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‘ Announcements

m Peer Reviews (Due Fri 1159pm)

0 Reviews should be collegial and helpful. Point out things the
paper is doing right, and suggestions for improvement.

0 Write in the rubric categories provided, but do not assign points

= Reading (in HW10 & weeks 13 & 14 folders on Canvas)
0o Lynch, Ch 3 (read), Ch 4 (skim)
0o Lynch, Ch 9 (read)

= HW10 (Due Wed Dec 7, 1159pm)

0 Just some “finger exercises” so you can play with estimating
multilevel models with Stan, examining Stan output, etc.

= Last Quiz (Mon-Tue Dec 5-6)

0 Like midsemester survey — your thoughts about the class.
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‘ Outline

= Bayes
2 When we can recognize the posterior
2 When we can’t recognize the posterior
a Monte Carlo, MCMC, and STAN
m Example 1: Minnesota Radon — Intercept Only
2 What's new?
0 What isf{ ?
0 Whatisnggs?

s Example 2: Mn Radon: Level 1 predictor “floor”,
Level 2 predictor “log(uranium)”

m Example 3: CD4 levels in HIV-positive youth
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‘Bayes
m The Slogan

0 (posterior)oc(likelihood) x (prior)
0 (posterior)oc(level 1) x(level 2)
f(datal|6)f(0)
[ f(datal|t)f(t)dt
= Inferences based on features of f(0|data), e.g.

0 Hgpost = J 0f(Bldata)d®
0 Opost = argmaxgf(0|data)

2
J GHZ,post — f (8 - .ué?,post) f(HIdata)dH

0 E.g., =95% Clis (HG,post - ZUH,post» Ho post T ZUG,post)
= We saw some specific examples last time...

f(Oldata) =
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‘ Hierarchical Beta-Binomial model

= Likelihood is binomial: m Level 1: x ~ Binom(x|n,p)
f(zln,p) = (0)p™(1 — p)" "
= Prioris beta distribution: = Level 2: p ~ Beta(p|a,5)

f(pla, B) = FIQ(O{O;}L?[;)W—IU —p)?!

m (posterior) m (posterior)
(likelihood) x (prior) (level 1)x (level 2)

= Beta(p | a+x,5+n-x)
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‘ Hierarchical Normal-Normal model

= Likelihood (for mean) is = Level 1:
normal:
n 1 Y 12d 9
F(@1,. . znlp) = E — sz (@-n® X1, Lo, ..., Ly ~ N(u,0)
m Prioris normal (for = Level 2
mean): )
1 —5=(p—po)’ ~ N (o, T
) = o p~ N(po,75)

27T,
° m (posterior)cx

(level 1) x (level 2)

o~ N(ﬂ’m 7—7'22,)

m (posterior)
(likelihood) x (prior)
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‘ When we can recognize the posterior...

m Hierarchical Beta-Binomial
o fipldata) = Beta(pla',B'),a’ =a+x,B' =B +n—x

ar_ atx

ar+Br - a+pf+n

. arfr (a+x)(f+n—x)
0.post — (@' BN2(aw+fr+1)  (a+tB+n)2(atBin+l)

m Hierarchical Normal-Normal
o f(uldata) = N(p|p, 73)

TS _ a?/n

Y+ T8+02/n

9 U post =

J Hn = Ho

T8+02/n
1
n/o%+1/t3

0 T2 =

11/28/2022 7



‘ When we can’t recognize the posterior...

s We still need a way to calculate (or approximate)
things like
0 Posterior mean g g = | 6f(6|data)de
0 Posterior mode 6,5 = argmaxyf(6|data)
0 Posterior Variance 05 ,¢; = IRCE ,ugjpost)zf(éldata)dé?

0 Posterior quantile 6 55t S. t.P[H < Hq,post|data] =q
= (e.g. 2.5 %tile, 25" %tile, median, 75 %tile, 97.5% %tile)

m There are a lot of numerical methods to do this

a Midpoint/trapezoid/Simpson rules, Gaussian quadrature,
Laplace’s method, Monte Carlo Integration, etc., etc. etc.
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‘ Monte Carlo Integration

= Suppose f(8) is a density, and we want

J g(6)f(6)do

x We know

0 J g(0)f(6)de = E[g(©)], where® ~ f(6)
a If we have an iid sample 60,02 ... 0™ from £(0),
then by the Law of Large Numbers

1 M
9@ =57, 9(0™) ~ Elg(@)

» By the CLT, a Cl for E[g(@)] is approximately
(g(0) —2-SDyg)/VM, g(8) +2-SD,)/VM)
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 Problem: What if there are many 0's?

= If @ € R! there are many good ways to sample
from f(0)

m For our multilevel models,
f(0) = f(a's,B's,t4's, 0% |data)

m Even for a “simple” problem like the random
intercept model for the Mn Radon data,

f(@) — f(alJ -, Ugs, ﬁO’TZ’ O-Zldata)
this is 88 parameters: 8 € R38I

= How can we sample from such a high-
dimensional density??

11/28/2022 10



‘ Solution: Markov-Chain Monte Carlo
(MCMC)

s MCMC is very useful for multivariate distributions,
e.g. (0,0, ..,0%)

= Naive MCMC: Instead of dreaming up a way to make
a draw (simulation) of all K variables at once MCMC
takes draws one variable at a time

= We “pay” for this by not getting independent draws.
The draws are the states of a Markov Chain.

m The draws will not be “exactly right” right away; the
Markov chain has to “burn in” or “warm up” to a
stationary distribution; the draws after the “burn-in”
or “warm up” segment are what we want!

11/28/2022 11



‘ (Digression: What is a Markov Chain?)

= A Markov Chain is a stochastic process, i.e. it is a
sequence of random variables T, T,, T, Ty, T, ...

m The thing that makes it a Markov Chain is the Markov
Property:

a T.,,,isindependentof T, .. T 4, givenT_
0 “the future is independent of the past, given the present”

m A stationary Markov Chain has a transition probability
function f(t |t ;).

a If the T’s are discrete rv’s, can write f(t, |t ;) in terms of a
matrix of probabilities

o If the T’s are continuous rv’s, f(t |t ;) is just a conditional
density

11/28/2022
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‘ (Digression: What is a Markov Chain?

...An Example)
= Random Walk

a T, =initial state or “starting point”, e.g. 0

o The transition probability is
P, If tm = tm—l + 1
p(Tm — tm‘Tm—l — tm—l) — 1 — D, if bt = tim—1 — 1
{ 0 else

Random WwWalk, p = O.5 Random Walk, p = O.5 Random Walk, p = O.5
M = 100 M = 1000 M = 10000

T
Tl

11/28/2022
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‘ Back to MCMC: The Gibbs Sampler

= We want to simulate draws from (@0, ...,0 ).
o LetT, = (6,0 ... ,9%”))be a reasonable initial state
o Now successively sample! each 8, from its “complete
conditional” distribution:
ot p o465, 0™ o)

RPN N IS N SN 1Y)

ol (05100 gSm D) glm) gty

m-+1 m-+1 m-+1 m-+1
0wt~ (00D 0 e

and let T),q = (04T o{m Y glm Ty
a  After “burn-in” B, T4, Tg,5, .., Ty are MCMC draws “from f”

11/28/2022 LA kind of stochastic Gauss-Seidel algorithm 14



‘ MCMC generalities...

m The theory of MCMC (e.g. Chib & Greenberg,
American Statistician, 1995, pp. 327-335) tells us
that
0T = 0™,605™ . 67)is a stationary Markov Chain
o T, has stationary distribution f(6, ...., 0)

m So, if we sample M steps, and throw away the

first few, the remaining T ’s can be treated like a
sample from f(0 , ...., 04)

a Not an iid sample though! v M-law may not apply!

m Pretty easy to build adequate MCMC sampler
when K is small and posterior well-behaved.
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STAN: A software add-on to R...

= Working out the complete conditionals (CC’s) &
sampling from them is easy but mortally
inefficient for large parameter spaces

m STAN! sidesteps the problem:

0 Works out posterior distribution from your spec

o Uses a modern version of MCMC called Hamiltonian
Monte Carlo (No U-Turn Sampler - NUTS) to provide
highly efficient, nearly-iid samples from posterior

0 Writes & compiles code in C++ to increase speed

= library(bayesplot) for diagnostic tests & plots

o Also links to additional documentation/tutorials

thttp://mc-stan.org/users/documentation/

11/28/2022 16



‘ Predecessors to STAN...

= BUGS! and JAGS? automate MCMC

o Describe “slogan” in R-like language

o BUGS figures out complete conditionals & runs
parameter-at-a-time Metropolis-Hastings MCMC for
you

= STAN3 implements a faster MCMC method for
models with continuous parameters
o Uses a BUGS-like language
o Requires more preliminary declarations
o Usually faster than BUGS/JAGS, often by 10x or more...

1. Bayesian inference Using Gibbs Sampling
11/28/2022 2. Just Another Gibbs Sampler 17
3. Inhonor of Stanislaw Ulam (1909-1984) — Monte Carlo & Hydrogen Bomb...



‘ Multilevel Models in STAN

= MLM form
Yi = Qo[ T €,

ei ~ N(0,0°)
ag; = Bo+njy,
Uj’\‘PV(OaT2)

m Hierarchical form

Level 1: y; ~ N(agjf,0°)

Level 2: ag; ~ N(Bo,7%)

m STAN form

model {

// LEVEL 1
for (i in 1:N) {
log radon[i] ~
normal (a0 [county[i]],sigma) ;

}

// LEVEL 2
for (J in 1:J) {
a0[j] ~ normal (b0, taul);

}

// PRIORS ON “FREE PARAMETERS”
b0 ~ normal (0,le+6);

sigma ~ uniform(0,50);

tau0 ~ uniform(0,50);

11/28/2022



‘ Multilevel Models in STAN

= MLM form
Yi

Level 1:
Level 2:

= STAN form
model {

// LEVEL 1

for (i in N) |
///’ normal (a0 [county[i]],sigma) ;
}

// LEVEL 2
for (J in 1:J) {
a0[j] ~ normal (b0, taul);

}

// PRIORS ON “FREE PARAMETERS”
b0 ~ normal (0,le+6);

sigma ~ uniform(0,50);

tau0 ~ uniform(0,50);
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‘ Multilevel Models in STAN

= MLM form
Yi = Qo[ T €,
ei ~ N(0,0°)
aog; =  Po+nj,

mn; ~ N(Oa T2)

m Hierarchical form

Level 1:
Level 2:

yi ~ N, 0°)
gy ™~ N(/B(Jv 7_2)

m STAN form
model {

// LEVEL 1

for

(1 in 1:N) {
log radon[i] ~
normal (, sigma) ;

(3 in 1:J) |
a0[j] ~ normal (b0, taul);

}

// PRIORS OG “FREE PARAMETERS”
b0 ~ normal (0,le+6);

sigma ~ uniform(0,50);

tau0 ~ uniform(0,50);
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‘ Multilevel Models in STAN

= MLM form

Yi =

Oéoj —

Qi) T €
ei ~ N(0,0°)

/80 =+ 15,
mn; ~ N(OJT2)

m Hierarchical form

Level 1:

Level 2:

Yi ~ N(an[?l]a/

gy ™~ N(/B(Jv 7_2)

m STAN form

model {

// LEVEL 1
for (i in 1:N) {
log radon[i] ~

normal (a0 [county[i]
}

// LEVEL 2
(] in %=
; ~ normal (b0, taul) ;

// PRIORS ON “FREE PARAMETERS”
b0 ~ normal (0,le+6);

sigma ~ uniform(0,50);

tau0 ~ uniform(0,50);

11/28/2022
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‘ Multilevel Models in STAN

= MLM form
Yi Q;[i) 1 €i;
ei ~ N(0,0°)
/80 =+ 15,
n; ~ N(Oa T2)

Oéoj

m Hierarchical form

Level 1: y; W

Level 2: N N

= STAN form
model {

// LEVEL 1

for (i in 1:N) {

log radon[i] ~
normal (a0 [county[i]],sigma) ;

}

// LEVEL 2
for ] in 1:J)
Gty et
}
PRIORS “FREE PARAMETERS”

b0 ~mnormal (0,1le+6) ;
sigma ~ uniform(0,50);
taul0 ~ uniform(0,50);

11/28/2022
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‘ Multilevel Models in STAN

= MLM form
Yi = Qoj[i] T €i;

ei ~ N(0,0°)
ag; = Bo+njy,
n; ~ N(Oa T2)

m Hierarchical form

Level 1: y; ~ N(Ozoj[,,;],az)

Level 2: ag; ~ N(Bo,7%)

= STAN form
model {

// LEVEL 1

for (i in 1:N) {

log radon[i] ~
normal (a0 [county[i]],sigma) ;

}

// LEVEL 2
(J in 1:J) |
~ normal (b0, taul) ;

for
a0[J]
}

PRIORS ON “FREE PARAMETERS”
b0 ~ normal (0,le+6);

sigma ~ uniform(0,50);
tau0 ~ uniform(0,50);

| N

Have to add priors

to all free parameters

11/28/2022
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Example 1: Minnesota Radon — Intercept

Only
= MLM:
Yi = Qo [ T €
e; ~ N(0,0%)
ag; = Po+ 1y,
anN(O,TQ)

= Hierarchical:
Level 1: y; ~ N(agjf,0°)
Level 2: ag; ~ N(Bo,7%)

m Demonstration in R and
STAN...

m (comparison with Imer
also)

11/28/2022
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Review...

m print (stanfit.object) and
summary (stanfit.object): point estimates
and Cl’s for parameters.

= MCMC samples themselves available via
extract (stanfit.object)

m Other estimation, plotting and diagnostic
functions (see 1ibrary (help=rstan))

m Library (bayesplot) and
library (shinystan) : graphical estimation
and diagnostic tools

11/28/2022
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‘ What’s new?

= STAN automatically
0 Runs 4 separate MCMC chains of 2000 steps each

= Number of steps for each specified with “iter=" in stan() function
o Throws away the first half of each chain as “burn-in/warm-up”
0o You can change these when you run stan(); see help(stan)
0o You can also set initial values for the chains; again help(stan)

= STAN reports

0 an “Rhat” statistic for each parameter estimated
o an “neff” statistic for each parameter (effective sample size)

= We'll look at their definitions on the next page
o For STAN, Rhat usually quite close to the “ideal” value of 1.00

11/28/2022
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'What is & ?

= Suppose we have M chains:

Chains Means Variances
o) g2) o g(LiN) 01 W,
gAML - g(M52) - g(MIN) aﬂ” Wy
Grand mean 0
m Define
M N . = M
W= mzm_l Dot (O —00)7 = 3 W
= Average within-chain variance
IV _
B = ?E§%&T 2521712:1((97n'__'69)2
= Between-chain variance, inflated for sample size
1% MAw + LB

Pooled variance estimate,

11/28/2022
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'What is & ?

m Separated chains: SN

e N Zn_l Wn — ]_.02 i '\/‘,”\ ; ' ‘:; ;}
= = 938.53 B - P R S N Wi
+ 38 — 1040 .
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< w S
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gt
[

3
=<
[

- % ZN 1 Wn — 1.02 “ ) D
N (0 —0 132 B § - |\l
= MAw 4+ LB = 1.03 o I

<3 =
I

\:
[
3|2
=
<

I

gt
[

3
=
[

1.00 o

0 20 40 60 80 100

11/28/2022 N



‘ What is neff?

Because the Markov Chain draws may have dependence, the
usual rule of thumb for a 95% estimation interval from the
MC draws

(8_ _ Z'SD(Hdraws) 0_ Z'SD(eraws)
draws m yVYdraws m

doesn’t work.

One way to deal with this is to calculate what the equivalent
(or “effective”) sample size would be, if the draws were
independent. With this value, n.r¢, we could get our usual
interval,

2-SD (adraws) Z'SD(ngaWS)

0 — .0 +
( draws \/Wff draws \/Wff

https://en.wikipedia.org/wiki/Effective sample size

11/28/2022 https://mc-stan.org/docs/2 21/reference-manual/effective-sample-size-section.html
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‘ What is neff?

If Var(6,) = 02 = ajmws, and Cov(Hj, Hk) = p, then it is easy to figure
out the effective sample size: for n = ng,.4s Samples of 8, we have

Var(0) = Var (122 . Hk)

n
= —Var(0,) + Z Z —Cov ,0
Zk 1712 (%) k=1 j= 1]¢kn2 ( k)

o? o 1+(n—-1
=n—+n(n—1)p—=02 ( L

n
n

1+(n—-1)p
If the correlations depend on the lag t between 8; and 6, ¢, then one can
calculate that

SO Neff = , where n = Ngrqws-

Naraws ~ Naraws

Nerr = —
e 1+222,pc 1 +22 e

where p; = 0, Vt =ty (usually around 20 or 30 at most, as you can
see from the acf plots...).

https://en.wikipedia.org/wiki/Effective sample size

11/28/2022 https://mc-stan.org/docs/2 21/reference-manual/effective-sample-size-section.html 30
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Rules of thumb for R and Nefr

= R = 1 at perfect “convergence” to the Markov
Chain’s stationary distribution

a0 R < 1.05 s ideal
a0 R < 1.10 is often acceptable

= N.rr is @ measure of accuracy but also of how
“bad” the correlations p; in the Markov Chain are
0 nerr = 100 is often “good enough” for estimation
0 Nesr = (0.5)Ngrqws Suggests low p;’s
0 Nerr = (0.1)ngq4 SUggests acceptable p,’s

0 Nerr < (0.1)Ngrqws SUggESts worrisome p;’s

11/28/2022 31



Example 2: Mn Radon: Level 1 predictor
“floor”, Level 2 predictor “log(uranium)”

= MLM:
Y; = an[i] -+ alj[i](floor)i + €ijli], €ij ™ N(O, 0'2)
apj = Poo + Bo1log(uranium;) +noj, 10 ~ N(0,75)
a1; = Bio+ iy, My~ N(0,77)

= Hierarchical:
Level 1: y; ~ N (g i) + aij(floor),, 02)

Level 2: Oé()j ~ N(/BOO + 601 log(uraniumj)a 7_02)

a; ~ N(Bro, 1)
m Demonstration in R and STAN...
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Example 3: CD4 in HIV-positive youth

= See R handout, and demonstration in class

11/28/2022
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‘ Wrap-Up...
m STAN automates MCMC

a Specify (posterior)oc(level 1) x (level 2) ...
in an R-like language

o STAN designs and runs the MCMC for you

0 Gelman & Hill use BUGS, we will use STAN

= Summaries of parameter estimates, and good
graphs: rstan helper functions, basyesplot &
shinystan...

2 Rhat £ 1.05is a handy “convergence diagnostic”

0 Nerr = (0.5)Ngrqws Suggests nice low values for p;’s

0 Use ng¢r rather than ng,.q,,s for “back of envelope” CI’s

11/28/2022 34



‘Summary

= Bayes
2 When we can recognize the posterior
2 When we can’t recognize the posterior
a Monte Carlo, MCMC, and STAN
m Example 1: Minnesota Radon — Intercept Only

2 What’'s new?
2 Whatis R?
a What IS neff?

s Example 2: Mn Radon: Level 1 predictor “floor”,
Level 2 predictor “log(uranium)”

m Example 3: CD4 levels in HIV-positive youth

11/28/2022
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