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Announcements

◼ Peer Reviews (Due Fri 1159pm)

❑ Reviews should be collegial and helpful.  Point out things the 
paper is doing right, and suggestions for improvement.

❑ Write in the rubric categories provided, but do not assign points 

◼ Reading (in HW10 & weeks 13 & 14 folders on Canvas)

❑ Lynch, Ch 3 (read), Ch 4 (skim)

❑ Lynch, Ch 9 (read)

◼ HW10 (Due Wed Dec 7, 1159pm)

❑ Just some “finger exercises” so you can play with estimating 
multilevel models with Stan, examining Stan output, etc.

◼ Last Quiz (Mon-Tue Dec 5-6)

❑ Like midsemester survey – your thoughts about the class.
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Outline
◼ Bayes

❑ When we can recognize the posterior

❑ When we can’t recognize the posterior

❑ Monte Carlo, MCMC, and STAN

◼ Example 1: Minnesota Radon – Intercept Only
❑ What’s new?

❑ What is     ?

❑ What is 𝑛𝑒𝑓𝑓?

◼ Example 2: Mn Radon: Level 1 predictor “floor”, 
Level 2 predictor “log(uranium)”

◼ Example 3: CD4 levels in HIV-positive youth



Bayes
◼ The Slogan

❑ (posterior)/(likelihood)£(prior)

❑ (posterior)/(level 1)£(level 2)

𝑓 𝜃 𝑑𝑎𝑡𝑎 =
𝑓 𝑑𝑎𝑡𝑎 𝜃 𝑓(𝜃)

׬ 𝑓 𝑑𝑎𝑡𝑎 𝑡 𝑓 𝑡 𝑑𝑡

◼ Inferences based on features of 𝑓 𝜃 𝑑𝑎𝑡𝑎 , e.g.

❑ 𝜇𝜃,𝑝𝑜𝑠𝑡 = ׬ 𝜃𝑓 𝜃 𝑑𝑎𝑡𝑎 𝑑θ

❑ Ƹ𝜃𝑝𝑜𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑓 𝜃 𝑑𝑎𝑡𝑎

❑ 𝜎𝜃,𝑝𝑜𝑠𝑡
2 = ׬ 𝜃 − 𝜇𝜃,𝑝𝑜𝑠𝑡

2
𝑓 𝜃 𝑑𝑎𝑡𝑎 𝑑𝜃

❑ E.g., ≈95% CI is (𝜇𝜃,𝑝𝑜𝑠𝑡 − 2𝜎𝜃,𝑝𝑜𝑠𝑡 , 𝜇𝜃,𝑝𝑜𝑠𝑡 + 2𝜎𝜃,𝑝𝑜𝑠𝑡)

◼ We saw some specific examples last time…
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Hierarchical Beta-Binomial model

◼ Likelihood is binomial:

◼ Prior is beta distribution:

◼ (posterior) /
(likelihood)£(prior)

◼ Level 1: x ~ Binom(x|n,p)

◼ Level 2: p ~ Beta(p|®,¯)

◼ (posterior) /

(level 1)£(level 2)

= Beta(p|®+x,¯+n-x)
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Hierarchical Normal-Normal model

◼ Likelihood (for mean) is 
normal:

◼ Prior is normal (for 
mean):

◼ (posterior) /
(likelihood)£(prior)

◼ Level 1:

◼ Level 2:

◼ (posterior)/

(level 1)£(level 2)



When we can recognize the posterior…
◼ Hierarchical Beta-Binomial

❑ f(𝑝 𝑑𝑎𝑡𝑎 = 𝐵𝑒𝑡𝑎 𝑝 𝛼′, 𝛽′ , 𝛼′ = 𝛼 + 𝑥, 𝛽′ = 𝛽 + 𝑛 − 𝑥

❑ 𝜇𝜃,𝑝𝑜𝑠𝑡 =
𝛼′

𝛼′+𝛽′
=

𝛼+𝑥

𝛼+𝛽+𝑛

❑ 𝜎𝜃,𝑝𝑜𝑠𝑡
2 =

𝛼′𝛽′

𝛼′+𝛽′ 2(𝛼′+𝛽′+1)
=

(𝛼+𝑥)(𝛽+𝑛−𝑥)

𝛼+𝛽+𝑛 2(𝛼+𝛽+𝑛+1)

◼ Hierarchical Normal-Normal

❑ 𝑓 𝜇 𝑑𝑎𝑡𝑎 = 𝑁 𝜇 𝜇𝑛, 𝜏𝑛
2

❑ 𝜇𝑛 =
𝜏0
2

𝜏0
2+𝜎2/𝑛

ത𝑦 +
𝜎2/𝑛

𝜏0
2+𝜎2/𝑛

𝜇0

❑ 𝜏𝑛
2 =

1

𝑛/𝜎2+1/𝜏0
2
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When we can’t recognize the posterior…

◼ We still need a way to calculate (or approximate) 
things like

❑ Posterior mean 𝜇𝜃,𝑝𝑜𝑠𝑡 = ׬ 𝜃𝑓 𝜃 𝑑𝑎𝑡𝑎 𝑑θ

❑ Posterior mode Ƹ𝜃𝑝𝑜𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑓 𝜃 𝑑𝑎𝑡𝑎

❑ Posterior Variance 𝜎𝜃,𝑝𝑜𝑠𝑡
2 = ׬ 𝜃 − 𝜇𝜃,𝑝𝑜𝑠𝑡

2
𝑓 𝜃 𝑑𝑎𝑡𝑎 𝑑𝜃

❑ Posterior quantile 𝜃𝑞,𝑝𝑜𝑠𝑡 𝑠. 𝑡. 𝑃 𝜃 ≤ 𝜃𝑞,𝑝𝑜𝑠𝑡 𝑑𝑎𝑡𝑎 = 𝑞
◼ (e.g. 2.5th %tile, 25th %tile, median, 75th %tile, 97.5th %tile)

◼ There are a lot of numerical methods to do this
❑ Midpoint/trapezoid/Simpson rules, Gaussian quadrature, 

Laplace’s method, Monte Carlo Integration, etc., etc. etc. 
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Monte Carlo Integration

◼ Suppose 𝑓 𝜃 is a density, and we want

׬ 𝑔 𝜃 𝑓 𝜃 𝑑θ

◼ We know

❑ ׬ 𝑔 𝜃 𝑓 𝜃 𝑑θ = 𝐸 g(Θ) ,       where Θ ∼ 𝑓 𝜃

❑ If we have an iid sample 𝜃(1), 𝜃(2), … , 𝜃(𝑀) from 𝑓 𝜃 , 
then by the Law of Large Numbers

𝑔 𝜃 =
1

𝑀
෍

𝑚=1

𝑀

𝑔 𝜃(𝑚) ≈ 𝐸 𝑔 Θ

◼ By the CLT, a CI for 𝐸[𝑔 Θ ] is approximately 

(𝑔 𝜃 − 2 ⋅ 𝑆𝐷𝑔 𝜃 / 𝑀, 𝑔 𝜃 + 2 ⋅ 𝑆𝐷𝑔 𝜃 / 𝑀)
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Problem: What if there are many 𝜃′𝑠?
◼ If 𝜃 ∈ ℜ1 there are many good ways to sample 

from 𝑓(𝜃)

◼ For our multilevel models, 
𝑓 𝜃 = 𝑓(𝛼′𝑠, 𝛽′𝑠, 𝜏2′𝑠, 𝜎2|𝑑𝑎𝑡𝑎)

◼ Even for a “simple” problem like the random 
intercept model for the Mn Radon data, 

𝑓 𝜃 = 𝑓(𝛼1, … , 𝛼85, 𝛽0, 𝜏
2, 𝜎2|𝑑𝑎𝑡𝑎)

this is 88 parameters: 𝜃 ∈ ℜ88!

◼ How can we sample from such a high-
dimensional density??
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Solution: Markov-Chain Monte Carlo 
(MCMC)
◼ MCMC is very useful for multivariate distributions, 

e.g. f(µ1,µ2, …,µK)

◼ Naive MCMC: Instead of dreaming up a way to make 
a draw (simulation) of all K variables at once MCMC 
takes draws one variable at a time

◼ We “pay” for this by not getting independent draws.  
The draws are the states of a Markov Chain.

◼ The draws will not be “exactly right” right away; the 
Markov chain has to “burn in” or “warm up” to a 
stationary distribution; the draws after the “burn-in” 
or “warm up” segment are what we want!
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(Digression:  What is a Markov Chain?)

◼ A Markov Chain is a stochastic process, i.e. it is a 
sequence of random variables T1, T2, T3, T4, T5, …

◼ The thing that makes it a Markov Chain is the Markov 
Property:

❑ Tm+1 is independent of T1, … Tm-1, given Tm

❑ “the future is independent of the past, given the present”

◼ A stationary Markov Chain has a transition probability 
function f(tm|tm-1)…

❑ If the T’s are discrete rv’s, can write f(tm|tm-1) in terms of a 
matrix of probabilities

❑ If the T’s are continuous rv’s, f(tm|tm-1) is just a conditional 
density
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(Digression:  What is a Markov Chain? 
…An Example)
◼ Random Walk

❑ T0 = initial state or “starting point”, e.g. 0

❑ The transition probability is

0 20 40 60 80 100
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0

Random Walk, p = 0.5 

M = 100

m (step)

T[m
]

0 200 400 600 800
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50
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M = 10000

m (step)

T[m
]
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Back to MCMC: The Gibbs Sampler
◼ We want to simulate draws from f(µ1, …,µK).

❑ Let                                             be a reasonable initial state

❑ Now successively sample1 each µk from its “complete 
conditional” distribution:

and let

❑ After “burn-in” B, TB+1, TB+2, …, TM are MCMC draws “from f”

1 A kind of stochastic Gauss-Seidel algorithm
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MCMC generalities…
◼ The theory of MCMC (e.g. Chib & Greenberg, 

American Statistician, 1995, pp. 327-335) tells us 
that

❑ is a stationary Markov Chain

❑ Tm has stationary distribution f(µ1, …., µK)

◼ So, if we sample M steps, and throw away the 
first few, the remaining Tm’s can be treated like a 
sample from f(µ1, …., µK)

❑ Not an iid sample though!         -law may not apply!  

◼ Pretty easy to build adequate MCMC sampler 
when K is small and posterior well-behaved.



1611/28/2022

STAN: A software add-on to R…
◼ Working out the complete conditionals (CC’s) & 

sampling from them is easy but mortally 
inefficient for large parameter spaces

◼ STAN1 sidesteps the problem:

❑ Works out posterior distribution from your spec 

❑ Uses a modern version of MCMC called Hamiltonian 
Monte Carlo (No U-Turn Sampler - NUTS) to provide 
highly efficient, nearly-iid samples from posterior

❑ Writes & compiles code in C++ to increase speed

◼ library(bayesplot) for diagnostic tests & plots

❑ Also links to additional documentation/tutorials

1http://mc-stan.org/users/documentation/
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Predecessors to STAN…

◼ BUGS1 and JAGS2 automate MCMC

❑ Describe “slogan” in R-like language

❑ BUGS figures out complete conditionals & runs 
parameter-at-a-time Metropolis-Hastings MCMC for 
you

◼ STAN3 implements a faster MCMC method for 
models with continuous parameters

❑ Uses a BUGS-like language

❑ Requires more preliminary declarations

❑ Usually faster than BUGS/JAGS, often by 10x or more…

1. Bayesian inference Using Gibbs Sampling

2. Just Another Gibbs Sampler

3. In honor of Stanislaw Ulam (1909–1984) – Monte Carlo & Hydrogen Bomb…
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Multilevel Models in STAN
◼ MLM form

◼ Hierarchical form

◼ STAN form
model {

// LEVEL 1

for (i in 1:N) {

log_radon[i] ~ 

normal(a0[county[i]],sigma);

}

// LEVEL 2

for (j in 1:J) {

a0[j] ~ normal(b0,tau0);

}

// PRIORS ON “FREE PARAMETERS”

b0 ~ normal(0,1e+6);

sigma ~ uniform(0,50);

tau0 ~ uniform(0,50);

}



model {

// LEVEL 1

for (i in 1:N) {

log_radon[i] ~ 

normal(a0[county[i]],sigma);

}

// LEVEL 2

for (j in 1:J) {

a0[j] ~ normal(b0,tau0);

}

// PRIORS ON “FREE PARAMETERS”

b0 ~ normal(0,1e+6);

sigma ~ uniform(0,50);

tau0 ~ uniform(0,50);

}

◼ STAN form

1911/28/2022

Multilevel Models in STAN
◼ MLM form

◼ Hierarchical form



2011/28/2022

Multilevel Models in STAN
◼ MLM form

◼ Hierarchical form

◼ STAN form
model {

// LEVEL 1

for (i in 1:N) {

log_radon[i] ~ 

normal(a0[county[i]],sigma);

}

// LEVEL 2

for (j in 1:J) {

a0[j] ~ normal(b0,tau0);

}

// PRIORS OG “FREE PARAMETERS”

b0 ~ normal(0,1e+6);

sigma ~ uniform(0,50);

tau0 ~ uniform(0,50);

}



◼ MLM form

◼ Hierarchical form
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Multilevel Models in STAN
◼ STAN form

model {

// LEVEL 1

for (i in 1:N) {

log_radon[i] ~ 

normal(a0[county[i]],sigma);

}

// LEVEL 2

for (j in 1:J) {

a0[j] ~ normal(b0,tau0);

}

// PRIORS ON “FREE PARAMETERS”

b0 ~ normal(0,1e+6);

sigma ~ uniform(0,50);

tau0 ~ uniform(0,50);

}
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Multilevel Models in STAN
◼ MLM form

◼ Hierarchical form

◼ STAN form
model {

// LEVEL 1

for (i in 1:N) {

log_radon[i] ~ 

normal(a0[county[i]],sigma);

}

// LEVEL 2

for (j in 1:J) {

a0[j] ~ normal(b0,tau0);

}

// PRIORS ON “FREE PARAMETERS”

b0 ~ normal(0,1e+6);

sigma ~ uniform(0,50);

tau0 ~ uniform(0,50);

}



Have to add priors

to all free parameters
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Multilevel Models in STAN
◼ MLM form

◼ Hierarchical form

◼ STAN form
model {

// LEVEL 1

for (i in 1:N) {

log_radon[i] ~ 

normal(a0[county[i]],sigma);

}

// LEVEL 2

for (j in 1:J) {

a0[j] ~ normal(b0,tau0);

}

// PRIORS ON “FREE PARAMETERS”

b0 ~ normal(0,1e+6);

sigma ~ uniform(0,50);

tau0 ~ uniform(0,50);

}
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Example 1: Minnesota Radon – Intercept 
Only
◼ MLM:

◼ Hierarchical:

◼ Demonstration in R and 
STAN…

◼ (comparison with lmer 
also)
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Review…

◼ print(stanfit.object) and

summary(stanfit.object): point estimates 
and CI’s for parameters.  

◼ MCMC samples themselves available via 
extract(stanfit.object)

◼ Other estimation, plotting and diagnostic 
functions (see library(help=rstan))

◼ Library(bayesplot) and

library(shinystan): graphical estimation 
and diagnostic tools
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What’s new?

◼ STAN automatically

❑ Runs 4 separate MCMC chains of 2000 steps each
◼ Number of steps for each specified with “iter=“ in stan() function

❑ Throws away the first half of each chain as “burn-in/warm-up”

❑ You can change these when you run stan(); see help(stan)

❑ You can also set initial values for the chains; again help(stan)

◼ STAN reports 

❑ an “Rhat” statistic for each parameter estimated

❑ an “neff” statistic for each parameter (effective sample size)

◼ We’ll look at their definitions on the next page

❑ For STAN, Rhat usually quite close to the “ideal” value of 1.00



What is     ?
◼ Suppose we have M chains:

◼ Define
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What is     ?

◼ Separated chains:

◼ Converged chains:
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What is 𝑛𝑒𝑓𝑓?
◼ Because the Markov Chain draws may have dependence, the 

usual rule of thumb for a 95% estimation interval from the 
MC draws 

( ҧ𝜃𝑑𝑟𝑎𝑤𝑠 −
2⋅𝑆𝐷 ෡𝜃𝑑𝑟𝑎𝑤𝑠

𝑛𝑑𝑟𝑎𝑤𝑠
, ҧ𝜃𝑑𝑟𝑎𝑤𝑠 +

2⋅𝑆𝐷 ෡𝜃𝑑𝑟𝑎𝑤𝑠

𝑛𝑑𝑟𝑎𝑤𝑠
)

doesn’t work. 

◼ One way to deal with this is to calculate what the equivalent 
(or “effective”) sample size would be, if the draws were 
independent.  With this value, 𝑛𝑒𝑓𝑓, we could get our usual 

interval,

( ҧ𝜃𝑑𝑟𝑎𝑤𝑠 −
2⋅𝑆𝐷 ෡𝜃𝑑𝑟𝑎𝑤𝑠

𝑛𝑒𝑓𝑓
, ҧ𝜃𝑑𝑟𝑎𝑤𝑠 +

2⋅𝑆𝐷 ෡𝜃𝑑𝑟𝑎𝑤𝑠

𝑛𝑒𝑓𝑓
)
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What is 𝑛𝑒𝑓𝑓?
◼ If 𝑉𝑎𝑟 𝜃𝑘 ≡ 𝜎2 = 𝜎𝑑𝑟𝑎𝑤𝑠

2 , and 𝐶𝑜𝑣 𝜃𝑗 , 𝜃𝑘 ≡ 𝜌, then it is easy to figure 

out the effective sample size: for 𝑛 = 𝑛𝑑𝑟𝑎𝑤𝑠 samples of 𝜃, we have

𝑉𝑎𝑟 ҧ𝜃 = 𝑉𝑎𝑟
1

𝑛
σ𝑘=1
𝑛 𝜃𝑘

= ෍
𝑘=1

𝑛 1

𝑛2
𝑉𝑎𝑟(𝜃𝑘) + ෍

𝑘=1

𝑛

෍
𝑗=1,𝑗≠𝑘

𝑛 1

𝑛2
𝐶𝑜𝑣 𝜃𝑗 , 𝜃𝑘

= 𝑛
𝜎2

𝑛2
+ 𝑛 𝑛 − 1

𝜌𝜎2

𝑛2
= 𝜎2

1 + 𝑛 − 1 𝜌

𝑛

so 𝑛𝑒𝑓𝑓 =
𝑛

1+ 𝑛−1 𝜌
, where 𝑛 = 𝑛𝑑𝑟𝑎𝑤𝑠.  

◼ If the correlations depend on the lag 𝑡 between 𝜃𝑖 and 𝜃𝑖+𝑡, then one can  
calculate that

𝑛𝑒𝑓𝑓 =
𝑛𝑑𝑟𝑎𝑤𝑠

1 + 2σ𝑡=1
∞ 𝜌𝑡

≈
𝑛𝑑𝑟𝑎𝑤𝑠

1 + 2σ𝑡=1

𝑡max 𝜌𝑡

where 𝜌𝑡 ≈ 0, ∀𝑡 ≥ 𝑡max (usually around 20 or 30 at most, as you can
see from the acf plots…).
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Rules of thumb for ෠𝑅 and 𝑛𝑒𝑓𝑓
◼
෠𝑅 = 1 at perfect “convergence” to the Markov 
Chain’s stationary distribution

❑
෠𝑅 ≤ 1.05 is ideal

❑
෠𝑅 ≤ 1.10 is often acceptable

◼ 𝑛𝑒𝑓𝑓 is a measure of accuracy but also of how 

“bad” the correlations 𝜌𝑡 in the Markov Chain are

❑ 𝑛𝑒𝑓𝑓 ≥ 100 is often “good enough” for estimation

❑ 𝑛𝑒𝑓𝑓 ≥ 0.5 𝑛𝑑𝑟𝑎𝑤𝑠 suggests low 𝜌𝑡’s

❑ 𝑛𝑒𝑓𝑓 ≥ 0.1 𝑛𝑑𝑟𝑎𝑤𝑠 suggests acceptable 𝜌𝑡’s

❑ 𝑛𝑒𝑓𝑓 < 0.1 𝑛𝑑𝑟𝑎𝑤𝑠 suggests worrisome 𝜌𝑡’s
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Example 2: Mn Radon: Level 1 predictor 
“floor”, Level 2 predictor “log(uranium)”

◼ MLM:

◼ Hierarchical:

◼ Demonstration in R and STAN…
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Example 3: CD4 in HIV-positive youth

◼ See R handout, and demonstration in class
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Wrap-Up…
◼ STAN automates MCMC

❑ Specify (posterior)/(level 1)£(level 2)£… 

in an R-like language

❑ STAN designs and runs the MCMC for you

❑ Gelman & Hill use BUGS, we will use STAN

◼ Summaries of parameter estimates, and good 
graphs: rstan helper functions, basyesplot & 
shinystan… 

❑ Rhat ≤ 1.05 is a handy “convergence diagnostic”

❑ 𝑛𝑒𝑓𝑓 ≥ 0.5 𝑛𝑑𝑟𝑎𝑤𝑠 suggests nice low values for 𝜌𝑡’s

❑ Use 𝑛𝑒𝑓𝑓 rather than 𝑛𝑑𝑟𝑎𝑤𝑠 for “back of envelope” CI’s
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Summary
◼ Bayes

❑ When we can recognize the posterior

❑ When we can’t recognize the posterior

❑ Monte Carlo, MCMC, and STAN

◼ Example 1: Minnesota Radon – Intercept Only
❑ What’s new?

❑ What is     ?

❑ What is 𝑛𝑒𝑓𝑓?

◼ Example 2: Mn Radon: Level 1 predictor “floor”, 
Level 2 predictor “log(uranium)”

◼ Example 3: CD4 levels in HIV-positive youth


