only a basic knowledge of the
underlying LMM machinery. A diagnostic test is that they may not be able to
answer some or all of these questions: what is a design matrix; what is contrast
coding; what is a random effects variance-covariance matrix in a linear mixed
model? Our tutorial is not intended for statisticians or psychology researchers
who could, for example, write their own Markov Chain Monte Carlo samplers in
R or C++ or the like; for them, the Stan manual is the optimal starting point.
The present tutorial attempts to ease the beginner into their first steps towards
fitting Bayesian linear mixed models. More detailed presentations about linear
mixed models are available in several textbooks; references are provided at the
end of this tutorial.

We have chosen Stan as the programming language of choice (over JAGS
and WinBUGS) because it is possible to fit arbitrarily complex models with
Stan. For example, it is possible (if time consuming) to fit a model with 14
fixed effects predictors and two crossed random effects by subject and item,
each involving a 14× 14 variance-covariance matrix [2]; as far as we are aware,
such models cannot, as far as we know, be fit in JAGS or WinBUGS.1

In this tutorial, we take it as a given that the reader is interested in learning
how to fit Bayesian linear mixed models. We do not try to explain the advan-
tages this approach affords beyond the classical frequentist approach; for such
justification, the reader is directed to the rich literature relating to a comparison
between Bayesian versus frequentist statistics (such as the provocatively titled
paper by Lavine [15]; and the highly accessible textbook by Kruschke [14]). We
also assume that the reader is aware of Bayes’ Theorem, which for our pur-
poses amounts to the statement that the posterior distribution is proportional
to the prior times the likelihood. For the purposes of this paper, the goal of a
Bayesian analysis is simply to derive the posterior distribution of each parame-
ter of interest, given some data and prior beliefs about the distributions of the
parameters.

The tutorial is structured as follows. We begin by successively building up
increasingly complex LMMs using the data-set reported by Gibson and Wu[8],

1Whether it makes sense in general to fit such a complex model is a different issue; see [5],
and [2] for recent discussion.
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which has a simple two-condition design. At each step, we explain the structure
of the model. The next section takes up inference for this two-condition design.
Then we demonstrate how one can fit a somewhat more complex 2× 2 factorial
design.

This paper was written using a literate programming tool, knitr [29]; this
integrates documentation for the accompanying code with the paper. The knitr
file that generated this paper, as well as all the code and data used in this
tutorial, can be downloaded from our website:

http://www.ling.uni-potsdam.de/∼vasishth/statistics/BayesLMMs.html
We start with the two-condition repeated measures data-set [8] as a concrete

running example. This simple example serves as a starter kit for fitting com-
monly used LMMs in the Bayesian setting. We assume that the reader has the
relevant software installed; specifically, rstan in R. For detailed instructions,
see

https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started

2 Example 1: A two-condition repeated mea-

sures design

This section motivates the LMM with the self-paced reading data-set of Gibson
and Wu [8]. We introduce the data-set, state our modeling goals here, and
proceed to build up increasingly complex LMMs.

The scientific question Subject and object relative clauses have been widely
used in reading studies to investigate sentence comprehension processes. A sub-
ject relative is a sentence like The senator who interrogated the journalist re-
signed where a noun (senator) is modified by a relative clause (who interrogated
the journalist), and the modified noun is the grammatical subject of the rela-
tive clause. In an object relative, the noun modified by the relative clause is the
grammatical object of the relative clause (e.g., The senator who the journalist
interrogated resigned). In both cases, the noun that is modified (senator) is
called the head noun.

A typical finding for English is that subject relatives are easier to process
than object relatives [12]. Natural languages generally have relative clauses,
and the subject relative advantage has until recently been considered to be true
cross-linguistically. However, Chinese relative clauses apparently represent an
interesting counter-example to this generalization; recent work by Hsiao and
Gibson [10] has suggested that in Chinese, object relatives are easier to process
than subject relatives at a particular point in the sentence (the head noun of
the relative clause). We now present an analysis of a subsequently published
data-set [8] that evaluates this claim.

The data The dependent variable of the experiment of Gibson and Wu [8] was
the reading time rt of the head noun of the relative clause. This was recorded

3

http://www.ling.uni-potsdam.de/~vasishth/statistics/BayesLMMs.html


in two conditions (subject relative and object relative), with 37 subjects and
15 items, presented in a standard Latin square design. There were originally
16 items, but one item was removed, resulting in 37 × 15 = 555 data points.
However, eight data points from one subject (id 27) were missing. As a conse-
quence, we have a total of 555 − 8 = 547 data points. The first few lines from
the data frame are shown in Table 1; “o” refers to object relative and “s” to
subject relative.

row subj item so rt
1 1 13 o 1561
2 1 6 s 959
3 1 5 o 582
4 1 9 o 294
5 1 14 s 438
6 1 4 s 286
...

...
...

...
547 9 11 o 350

Table 1: First six rows, and the last row, of the data-set of Gibson and Wu
(2013), as they appear in the data frame.

We build up the Bayesian LMM from a fixed effects model to a varying
intercepts model and finally to a varying intercepts, varying slopes model (the
“maximal model” of Barr and colleagues [1]). The result is a probability model
that expresses how the dependent variable, the reading time labeled rt, was
generated in the experiment of Gibson and Wu [8].

As mentioned above, the goal of Bayesian modeling is to derive the posterior
probability distribution of the model parameters from a prior probability distri-
bution and a likelihood function. Stan makes it easy to compute this posterior
distribution of each parameter of interest. The posterior distribution reflects
what we should believe, given the data, regarding the value of that parameter.

2.1 Fixed Effects Model (Simple Linear Model)

We begin by making the working assumption that the dependent variable of
reading time rt on the head noun is approximately log-normally distributed [25].
This assumes that the logarithm of rt is approximately normally distributed.
The logarithm of the reading times, log rt, has some unknown grand mean
β0. The mean of the log-normal distribution of rt is the sum of β0 and an
adjustment β1 × so whose magnitude depends on the categorical predictor so,
which has the value −1 when rt is from the subject relative condition, and +1
when rt is from the object relative condition. One way to write the model in
terms of the logarithm of the reading times is as follows:

log rti = β0 + β1soi + εi (1)
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The index i represents the i-th row in the data-frame (in this case, i =
1, . . . , 547); the term εi represents the error in the i-th row. With the above ±1
contrast coding, β0 represents the grand mean of log rt, regardless of relative
clause type. It can be estimated by simply taking the grand mean of log rt.
The parameter β1 is an adjustment to β0 so that the mean of log rt is β0 +1β1

when log rt is from the object relative condition, and β0 − 1β1 when log rt is
from the subject relative condition. Notice that 2× β1 will be the difference in
the means between the object and subject relative clause conditions. Together,
β0 and β1 make up the part of the model which characterizes the effect of the
experimental manipulation, relative clause type (so), on the dependent variable
rt. We call this a fixed effects model because we estimate the β parameters,
which are unvarying from subject to subject and from item to item. In R, this
would correspond to fitting a simple linear model using the lm function, with
so as predictor and log rt as dependent variable.

The error ε is positive when log rti is greater than the expected value
µi = β0 + β1soi and negative when log rti is less than the expected value µi.
Thus, the error is the amount by which the expected value differs from actually
observed value. It is standardly assumed that the εi are independently and
identically distributed as a normal distribution with mean zero and unknown
standard deviation σe. Stan parameterizes the normal distribution by the mean
and standard deviation, and we follow that convention here, by writing the dis-
tribution of ε as N(0, σe) (the standard notation in statistics is in terms of mean
and variance). A consequence of the assumption that the errors are identically
distributed is that the distribution of ε should, at least approximately, have the
same shape as the normal distribution. Independence implies that there should
be no correlation between the errors—this is not the case in the data, since we
have multiple measurements from each subject, and from each item.

Setting up the data We now fit the fixed effects Model 1. For the following
discussion, please refer to the code in Listings 1 and 2 in the appendix. First,
we read the Gibson and Wu [8] data into a data frame rDat in R, and then
subset the critical region (Listing 1, lines 2 and 4). Next, we create a data list
stanDat for Stan, which contains the data (Listing 1, line 7). Stan requires the
data to be of type list; this is different from the lm and lmer functions, which
assume that the data are in of type data-frame.

Defining the model The next step is to write the Stan model in a text file
with extension .stan. A Stan model consists of several blocks. A block is a
set of statements surrounded by brackets and preceded by the block name. We
open up a file fixEf.stan in a text editor and write down the first block, the
data block, which contains the declaration of the variables in the data object
stanDat (Listing 2, lines 1-5). The strings real and int specify the data type
for each variable. A real variable is a real number, and an int variable is an
integer. For instance, N is the integer number of data points. The variables so
and rt are arrays of length N whose entries are real. We constrain a variable
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to take only a subset of the values allowed by its type (e.g. int or real) by
specifying in brackets lower and upper bounds (e.g. <lower=-1,upper=1>).

Next, we turn to the parameters block, where the parameters are defined
(Listing 2, lines 6-9). The fixed effects Model 1 has three parameters: the fixed
intercept β0, the fixed slope β1, and the standard deviation σe of the error. The
fixed effects β0 and β1 are in the vector beta of length two; note that although
we called our parameters β0 and β1 in Model 1, in Stan, these are contained in
a vector with indices 1 and 2, so β0 is in beta[1] and β1 in beta[2]. The third
parameter, the standard deviation σe of the error (sigma e), is also defined here,
and is constrained to have lower bound 0 (Listing 2, line 8). Finally, the model
block specifies the prior distribution and the likelihood (Listing 2, lines 10-15).

To understand the Stan syntax, compare the Stan code above to the spec-
ification of Model 1. The Stan code literally writes out this model. The block
begins with a local variable declaration for mu, which is the mean of rt con-
ditional on whether so is −1 for the subject relative condition or +1 for the
object relative condition.

The prior distributions on the parameters beta and sigma e would ordinarily
be declared in the model block. If we don’t declare any prior, it is assumed that
they have a uniform prior distribution. Note that the distribution of sigma e is
truncated at zero because sigma e is constrained to be positive (see the decla-
ration real<lower=0> sigma e; in the parameters block). So, this means that
the error has a uniform prior with lower bound 0.

In the model block, the for-loop assigns to mu the mean for the log-normal
distribution of rt[i], conditional on the value of the predictor so[i] for relative
clause type. The statement rt[i] ∼ lognormal(mu,sigma e) means that the
logarithm of rt is normally distributed with mean mu and standard deviation
sigma e. One could have equally well log-transformed the reading time and
assumed a normal distribution instead of the lognormal.

Running the model We save the file fixEf.stanwhich we just wrote and fit
the model in R with the function stan from the package rstan (Listing 1, lines
9 and 10). This call to the function stan will compile a C++ program which
produces samples from the joint posterior distribution of the fixed intercept β0,
the fixed slope β1, and the standard deviation σe of the error. Here, the function
generates four chains of samples, each of which contains 2000 samples of each
parameter. Samples 1 to 1000 are part of the warmup, where the chains settle
into the posterior distribution. We analyze samples 1001 to 2000. The result is
saved to an object fixEfFit of class StanFit.

Evaluating model convergence and summarizing results The first step
after running the above function should be to look at the trace plot of each
chain after warmup, using the command shown in Listing 1, lines 13 and 14.
A trace plot has the chains plotted against the sample ID. In Figure 1, we see
four different chains plotted against sample number going from 1001 to 2000. If
the trace plot looks like a “fat, hairy caterpillar” [17] which does not bend, this
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Figure 1: Trace plots of the fixed intercept β0, the fixed slope β1, and the
standard deviation σe of the error for the fixed effects Model 1.

suggests that the chains have converged to the posterior distribution.
The second diagnostic which we use to assess whether the chains have con-

verged to the posterior distribution is the statistic Rhat. Each parameter has the
Rhat statistic associated with it [7]; this is essentially the ratio of between-chain
variance to within-chain variance (analogous to ANOVA). The Rhat statistic
should be approximately 1 ± 0.1 if the chain has converged. This is shown in
the rightmost column of the model summary, see Table 2.

Having satisfied ourselves that the chains have converged, we turn to examine
this posterior distribution. (If there is an indication that convergence has not
happened, then, assuming that the model has no errors in it, increasing the
number of samples usually resolves the issue.)

parameter mean 2.5% 97.5% R̂

β̂0 6.06 0.03 6.11 1

β̂1 -0.04 -0.09 0.01 1
σ̂e 0.60 0.56 0.64 1

Table 2: Examining the credible intervals and the R-hat statistic in the Gibson
and Wu data.

The result of fitting the fixed effects Model 1 is the joint posterior probability
distribution of the parameters β0, β1, and σe. The distribution is joint because
each of the (4 chains × 1000 post-warmup iterations =)4000 posterior samples
which the call to stan generates is a vector θ = (β0, β1, σe)

⊺ of three model
parameters. Thus, the object fixEfFit contains 4000 parameter vectors θ which
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Figure 2: Bivariate joint posterior probability distribution of each element of
θ with each other element (lower diagonal) and marginal posterior probability
distribution of each element of θ separately (diagonal). All parameters are on
the log scale, but note the difference in length scale between β1 on the one hand
and β0 and σe on the other.

occupy a three dimensional space. Already in three dimensions, the posterior
distribution becomes difficult to view in one graph. Figure 2 displays the joint
posterior probability distribution of the elements of θ by projecting it down onto
planes. In each of the three planes (lower triangular scattergrams) we see how
one parameter varies with respect to the other. In the diagonal histograms,
we visualize the marginal probability distribution of each parameter separately
from the other parameters.

Of immediate interest is the marginal distribution of the slope β1. Figure 2
suggests that the posterior probability density of β1 is mainly spread over the
interval (−∞, 0). One quantitative way to assess the posterior probability dis-
tribution is to examine its quantiles; see Table 2. Here, it is useful to define
the concept of the credible interval. The (1 − α)% credible interval contains
(1 − α)% of the posterior probability density. Unlike the (1 − α)% confidence
interval from the frequentist setting, the (1 − α)% credible interval represents
the range within which we are (1 − α)% certain that the true value of the pa-
rameter lies, given the prior and the data (see [21] for further discussion on CIs
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vs credible intervals). A common convention is to use the interval ranging from
the 2.5 to 97.5 percentiles. We follow this convention and 95% credible intervals
in Table 2.

The samples of β1 suggests that approximately 94% of the posterior proba-
bility density is below zero, suggesting that there is some evidence that object
relatives are easier to process than subject relatives in Chinese, given the Gib-
son and Wu data. However, since the 95% credible interval includes 0, we may
be reluctant to conclude that object relatives are easier to process. We will say
more about the evaluation of research hypotheses further on.

2.2 Varying Intercepts Mixed Effects Model

The fixed effects Model 1 is inappropriate for the Gibson and Wu data because it
does not take into account the fact that we have multiple measurements for each
subject and item. As mentioned above, these multiple measurements lead to a
violation of the independence of errors assumption. Moreover, the fixed effects
coefficients β0 and β1 represent means over all subjects and items, ignoring the
fact that some subjects will be faster and some slower than average; similarly,
some items will be read faster than average, and some slower.

In linear mixed models, we take this by-subject and by-item variability into
account by adding adjustment terms u0j and w0k, which adjust β0 for subject j
and item k. This partially decomposes εi into a sum of the terms u0j and w0k,
which are adjustments to the intercept β0 for the subject j and item k associated
with rti. If subject j is slower than the average of all the subjects, uj would be
some positive number, and if item k is read faster than the average reading time
of all the items, then wk would be some negative number. Each subject j has
their own adjustment u0j, and each item its own w0k. These adjustments u0j

and w0k are called random intercepts by Pinheiro and Bates [22] and varying
intercepts by Gelman and Hill [6], and by adjusting β0 by these we account for
the variability between speakers, and between items.

It is standardly assumed that these adjustments are normally distributed
around zero with unknown standard deviation: u0 ∼ N(0, σu) and w0 ∼ N(0, σw);
the subject and item adjustments are also assumed to be mutually independent.
We now have three sources of variance in this model: the standard deviation of
the errors σe, the standard deviation of the by-subject random intercepts σu,
and the standard deviation of the by-item varying intercepts σw. We will refer
to these as variance components.

We now express the logarithm of reading time, which was produced by sub-
jects j = 1, . . . , 37 reading items k = 1, . . . , 15, in conditions i = 1, 2 (1 refers to
subject relatives, 2 to object relatives), as the following sum. Notice that we are
now using a slightly different way to describe the model, compared to the fixed
effects model. We are using indices for subject, item, and condition to identify
unique rows. Also, instead of writing β1so, we index β1 by the condition i. This
follows the notation used in the textbook on linear mixed models, written by
the authors of nlme [22], the precursor to lme4.
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log rtijk = β0 + β1i + u0j + w0k + εijk (2)

Model 2 is an LMM, and more specifically a varying intercepts model. The
coefficient β1i is the one of primary interest; it will have some mean value −β1

for subject relatives and +β1 for object relatives due to the contrast coding. So,
if our posterior mean for β1 is negative, this would suggest that object relatives
are read faster than subject relatives.

We fit the varying intercepts Model 2 in Stan in much the same way as the
fixed effects Model 1. For the following discussion, please consult Listing 3 for
the R code used to run the model, and Listing 4 for the Stan code.

Setting up the data The data which we prepare for passing on to the func-
tion stan now includes subject and item information (Listing 3, lines 2-8). The
data block in the Stan code accordingly includes the number J, K of subjects
and items, respectively; and the variable N records the number of rows in the
data frame.

Defining the model Model 2, shown in Listing 4, still has the fixed intercept
β0, the fixed slope β1, and the standard deviation σe of the error, and we specify
these in the same way as we did for the fixed effects Model 1. In addition, the
varying intercepts Model 2 has by-subject varying intercepts u0j for j = 1, . . . , J
and by-item varying intercepts w0k for k = 1, . . . ,K. The standard deviation
of u0 is σu and the standard deviation of w0 is σw. We again constrain the
standard deviations to be positive.

The model block places normal distribution priors on the varying inter-
cepts u0 and w0. We implicitly place uniform priors on sigma u, sigma w, and
sigma e by omitting them from the model block. As pointed out earlier for
sigma e, these prior distributions have lower bound zero because of the con-
straint <lower=0> in the variable declarations.

The statement about how each row in the data is generated is shown in
Listing 4, lines 26-29; here, both the fixed effects and the varying intercepts for
subjects and items determine the expected value mu. The vector u has vary-
ing intercepts for subjects. Likewise, the vector w has varying intercepts for
items. The for-loop in lines 26-29 now adds u[subj[i]] + w[item[i]] to the
mean beta[1] of the distribution of rt[i]. These are subject- and item-specific
adjustments to the fixed-effects intercept beta[1]. The term u[subj[i]] iden-
tifies the id of the subject for row i in the data-frame; thus, if i = 1, then
subj[1]=1, and item[1]=13 (see Table 1).

Running the model We pass the list stanDat of data to stan, which com-
piles a C++ program to sample from the posterior distribution of Model 2.
Stan samples from the posterior distribution of the model parameters, includ-
ing the varying intercepts u0j and w0k for each subject j = 1, . . . , J and item
k = 1, . . . ,K.
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It may be helpful to rewrite the model in mathematical form following the
Stan syntax ([6] use a similar notation); the Stan statements are slightly different
from the way that we expressed Model 2. Defining i as the row id in the data,
i.e., i = 1, . . . , 547, we can write:

Likelihood :

µi = β0 + u[subj[i]] + w[item[i]] + β1 × soi

rti ∼ LogNormal(µi, σe)

Priors :

u ∼ Normal(0, σu) w ∼ Normal(0, σw)

σe, σu, σw ∼ Uniform(0,∞)

β ∼ Uniform(−∞,∞)

(3)

Here, notice that the i-th row in the statement for µ identifies the subject
id ranging from j = 1, . . . , 37, and the item id ranging from k = 1, . . . , 15.

Summarizing the results The posterior distributions of each of the param-
eters is summarized in Table 3. The R̂ values suggest that model has converged.
Note also that compared to Model 1, the estimate of σe is smaller; this is be-
cause the other two variance components are now being estimated as well. Note
that the 95% credible interval for the estimate β̂1 includes 0; thus, there is some
evidence that object relatives are easier than subject relatives, but we cannot
exclude the possibility that there is no difference in the reading times between
the two relative clause types.

parameter mean 2.5% 97.5% R̂

β̂0 6.06 5.92 6.20 1

β̂1 -0.04 -0.08 0.01 1
σ̂e 0.52 0.49 0.55 1
σ̂u 0.25 0.19 0.34 1
σ̂w 0.20 0.12 0.32 1

Table 3: The quantiles and the R̂ statistic in the Gibson and Wu data, the
varying intercepts model.

2.3 Varying Intercepts, Varying Slopes Mixed Effects Model

Consider now that subjects who are faster than average (i.e., who have a nega-
tive varying intercept) may exhibit greater slowdowns when they read subject
relatives compared to object relatives. Similarly, it is in principle possible that
items which are read faster (i.e., which have a large negative varying intercept)
may show a greater slowdown in subject relatives than object relatives. The
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opposite situation could also hold: faster subjects may show smaller SR-OR
effects, or items read faster may show smaller SR-OR effects. Although such
individual-level variability was not of interest in the original paper by Gibson
and Wu, it could be of theoretical interest (see, for example, [13]). Furthermore,
as Barr and colleagues [1] point out, it is in principle desirable to include a fixed
effect factor in the random effects as a varying slope if the experiment design is
such that subjects see both levels of the factor (cf. [2]).

In order to express this structure in the LMM, we must make two changes
in the varying intercepts Model 2.

Adding varying slopes The first change is to let the size of the effect for
the predictor so vary by subject and by item. The goal here is to express that
some subjects exhibit greater slowdowns in the object relative condition than
others. We let effect size vary by subject and by item by including in the model
by-subject and by-item varying slopes which adjust the fixed slope β1 in the
same way that the by-subject and by-item varying intercepts adjust the fixed
intercept β0. This adjustment of the slope by subject and by item is expressed
by adjusting β1 by adding two terms u1j and w1k. These are random or varying
slopes, and by adding them we account for how the effect of relative clause type
varies by subject j and by item k. We now express the logarithm of reading
time, which was produced by subject j reading item k, as the following sum.
The subscript i indexes the conditions.

log rtijk = β0 + u0j + w0k
︸ ︷︷ ︸

varying intercepts

+ β1 + u1ij + w1ik
︸ ︷︷ ︸

varying slopes

+εijk (4)

Defining a variance-covariance matrix for the random effects The
second change which we make to Model 2 is to define a covariance relationship
between by-subject varying intercepts and slopes, and between by-items inter-
cepts and slopes. This amounts to adding an assumption that the by-subject
slopes u1 could in principle have some correlation with the by-subject intercepts
u0; and by-item slopes w1 with by-item intercept w0. We explain this in detail
below.

Let us assume that the adjustments u0 and u1 are normally distributed
with mean zero and some variances σ2

u0 and σ2
u1, respectively; also assume

that u0 and u1 have correlation ρu. It is standard to express this situation
by defining a variance-covariance matrix Σu (sometime this is simply called a
variance matrix). This matrix has the variances of u0 and u1 respectively along
the diagonals, and the covariances on the off-diagonals. (The covariance between
two variables X, Y, Cov(X,Y) is defined as the product of their correlation ρ

and their standard deviations σX and σY : Cov(X,Y ) = ρσXσY .)

Σu =

(
σ2
u0 ρuσu0σu1

ρuσu0σu1 σ2
u1

)

(5)
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Similarly, we can define a variance-covariance matrix Σw for items, using the
standard deviations σw0, σw1, and the correlation ρw.

Σw =

(
σ2
w0 ρwσw0σw1

ρwσw0σw1 σ2
w1

)

(6)

The standard way to express this relationship between the subject intercepts
u0 and slopes u1, and the item intercepts w0 and slopes w1, is to define a
bivariate normal distribution as follows:

(
u0

u1

)

∼ N

((
0
0

)

,Σu

) (
w0

w1

)

∼ N

((
0
0

)

,Σw

)

(7)

An important point to notice here is that any n×n variance-covariance ma-
trix has associated with it an n×n correlation matrix. In the subject variance-
covariance matrix Σu, the correlation matrix is

(
1 ρ01
ρ01 1

)

(8)

In a correlation matrix, the diagonal elements will always be 1, because a
variable always has a correlation of 1 with itself. The off-diagonals will have
the correlations between the variables. Note also that, given the variances σ2

u0

and σ2
u1, we can always recover the variance-covariance matrix, if we know

the correlation matrix. This is because of the above-mentioned definition of
covariance.

A correlation matrix can be decomposed into a square root of the matrix,
using the Cholesky decomposition. Thus, given a correlation matrix C, we can
obtain its square root L; an obvious consequence is that we can square L to get
the correlation matrix C back. This is easy to illustrate with a simple example.
Suppose we have a correlation matrix:

C =

(
1 −0.5

−0.5 1

)

(9)

We can use the Cholesky decomposition function in R, chol, to derive the
lower triangular square root L of this matrix. This gives us:

L =

(
1 0

−0.5 0.8660254

)

(10)

We can confirm that this is a square root by multiplying L with itself to
get the correlation matrix back (squaring a matrix is done by multiplying the
matrix by its transpose):

LL⊺ =

(
1 0

−0.5 0.8660254

)(
1 −0.5
0 0.8660254

)

=

(
1 −0.5

−0.5 1

)

(11)

The reason that we bring up the Cholesky decomposition here is that we
will use it to generate the by-subject and by-item adjustments to the intercept
and slope fixed-effects parameters.
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Figure 3: Uncorrelated random variables z = (z1, z2)
⊺ (left) and correlated

random variables x = (x1, x2)
⊺ (right).

Generating correlated random variables using the Cholesky decompo-

sition The by-subject and by-item adjustments are generated using the follow-
ing standard procedure for generating correlated random variables x = (x1, x2):

1. Given a vector of standard deviances (e.g., σu0, σu1), create a diagonal
matrix:

τ =

(
σu0 0
0 σu0

)

(12)

2. Premultiply the diagonalized matrix τ with the Cholesky decomposition
L of the correlation matrix C to get a matrix Λ.

3. Generate values from a random variable z = (z1, z2)
⊺, where z1 and z2

each have independent N(0, 1) distributions (left panel of Figure 3).

4. Multiply Λ with z; this generates the correlated random variables x (right
panel of Figure 3).

This digression into Cholesky decomposition and the generation of correlated
random variables is important to understand for building the Stan model. We
will define a vague prior distribution on L, and a vague prior on the standard
deviances. This allows us to generate the by-subject and by-item adjustments
to the fixed effects intercepts and slopes.

Defining the model With this background, implementing the varying in-
tercepts, varying slope Model 4 is straightforward; see Listing 6 for the code.
The data block is the same as before. The parameters block contains several
new parameters. This time, we have vectors sigma u and sigma w which are
(σu0, σu1)

⊺ and (σw0, σw1)
⊺, instead of scalar values as in Model 2. The variables

L u, L w, z u, and z w, which have been declared in the parameters block, play
a role in the transformed parameters block, a block which we did not use in the
earlier models. The transformed parameters block generates the by-subject and
by-item varying intercepts and slopes using the parameters sigma u, sigma w,
L u, L w, z u, and z w. The J pairs of by-subject varying intercepts and slopes
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are in the rows of the J × 2 matrix u, and the K pairs of by-item varying
intercepts and slopes are in the rows of the K × 2 matrix w.

These varying intercepts and slopes are obtained through the statements
diag pre multiply(sigma u, L u) * z u and diag pre multiply(sigma w,

L w) * z w. This statement generates varying intercepts and slopes from the
joint probability distribution of equation 7. The parameters L u, L w are the
Cholesky decompositions of the subject and item correlation matrices, respec-
tively, and z u, and z w are N(0,1) random variables.

It is helpful to walk through steps 1 to 4 involved in generating the varying
intercepts and slopes using the procedure described above for generating cor-
related random variables. The statement diag pre multiply(sigma u,L u) *

z u computes the transpose matrix product (steps 1 and 2). The right multipli-
cation of this product by z u, a matrix of normally distributed random variables
(step 3), yields the varying intercepts and slopes (step 4).








u01 u11

u02 u12

...
...

u0J u1J








=
(
diag(σu0, σu1)Luzu

)⊺

=

((
σu0 0
0 σ01

)(
ℓ11 0
ℓ21 ℓ22

)(
z11 z12 . . . z1J
z21 z22 . . . z2J

))⊺

(13)

Turning to the model block, here, we place priors on the parameters declared
in the parameters block, and define how these parameters generate log rt (List-
ing 6, lines 30-42). The definition of the prior L u ∼ lkj corr cholesky(2.0)

implicitly places a so-called lkj prior with shape parameter η = 2.0 on the
correlation matrices

(
1 ρu
ρu 1

)

and

(
1 ρw
ρw 1

)

(14)

where ρu is the correlation between the by-subject varying intercept σu0 and
slope σu1 (cf. the covariance matrix of Equation 5) and ρw is the correlation
between the by-item varying intercept σw0 and slope σw1. The lkj distribution
with shape parameter η = 1.0 is a uniform prior over all 2 × 2 correlation
matrices; it scales up to larger correlation matrices. The parameter η has an
effect on the shape of the lkj distribution. Our choice of η = 2.0 implies that
the correlations in the off-diagonals are near zero, reflecting the prior belief that
there is no correlation between intercepts and slopes.

The statement to vector(z u) ∼ normal(0,1) places a normal distribu-
tion with mean zero and standard deviation one on z u. The same goes for z w.
The for-loop assigns to mu the mean of the log-normal distribution from which
we draw rt[i], conditional on the value of the predictor so[i] for relative
clause type and the subject and item identity.
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We can now fit the varying intercepts, varying slopes Model 4; see Listing 7
for the code. We see in the model summary in Table 4 that the model has
converged, and that the credible intervals of the parameter of interest, β1, still
include 0. In fact, the posterior probability of the parameter being less than 0
is now 90% (this information can be extracted as shown in Listing 5, lines 6-8).

parameter mean 2.5% 97.5% R̂

β̂0 6.06 5.92 6.21 1

β̂1 -0.04 -0.09 0.02 1
σ̂e 0.51 0.48 0.55 1
σ̂u0 0.25 0.19 0.34 1
σ̂u1 0.07 0.01 0.14 1
σ̂w0 0.20 0.13 0.32 1
σ̂w1 0.04 0.0 0.10 1

Table 4: The quantiles and the R̂ statistic in the Gibson and Wu data, the
varying intercepts, varying slopes model.

Figure 4 plots the varying slope’s posterior distribution against the varying
intercept’s posterior distribution for each subject. The correlation between u0

and u1 is negative, as captured by the marginal posterior distributions of the
correlation ρu between u0 and u1. Thus, Figure 4 suggests that the slower a
subject’s reading time is on average, the slower they read object relatives. In
contrast, Figure 4 shows no clear pattern for the by-item varying intercepts and
slopes. We briefly discuss inference next.

3 Inference

Having fit a varying intercepts, varying slopes Model 4, we now explain one way
to carry out statistical inference, using credible intervals. We have used this
approach to draw inferences from data in previously published work (e.g., [4],
[9]). There are of course other approaches possible for carrying out inference.
Bayes Factors are an example; see Lee and Wagenmakers [16]. Another is
to define a Region of Practical Equivalence [14]. The reader can choose the
approach they find the most appealing.

3.1 Inference using credible intervals

The result of fitting the varying intercepts, varying slopes Model 4 is the pos-
terior distribution of the model parameters. As mentioned above in connection
with Models 1-3, direct inference from the posterior distributions is possible.
For instance, we can find the posterior probability with which the fixed inter-
cept β1 or the correlation ρu between by-subject varying intercepts and slopes
take on any given value by consulting the marginal posterior distributions whose
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histograms are shown in Figure 5. The information conveyed by such graphs
can be sharpened by using the 95% credible interval, mentioned earlier. Ap-
proximately 95% of the posterior density of β1 lies between the 2.5 percentile
−0.092 and the 97.5 percentile 0.023. This leads us to conclude that the slope
β1 for relative clause type so is less than zero with probability 90% (see line 8
in Listing 5). Since 0 is included in the credible interval, it is difficult to draw
the inference that object relative clauses are read faster than subject relative
clauses. However, one could perhaps still make a weak claim to that effect, es-
pecially if a lot of evidence has accumulated in other experiments that supports
such a conclusion (see [28] for a more detailed discussion).

What about the correlations between varying intercepts and varying slopes
for subject and for item? What can we infer from the analysis about these
relationships? The 95% credible interval for ρu is (−1,0.1). Our belief that ρu
is less than zero is rather uncertain, although we can conclude that ρu is less
than zero with probability 90%. There is only weak evidence that subjects who
read faster than average exhibit greater slowdowns at the head noun of object
relative clauses than subjects who read slower than average. For the by-item
varying intercepts and slopes, it is pretty clear that we do not have enough data
(15 items) to draw any conclusions. For these data, it probably makes sense to
fit a simpler model [2], with only varying intercepts and slopes for subject, and
only varying intercepts for items; although there is no harm done here if we fit
a model with a full variance-covariance matrix for both subjects and items.

In sum, regarding our main research question, our conclusion here is that
we cannot say that object relatives are harder to process than subject relatives,
because the credible interval for β1 includes 0. However, one could argue that
there is some weak evidence in favor of the hypothesis, since the posterior
probability of the parameter being negative is approximately 90%.

4 Example 2: Generalizing the linear mixed model
to factorial designs

The Gibson and Wu [8] data-set has a two-condition design. This section
presents a varying intercepts, varying slopes model for a 2 × 2 factorial de-
sign. Because of the more general matrix formulation we use here, the Stan
code can be deployed with minimal changes for much more complex designs,
including correlational studies.

Our example is the 2 × 2 repeated measures factorial design of Husain et
al [11] (Experiment 1), also a self-paced reading study on relative clauses. The
dependent variable was the reading time rt of the relative clause verb. The
factors were relative clause type, which we code with the predictor so (so = +1
for object relatives and so = −1 for subject relatives) and distance between the
head noun and the relative clause verb, which we code with the predictor dist
(dist = +1 for far and dist = −1 for near). Their interaction is the product
of the dist and so contrast vectors, and labeled as the predictor int. The 60
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subjects were speakers of Hindi, an Indo-Aryan language spoken primarily in
India. The 24 items were presented in a standard, fully balanced Latin square
design. This resulted in a total of 1440 data points (60× 24 = 1440). The first
few lines from the data frame are shown below.

row subj item so dist rt
1 1 14 s n 1561
2 1 16 o n 959
3 1 15 o f 582
4 1 18 s n 294
5 1 4 o n 438
6 1 17 s f 286
...

...
...

...
...

...
1440 9 13 s f 516

Table 5: The first six rows, and the last row, of the data-set of Husain et al.
(2014, Experiment 1), as they appear in the data frame.

The theoretical interest is in determining whether relative clause type and
distance influence reading time, and whether there is an interaction between
these two factors. We use Stan to determine the posterior probability distribu-
tion of the fixed effect β1 for relative clause type, the fixed effect β2 for distance,
and their interaction β3.

We fit a varying intercepts, varying slopes model to this data-set. This is an
extension of Model 4. The grand mean β0 of log rt is adjusted by subject and
by item through the varying intercepts u0 and w0, which are unique values for
each subject and item respectively. Likewise, the three fixed effects β1, β2, and
β3 which are associated with the predictors so, dist, and int, respectively, are
adjusted by the by-subject varying slopes u1, u2, and u3 and by-item varying
slopes w1, w2, and w3.

It is more convenient to represent this model in matrix form. We build up
the model specification by first noting that, for each subject, the by-subject
varying intercept u0 and slopes u1, u2, and u3 have a multivariate normal prior
distribution with mean zero and covariance matrix Σu. Similarly, for each item,
the by-item varying intercept w0 and slopes w1, w2, and w3 have a multivariate
normal prior distribution with mean zero and covariance matrix Σw. We can
write this as follows:







u0

u1

u2

u3







∼ N













0
0
0
0







,Σu













w0

w1

w2

w3







∼ N













0
0
0
0







,Σw







(15)

The error ε is assumed to have a normal distribution with mean zero and
standard deviation σe. Thus, the varying intercepts, varying slopes here will be
the same as Model 4, just with two additional predictors dist, int along with
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their associated fixed-effect slopes β2, β3 and random-effect slopes u2, u3, w2,
and w3.

We proceed to implement the model in Stan. First we read in the data-set
(see Listing 7). Instead of passing the predictors so, dist, and their interaction
int to stan as vectors, as we did with so earlier, we make so, dist, and int

into a design matrix X using the function model.matrix available in R.2 The
first column of the design matrix X consists of all ones. The second column is the
predictor so which codes the factor for relative clause type. The third column
the predictor dist which codes the factor for distance. The fourth column is
the predictor int which codes the interaction between relative clause type and
distance. The model matrix thus consists of a fully factorial 2× 2 design, with
blocks of this design repeated for each subject. For the full data-set, we could
write it very compactly in matrix form as follows:

log(rt) = Xβ + Zuu+ Zww + ε (16)

Here, X is the N×P model matrix (with N = 1440, since we have 1440 data
points; and P = 4 since we have the intercept plus three other fixed effects),
β is a P × 1 vector of fixed effects parameters, Zu and Zw are the subject
and item model matrices (N × P ), and u and w are the by-subject and by-
item adjustments to the fixed effects estimates; these are identical to the design
matrix X in the model with varying intercepts and varying slopes included.
For more examples of similar model specifications in Stan, see the R package
RePsychLing on github (https://github.com/dmbates/RePsychLing).

Having defined the model, we proceed to assemble the list stanDat of data,
relying on the above matrix formulation; please refer to Listing 7. The number
N of observations, the number J of subjects and K of items, the reading times rt,
and the subject and item indicator variables subj and item are familiar from
the previous models presented. The integer P is the number of fixed effects (four
including the intercept). Model 16 includes a varying intercept u0 and varying
slopes u1, u2, u3 for each subject, and so the number n u of by-subject random
effects equals P. Likewise, Model 16 includes a varying intercept w0 and varying
slopes w1, w2, w3 for each item, and so the number n w of by-item random effects
also equals P. The data block contains the corresponding variables. We declare
the fixed effects design matrix X as an array of N row vectors whose components
are the predictors associated with the N reading times. Likewise for the subject
and item random effects design matrices Z u and Z w, which correspond to Zu

and Zw respectively in Model 16. The vector beta contains the fixed effects
β0, β1, β2, and β3. The matrices L u, L w and the arrays z u, z w of vectors
(not to be confused with the design matrices Z u and Z w) will generate the
varying intercepts and slopes u0, . . . , u3 and w0, . . . , w3, using the procedure
described for Model 4. The vector sigma u contains the standard deviations of
the by-subject varying intercepts and slopes u0, . . . , u3, and the vector sigma w

contains the standard deviations of the by-item varying intercepts and slopes

2Here, we would like to acknowledge the contribution of Douglas Bates in specifying the
model in this general matrix form.
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Figure 6: Marginal posterior distribution and HPD intervals of the fixed effects
grand mean β0, slope β1 for relative clause type, slope β2 for distance, and
interaction β3. All fixed effects are on the log-scale.

w0, . . . , w3. The variable sigma e is the standard deviation σe of the error
ε. The transformed parameters block generates the by-subject intercepts and
slopes u0, . . . , u3 and the by-item intercepts and slopes w0, . . . , w3.

We place lkj priors on the random effects correlation matrices through the
lkj corr cholesky(2.0) priors on their Cholesky factors L u and L w. We
implicitly place uniform priors on the fixed effects β0, . . . , β3, the random
effects standard deviations σu0, . . . , σu3, and σw0, . . . , σw3 and the error stan-
dard deviation σe by omitting any prior specifications for them in the model
block. We specify the likelihood with the probability statement that rt[i] is
distributed log-normally with mean X[i] * beta + Z u[i] * u[subj[i]] +

Z w[i] * w[item[i]] and standard deviation sigma e. The next step towards
model-fitting is to pass the list stanDat to stan, which compiles a C++ program
to sample from the posterior distribution of the model parameters.

Figure 6 plots histograms of the marginal posterior distribution of the fixed
effects. The HPD interval of the fixed effect β̂1 for relative clause type is entirely
below zero. This is evidence that object relatives are read faster than subject
relatives. The HPD interval of the fixed effect β̂2 for distance is also entirely
below zero. This is evidence of a slowdown when the verb (where reading time
was measured) is closer to the head noun of the relative clause. The HPD of the

interaction β̂3 between relative clause type and distance is greater than zero,
which is evidence for a greater slowdown on subject relatives when the distance
between the verb and head noun is short.

A major advantage of the above matrix formulation is that we do not need
to write a new Stan model for a future repeated measures factorial design. All
we have to do now is define the design matrix X appropriately, and include it
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(along with appropriately defined Zu and Zw for the subjects and items random
effects) as part of the data specification that is passed to Stan.

5 Concluding remarks, and further reading

We hope that this tutorial has given the reader a flavor of what it would be like
to fit Bayesian linear mixed models. There is of course much more to say on
the topic, and we hope that the interested reader will take a look at some of
the excellent books that have recently come out. We suggest below a sequence
of reading that we found helpful. A good first general textbook is by Gelman
and Hill [6]; it begins with the frequentist approach and only later transitions
to Bayesian models. The forthcoming book by Mcelreath [20] is also excellent.
For those looking for a psychology-specific introduction, the books by Kruschke
[14] and Lee and Wagenmakers [16] are to be recommended, although for the
latter the going might be easier if the reader has already looked at Gelman
and Hill [6]. As a second book, [17] is recommended; it provides many inter-
esting and useful examples using the BUGS language, which are discussed in
exceptionally clear language. Many of these books use the BUGS syntax [18],
which the probabilistic programming language JAGS [23] also adopts; how-
ever, Stan code for these books is slowly becoming available on the Stan home
page (https://github.com/stan-dev/example-models/wiki). For those with in-
troductory calculus, a slightly more technical introduction to Bayesian methods
by Lynch [19] is an excellent choice. Finally, the textbook by Gelman and
colleagues [5] is the definitive modern guide, and provides a more advanced
treatment.
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1 ## read in data:
2 rDat <- read.table ( "gibsonwu2012data.txt" , header=TRUE )
3 ## subset critical region:
4 rDat <- subset( rDat , region == "headnoun" )
5

6 ## create data as list for Stan, and fit model:
7 stanDat <- list( rt = rDat$rt, so = rDat$type, N = nrow(rDat) )
8 library(stan)
9 fixEfFit <- stan ( file = "fixEf.stan" , data = stanDat ,

10 iter = 2000 , chains = 4 )
11

12 ## plot traceplot, excluding warm-up:
13 traceplot( fixEfFit , pars = c("beta","sigma_e"),
14 inc_warmup = FALSE)
15

16 ## examine quantiles of posterior distributions:
17 print( fixEfFit , pars = c("beta","sigma_e") ,
18 probs = c(0.025,0.5,0.975))
19

20 ## examine quantiles of parameter of interest:
21 beta1 <- extract ( fixEfFit , pars=c("beta[2]"))$beta
22 print ( signif ( quantile ( beta1,probs = c(0.025,0.5,0.975 ))
23 , 2))

Listing 1: Code for the fixed effects Model 1.

1 data {
2 int<lower=1> N; //number of data points
3 real rt[N]; //reading time
4 real<lower=-1,upper=1> so[N]; //predictor
5 }
6 parameters {
7 vector[2] beta; //intercept and slope
8 real<lower=0> sigma_e; //error sd
9 }

10 model {
11 real mu;
12 for (i in 1:N){ // likelihood
13 mu <- beta[1] + beta[2] * so[i];
14 rt[i] ˜ lognormal(mu,sigma_e);
15 }
16 }

Listing 2: Stan code for the fixed effects Model 1.
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1 ## format data for Stan:
2 stanDat<-list(subj=as.integer(factor(rDat$subj)),
3 item=as.integer(factor(rDat$item)),
4 rt=rDat$rt,
5 so=rDat$so,
6 N=nrow(rDat),
7 J=length(unique(rDat$subj)),
8 K=length(unique(rDat$item)))
9

10 ## Sample from posterior distribution:
11 ranIntFit <- stan(file="ranInt.stan", data=stanDat,
12 iter=2000, chains=4)
13 ## Summarize results:
14 print(ranIntFit,pars=c("beta","sigma_e","sigma_u"," sigma_w"),
15 probs=c(0.025,0.5,0.975))
16

17 beta1 <- extract(ranIntFit,pars=c("beta[2]"))$beta
18 print(signif(quantile(beta1,probs=c(0.025,0.5,0.975 )),2))
19

20 ## Posterior probability of beta1 being less than 0:
21 mean(beta1<0)

Listing 3: Code for running Model 2, the varying intercepts model.
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1 data {
2 int<lower=1> N; //number of data points
3 real rt[N]; //reading time
4 real<lower=-1,upper=1> so[N]; //predictor
5 int<lower=1> J; //number of subjects
6 int<lower=1> K; //number of items
7 int<lower=1, upper=J> subj[N]; //subject id
8 int<lower=1, upper=K> item[N]; //item id
9 }

10

11 parameters {
12 vector[2] beta; //fixed intercept and slope
13 vector[J] u; //subject intercepts
14 vector[K] w; //item intercepts
15 real<lower=0> sigma_e; //error sd
16 real<lower=0> sigma_u; //subj sd
17 real<lower=0> sigma_w; //item sd
18 }
19

20 model {
21 real mu;
22 //priors
23 u ˜ normal(0,sigma_u); //subj random effects
24 w ˜ normal(0,sigma_w); //item random effects
25 // likelihood
26 for (i in 1:N){
27 mu <- beta[1] + u[subj[i]] + w[item[i]] + beta[2] * so[i];
28 rt[i] ˜ lognormal(mu,sigma_e);
29 }
30 }

Listing 4: Stan code for running Model 2, the varying intercepts model.

1 ranIntSlpFit <- stan(file="ranIntSlp.stan", data = stanD at,
2 iter=2000, chains = 4)
3

4 ## posterior probability of beta 1 being less
5 ## than 0:
6 beta1 <- extract(ranIntSlpFit,pars=c("beta[2]"))$beta
7 print(signif(quantile(beta1,probs=c(0.025,0.5,0.975 )),2))
8 mean(beta1<0)

Listing 5: Code for running Model 3, the varying intercepts, varying slopes
model.
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1 data {
2 int<lower=1> N; //number of data points
3 real rt[N]; //reading time
4 real<lower=-1,upper=1> so[N]; //predictor
5 int<lower=1> J; //number of subjects
6 int<lower=1> K; //number of items
7 int<lower=1, upper=J> subj[N]; //subject id
8 int<lower=1, upper=K> item[N]; //item id
9 }

10

11 parameters {
12 vector[2] beta; //intercept and slope
13 real<lower=0> sigma_e; //error sd
14 vector<lower=0>[2] sigma_u; //subj sd
15 vector<lower=0>[2] sigma_w; //item sd
16 cholesky_factor_corr[2] L_u;
17 cholesky_factor_corr[2] L_w;
18 matrix[2,J] z_u;
19 matrix[2,K] z_w;
20 }
21

22 transformed parameters{
23 matrix[2,J] u;
24 matrix[2,K] w;
25

26 u <- diag_pre_multiply(sigma_u,L_u) * z_u; //subj random effects
27 w <- diag_pre_multiply(sigma_w,L_w) * z_w; //item random effects
28 }
29

30 model {
31 real mu;
32 //priors
33 L_u ˜ lkj_corr_cholesky(2.0);
34 L_w ˜ lkj_corr_cholesky(2.0);
35 to_vector(z_u) ˜ normal(0,1);
36 to_vector(z_w) ˜ normal(0,1);
37 //likelihood
38 for (i in 1:N){
39 mu <- beta[1] + u[1,subj[i]] + w[1,item[i]]
40 + (beta[2] + u[2,subj[i]] + w[2,item[i]]) * so[i];
41 rt[i] ˜ lognormal(mu,sigma_e);
42 }
43 }

Listing 6: The Stan code for Model 3, the varying intercepts, varying slopes
model.
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1 rDat<-read.table("HusainEtAlexpt1data.txt",header=T RUE)
2 rDat$subj <- with(rDat,factor(subj))
3 rDat$item <- with(rDat,factor(item))
4

5 X <- unname(model.matrix(˜1+so+dist+int, rDat))
6

7 stanDat <- within(list(),
8 {
9 N<-nrow(X)

10 P <- n_u <- n_w <- ncol(X)
11 X <- X
12 Z_u <- X
13 Z_w <- X
14 J <- length(levels(rDat$subj))
15 K <- length(levels(rDat$item))
16 rt <- rDat$rt
17 subj <- as.integer(rDat$subj)
18 item <- as.integer(rDat$item)
19 }
20 )
21 factorialFit <- stan(file="factorialModel.stan",
22 data=stanDat,
23 iter=2000, chains=4)

Listing 7: Preparation of data for analyzing the Husain et al. data-set, and
running the model.
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1 data {
2 int<lower=0> N; //no trials
3 int<lower=1> P; //no fixefs
4 int<lower=0> J; //no subjects
5 int<lower=1> n_u; //no subj ranefs
6 int<lower=0> K; //no items
7 int<lower=1> n_w; //no item ranefs
8 int<lower=1,upper=J> subj[N]; //subject indicator
9 int<lower=1,upper=K> item[N]; //item indicator

10 row_vector[P] X[N]; //fixef design matrix
11 row_vector[n_u] Z_u[N]; //subj ranef design matrix
12 row_vector[n_w] Z_w[N]; //item ranef design matrix
13 vector[N] rt; //reading time
14 }
15 parameters {
16 vector[P] beta; //fixef coefs
17 cholesky_factor_corr[n_u] L_u; //cholesky factor of subj ranef corr matrix
18 cholesky_factor_corr[n_w] L_w; //cholesky factor of item ranef corr matrix
19 vector<lower=0>[n_u] sigma_u; //subj ranef std
20 vector<lower=0>[n_w] sigma_w; //item ranef std
21 real<lower=0> sigma_e; //residual std
22 vector[n_u] z_u[J]; //subj ranef
23 vector[n_w] z_w[K]; //item ranef
24 }
25 transformed parameters {
26 vector[n_u] u[J]; //subj ranefs
27 vector[n_w] w[K]; //item ranefs
28 {
29 matrix[n_u,n_u] Sigma_u; //subj ranef cov matrix
30 matrix[n_w,n_w] Sigma_w; //item ranef cov matrix
31 Sigma_u <- diag_pre_multiply(sigma_u,L_u);
32 Sigma_w <- diag_pre_multiply(sigma_w,L_w);
33 for(j in 1:J)
34 u[j] <- Sigma_u * z_u[j];
35 for(k in 1:K)
36 w[k] <- Sigma_w * z_w[k];
37 }
38 }
39 model {
40 //priors
41 L_u ˜ lkj_corr_cholesky(2.0);
42 L_w ˜ lkj_corr_cholesky(2.0);
43 for (j in 1:J)
44 z_u[j] ˜ normal(0,1);
45 for (k in 1:K)
46 z_w[k] ˜ normal(0,1);
47 //likelihood
48 for (i in 1:N)
49 rt[i] ˜ lognormal(X[i] * beta +
50 Z_u[i] * u[subj[i]] +
51 Z_w[i] * w[item[i]],
52 sigma_e);
53 }

Listing 8: Stan code for Husain et al data.
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