CHAPTER 14

Multilevel logistic regression

Multilevel modeling is applied to logistic regression and other generalized linear
models in the same way as with linear regression: the coeflicients are grouped into
batches and a probability distribution is assigned to each batch. Or, equivalently
(as discussed in Section 12.5), error terms are added to the model corresponding
to different sources of variation in the data. We shall discuss logistic regression in
this chapter and other generalized linear models in the next.

14.1 State-level opinions from national polls

Dozens of national opinion polls are conducted by media organizations before every
election, and it is desirable to estimate opinions at the levels of individual states as
well as for the entire country. These polls are generally based on national random-
digit dialing with corrections for nonresponse based on demographic factors such
as sex, ethnicity, age, and education.

Here we describe a model developed for estimating state-level opinions from na-
tional polls, while simultancously correcting for nonresponse, for any survey re-
sponse of interest. The procedure has two steps: first fitting the model and then
applying the model to estimate opinions by state:

1. We fit a regression model for the individual response y given demographics
and state. This model thus estimates an average response 6; for cach cross-
classification ! of demographics and state. In our example, we have sex (male
or female), ethnicity (African American or other), age (4 categories), educa-
tion (4 categories), and 51 states (including the District of Columbia); thus
l=1,...,L = 3264 categories.

2. From the U.S. Census, we look up the adult population N; for each category .
The estimated population average of the response y in any state j is then

;= Z Niby/ ZNh (14.1)

lej lej

with each summation over the 64 demographic categories [ in the state. This

weighting by population totals is called poststratification (see the footnote on

page 181). In the actual analysis we also considered poststratification over the

population of eligible voters but we do not discuss this further complication here.

We need many categories because (a) we are interested in estimates for individual
states, and (b) nonresponse adjustments force us to include the demographics. As
a result, any given survey will have few or no data in many categories. This is not a
problem, however, if a multilevel model is fitted. Each factor or set of interactions in
the model is automatically given a variance component. This inferential procedure
works well and outperforms standard survey estimates when estimating state-level
outcomes.

In this demonstration, we choose a single outcome—the probability that a re-
spondent prefers the Republican candidate for president—as estimated by a logistic
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regression model from a set of seven CBS News polls conducted during the week
before the 1988 presidential election.

A simple model with some demographic and geographic variation

We label the survey responses y; as 1 for supporters of the Republican candidate
and 0 for supporters of the Democrat (with undecideds excluded) and model them
as independent, with Pr(y; =1) = logit™'(X;3). Potential input variables include
the state index j[i] and the demographics used by CBS in the survey weighting:
categorical variables for sex, ethnicity, age, and education.

We introduce multilevel logistic regression with a simple example including two
individual predictors—female and black—and the 51 states:

Pr(y;=1) = logit™" (aj[i] + plemale  fomale; 4 gPlack . black,;) yfori=1,....n
oj ~ N (ngfmm) , forj=1,...,51.
We can quickly fit the model in R,

M1 <- Imer(y ~ black + female + (1l|state), family=binomial(link="logit"))
display (M1)

and get the following:

coef.est coef.se

(Intercept) 0.4 0.1

black -1:7 0.2

female -0.1 0.1

Error terms:

Groups Name Std.Dev.
state (Intercept) 0.4

No residual sd
# of obs: 2015, groups: state, 49
deviance = 2658.7

overdispersion parameter = 1.0

The top part of this display gives the estimate of the average intercept, the co-
cfficients for black and female, and their standard errors. Reading down, we sece
that ogtate is estimated at 0.4. There is no “residual standard deviation” because
the logistic regression model does not have such a parameter (or, equivalently, it
is fixed to the value 1.6, as discussed near the end of Section 5.3). The deviance
(see page 100) is printed as a convenience but we usually do not look at it. Finally,
the model has an overdispersion of 1.0-—that is, no overdispersion—because logistic
regression with binary data (as compared to count data; see Section 6.3) cannot be
overdispersed.

We can also type coef (M1) to examine the estimates and standard errors of the
state intercepts «a;, but rather than doing this we shall move to a larger model
including additional predictors at the individual and state level. Recall that our
ultimate goal here is not to estimate the a’s, 8’s, and o’s, but to estimate the
average value of y within each of the poststratification categories, and then to
average over the population using the census numbers using equation (14.1).

A fuller model including non-nested factors

We expand the model to use all the demographic predictors used in the CBS weight-
ing, including sex x ethnicity and age x education. We model age and education
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(with four categories each) with varying intercepts, and also model the 16 levels of
the age X education interaction.

At the state level, we include indicators for the 5 regions of the country (North-
east, Midwest, South, West, and D.C., considered as a separate region because of its
distinctive voting patterns), along with v.prev, a measure of previous Republican
vote in the state (more precisely, the average Republican vote share in the three
previous elections, adjusted for home-state and home-region effects in the previous
elections).

We shall write the model using indexes j, k, [, m for state, age category, education
category, and region:

Pr(y;=1) = logit™" (,{30 + gfemale . female; + 5Pk . black, +

- plemeleblack - fomale - black; + agff + affl + affe i + o)

a;tatc ~ N (a::ilim + ﬂv.})rcv - v.prevy, Usztate) . (142)
We also model the remaining multilevel coefficients:
0¥~ N(0,0%,), for k=1,...,4 (14.3)

a8~ N(0,02,,), forl=1,...,4

edu

A& o N(0,02, 0qn), fork=1,...,4, 1=1,...,4

age.edu

arsion o N(0,02,0), form=1,...,5. (14.4)

m region

As with the non-nested linear models in Section 13.5, this model can be expressed
in equivalent ways by moving the constant term [y around. Here we have included
3° in the data-level regression and included no intercepts in the group-level models
for the different batches of o’s.

Another approach is to include constant terms in several places in the model,
centering the distributions in (14.4) at fage, fedus Bages Bage.edus 30 Lregion. This
makes the model nonidentifiable, but it can then be reparameterized in terms of
identifiable combinations of parameters. Such a redundant parameterization speeds
computation and offers some conceptual advantages, and we shall return to it in
Section 19.4.

We can quickly fit model (14.2) in R: we first construct the index variable for the
age X education interaction and expand the state-level predictors to the data level:

age.edu <- n.edux(age-1) + edu
region.full <- region[statel
v.prev.full <- v.prev[state]

We then fit and display the full multilevel model, to get:

lmer(formula = y ~ black + female + black:female + v.prev.full +
(1| age) + (1 | edu) + (1 | age.edu) + (1 | state) +
(1 | region.full), family = binomial(link = "logit"))
coef.est coef.se

(Intercept) -3.5 1.0
black -1.6 0.3
female -0.1 0.1
v.prev.full 7.0 1.7
black:female -0.2 0.4

Error terms:
Groups Name Std.Dev.

R code

R output
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state (Intercept) 0.2
age.edu (Intercept) 0.2
region.full (Intercept) 0.2
edu (Intercept) 0.1
age (Intercept) 0.0

No residual sd
# of obs: 2015, groups: state,49; age.edu,16; region.full,5; edu,4; age,4
deviance = 2629.5

overdispersion parameter = 1.0

Quickly reading this regression output:

e The intercept is not easily interpretable since it corresponds to a case in which
black, female, and v.prev are all 0—but v.prev typically takes on values near
0.5 and is never 0.

e The coefficient for black is —1.6. Dividing by 4 (see page 82) yields a rough
estimate that African-American men were 40% less likely than other men to
support Bush, after controlling for age, education, and state.

e The coefficient for female is —0.1. Dividing by 4 yields a rough estimate that
non-African-American women were very slightly less likely than non-African-
American men to support Bush, after controlling for age, education, and state.
However, the standard error on this coefficient is as large as the estimate itself,
indicating that our sample size is too small for us to be certain of this pattern
in the population.

e The coefficient for v.prev.full is 7.0, which, when divided by 4, is 1.7, sug-
gesting that a 1% difference in a state’s support for Republican candidates in
previous elections mapped to a predicted 1.7% difference in support for Bush in
1988.

e The large standard error on the coefficient for black:female indicates that the
sample size is too small to estimate this interaction precisely.

e The state-level errors have estimated standard deviation 0.2 on the logit scale.
Dividing by 4 tells us that the states differed by approximately £5% on the prob-
ability scale (over and above the differences explained by demographic factors).

o The differences among age-education groups and regions are also approximately
+5% on the probability scale.

o Very little variation is found among age groups or education groups after con-
trolling for the other predictors in the model.

To make more precise inferences and predictions, we shall fit the model using
Bugs (as described in Section 17.4), because with so many factors—including some
with only 4 or 5 levels—the approximate inference provided by 1mer () (which does
not fully account for uncertainty in the estimated variance parameters) is not so
reliable. It is still useful as a starting point, however, and we recommend performing
the quick fit if possible before getting to more elaborate inference. In some other
settings, it will be difficult to get Bugs to run successfully and we simply use the
inferences from lmer ().

Graphing the estimated model

We would like to construct summary plots as we did with the multilevel models of
Chapters 12 and 13. We alter the plotting strategy in two ways. First, the outcome
is binary and so we plot Pr(y=1) = E(y) as a function of the predictors; thus the
graphs are curved, as are the classical generalized linear models in Chapter 6.
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Our second modification of the plots is needed to deal with the many different
predictors in our model: instead of plotting E(y) as a function of each of the demo-
graphic inputs, we combine them into a linear predictor for demographics, which
we shall call linpred;:

linpredi — ﬂO + ﬂfemale . female,; 4 /Gblack . black, +

+ /chmalcblack - female; - black; + aziﬁ + alo[tlllu + aiic],lcﬁ]u (145)

The estimates, 50% intervals, and 95% intervals for the demographic coefficients are
displayed in Figure 14.1. Because all categories of each predictor variable have been
included, these estimates can be interpreted directly as the contribution each makes
to the sum, X;5. So, for instance, if we were to predict the response for someone
who is female, age 20, and with no high school diploma, we could simply take
the constant term, plus the estimates for the corresponding three main effects plus
the interaction between “18-29” and “no high school,” plus the corresponding state
cocfficient, and then take the inverse-logit to obtain the probability of a Republican
vote. As can be seen from the graph, the demographic factors other than ethnicity
are estimated to have little predictive power. (Recall from Section 5.1 that we can
quickly interpret logistic regression coefficients on the probability scale by dividing
them by 4.)
For any survey respondent ¢, the regression prediction can then be written as
Pr(y; = 1) = logit™' (linpred, + (y%’]tc),

where linpred; is the combined demographic predictor (14.5), and we can plot this
for each state. We can do this in R—after first fitting the model in Bugs (as called
from R) and attaching the resulting object, which puts arrays into the R workspace
representing simulations for all the parameters from the model fit.

We summarize the lincar predictor linpred; from (14.5) by its average over the
simulations. Recall that we are using simulations from the fitted model (see Section
17.4), which we shall call M3.bugs. As discussed in Chapter 16, the first step after
fitting the model is to attach the Bugs object so that the vectors and arrays of
parameter simulations can be accessed within the R workspace. Here is the code to
compute the vector linpred:

attach.bugs (M3.bugs)
linpred <- rep (NA, n)
for (i in 1:n){
linpred[i] <- mean (b.0 + b.femalexfemale[i] + b.black*black[i] +
b.female.black*female[i]*black[i] + a.age[age[il] + a.eduledulil] +
a.age.edulage[i],edulil])
}

We can then make Figure 14.2 given the simulations from the fitted Bugs model:

par (mfrow=c(2,4))
for (j in displayed.states){
plot (0, 0, xlim=range(linpred), ylim=c(0,1), yaxs="i",
xlab="linear predictor", ylab="Pr (support Bush)",
main=state.name[j], type="n")
for (s in 1:20){
curve (invlogit (a.state[s,j] + x), lwd=.5, add=TRUE, col="gray")}
curve (invlogit (median (a.statel[,jl) + x), lwd=2, add=TRUE)
if (sum(state==j)>0) points (linpred[state==j], y.jitter[state==j])

R code

R code
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Figure 14.1 Estimates, 50% intervals, and 95% intervals for the logistic regression coeffi-
cients for the demographic predictors in the model predicting the probability of supporting
George Bush in polls before the 1988 presidential election. Recall that a change of x on
the logistic scale corresponds to a change of at most x/4 on the probability scale. Thus,
demographic factors other than ethnicity have small estimated predictive effects on vote
preference.

Figure 14.2 shows the result for a selection of eight states and illustrates a number
of points about multilevel models. The solid lines display the estimated logistic
regressions: thus, in any state, the probability of supporting Bush ranges from
about 10% to 70% depending on the demographic variables—most importantly,
ethnicity. Roughly speaking, there is about a 10% probability of supporting Bush
for African Americans and about 60% for others, with other demographic variables
slightly affecting the predicted probability. The variation among states is fairly
small—you have to look at the different plots carefully to see it—but is important
in allowing us to estimate average opinion by state, as we shall discuss. Changes of
only a few percent in preferences can have large political impact.

The gray lines on the graphs represent uncertainty in the state-level coefficients,
ast#e Alaska has no data at all, but the inference there is still reasonably precise—
its astae is estimated from its previous election outcome, its regional predictor
(Alaska is categorized as a Western state), and from the distribution of the errors
from the state-level regression. In general, the larger states such as California have
more precise estimates than the smaller states such as Delaware—with more data
in a state j, it is possible to estimate a?““e more accurately.

The logistic regression curve is estimated for all states, even those such as Arizona
with little range of = in the data (the survey included no black respondents from
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Figure 14.2 FEstimated probability of a survey respondent supporting Bush for president,
as a function of the linear predictor for demographics, in each state (displaying only a
selection of eight states, ordered by decreasing support for Bush, to save space). Dots show
the data (y-jittered for visibility), and the heavy and light lines show the median estimate
and 20 random simulation draws from the estimated model.
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Figure 14.3 Estimates and 50% intervals for the state coefficients aj“‘te, plotted versus

previous state vote v.prev,, in each of the four regions of the United States. The estimated
state __ region
j = Qo
(corresponding to regions m =1,2,3,4).

group-level regression line, o + /B;"p"ev - v.prev;, is overlain on each plot

Arizona). The model is set up so the demographic coefficients are the same for
all states, so the estimate of the logistic curve is pooled for all the data. If the
model included an interaction between demographics and state, then we would see
differing slopes, and more uncertainty about the slope in states such as Arizona
that have less variation in their data.

Figure 14.3 displays the estimated logistic regression coefficients for the 50 states,
grouping them by region and, within cach region, showing the state-level regression
on v.prev, the measure of Republican vote in the state in previous presidential
elections. Region and previous vote give good but not perfect predictions of the
state-level coefficients in the public opinion model.

Using the model inferences to estimate average opinion for each state

The logistic regression model gives the probability that any adult will prefer Bush,
given the person’s sex, ethnicity, age, education level, and state. We can now com-
pute weighted averages of these probabilities to represent the proportion of Bush
supporters in any specified subset of the population.

We first extract from the U.S. Census the counts V; in each of the 3264 cross-
classification cells and create a 3264 x 6 data frame, census, indicating the sex,
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female black age edu state N
1 0 o 1 1 1 66177
2 0 1 1 1 1 32465
3 1 o 1 1 1 59778
4 1 1 1 1 1 27416
5 0 o 2 1 1 83032
3262 0 1 4 4 51 5
3263 1 0 4 4 51 2610
3264 1 1 4 4 51 5

Figure 14.4 The data frame census in R used for poststratification in the election polling
example. The categories are ordered by ethnicity, sex, age category, education category,
and state. The states are in alphabetical order; thus there were, according to the U.S.
Census, 66177 non-African-American men between 18 and 29 with less than a high school
education in Alabama, ..., and 5 African American women over 65 with a college education
in Wyoming.

cthnicity, age, education, state, and number of people corresponding to each cell,
as shown in Figure 14.4.

We then compute the expected response yP™®d—the probability of supporting
Bush for each cell. Assuming we have n.sims simulation draws after fitting the
model in Bugs (see Chapter 16), we construct the following n.sims x 3264 matrix:

L <- ncol (census)

y.pred <- array (NA, c(n.sims, L))

for (1 in 1:L){

y.pred[,1] <- invlogit(b.0 + b.female*census$female[l] +

b.black*census$black[1] +
b.female.black*census$female[1] *census$black[1] +
a.agel,census$age[1]] + a.edul,census$edull]] +
a.age.edul,census$age[1],census$edul[1]] + a.statel,census$state[1]])

}

For cach state j, we arc estimating the average response in the state,

ypred _ ZlEj Niby
statej — ’
Zlej N

summing over the 64 demographic categories within the state. Here, we are using
l as a general stratum indicator (not the same [ used to index education categories
in model (14.2); we are simply running out of “index”-type letters from the middle
of the alphabet). The notation “I € j” is shorthand for “category I represents a
subset of state j.” In R:

y.pred.state <- array (NA, c(n.sims, n.state))
for (s in 1:n.sims){
for (j in 1:n.state){
ok <- census$state==j
y.pred.state[s,j] <- sum(census$N[ok]*y.pred[s,ok])/sum(census$N[ok])
}
}

We can then summarize these n.sims simulations to get a point prediction and a
50% interval for the proportion of adults in each state who supported Bush:
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Figure 14.5 For each state, the proportion of the two-party vote received by George Bush
in 1988, plotted versus the support for Bush in the state, as estimated from a multilevel
model applied to pre-election polls. The second plot excludes the District of Columbia in
order to more clearly show the 50 states.
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Figure 14.6 For each state, Bush’s vote in 1988 plotted versus his support in the polls,
as estimated from (a) the complete-pooling model (using demographics alone with no state
predictors), and (b) the no-pooling models (estimating each state separately). The two
models correspond to Ostate = Oregion = 0 and oo, respectively. Compare to Figure 14.5a,
which shows results from the multilevel model (with osate and oregion estimated from data,).

state.pred <- array (NA, c(3,n.state))
for (j in 1:n.state){

state.pred[,j] <- quantile (y.pred.statel,j], c(.25,.5,.75))
}

Comparing public opinion estimates to election outcomes

In this example, the estimates of the model come from opinion polls taken imme-
diately before the election, and they can be externally validated by comparing to
the actual election outcomes. We can thus treat this as a sort of “laboratory” for
testing the accuracy of multilevel models and any other methods that might be
used to estimate state-level opinions from national polls.

Figure 14.5 shows the actual election outcome for each state, compared to the
model-based estimates of the proportion of Bush supporters. The fit is pretty good,
with no strong systematic bias and an average absolute error of only 4.0%.

R code
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Comparison to simpler methods

By comparison, Figure 14.6 shows the predictive performance of the estimates based
on complete pooling of states (estimating opinion solely based on demographics,
thus setting ajme = 0 for all states) and no pooling (corresponding to completely
separate estimates for each state, thus setting ostate = Oregion = 00). The complete-
pooling model generally shrinks the state estimates too close toward the mean,
whereas the no-pooling model does not shrink them enough. To make a numerical
comparison, the average absolute error of the state estimates is 4.0% for the mul-
tilevel analysis, compared to 5.4% for complete pooling and 10.8% for no pooling.

14.2 Red states and blue states: what’s the matter with Connecticut?

Throughout the twentieth century and even before, the Democratic Party in the
United States has been viewed as representing the party of the lower classes and
thus, by extension, the “average American.” More recently, however, a different
perspective has taken hold, in which the Democrats represent the elites rather than
the masses. These patterns are complicated; on one hand, in recent U.S. presidential
clections the Democrats have done best in the richer states of the Northeast and
West (often colored blue in electoral maps) while the Republicans have dominated
in the poorer “red states” in the South and between the coasts. On the other hand,
using census and opinion poll data since 1952, we find that higher-income voters
continue to support the Republicans in presidential elections.

We can understand these patterns, first by fitting a sequence of classical regres-
sions and displaying estimates over time (as in Section 4.7), then by fitting some
multilevel models:

e Aggregate, by state: to what extent do richer states favor the Democrats?

e Nationally, at the level of the individual voter: to what extent do richer voters
support the Republicans?

e Individual voters within states: to what extent do richer voters support the
Republicans, within any given state? In other words, how much does context
matter?

We fit these models quickly with 1Imer () and then with Bugs, whose simulations
we used to plot and understand the model. Here we describe the model and its
estimate without presenting the steps of computation.

Classical regressions of state averages and individuals

Richer states now support the Democrats. We first present the comparison of red
and blue states—more formally, regressions of Republican share of the two-party
vote on state average per capita income (in tens of thousands of 1996 dollars).
Figure 14.7a shows that, since the 1976 clection, there has been a steady downward
trend in the income coefficient over time. As time has gone on, richer states have
increasingly favored the Democrats. For the past twenty years, the same patterns
appear when fitting southern and non-southern states separately (Figure 14.7b,c).

Richer voters continue to support the Republicans overall. We fit a logistic regres-
sion of reported presidential vote preference (y; = 1 for supporters of the Repub-
lican, 0 for the Democrats, and excluding respondents who preferred other candi-
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Figure 14.7 (a) Regression predicting Republican vote share by average income in each
state. The model was fit separately for each election year. Estimates and 95% error bars
are shown. (b, ¢c) Same model but fit separately to southern and non-southern states each
year. Republicans do better in poor states than rich states, especially in recent years.
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Figure 14.8 Coefficients for income in logistic regressions of Republican vote, fit to Na-
tional FElection Studies data from each year. The positive coefficients indicate that higher-
income voters have consistently supported the Republicans, a pattern that holds both within
and outside the South.

dates or expressed no opinion) on personal income,! fit separately to the National
Election Study from each presidential election since 1952. Figure 14.8 shows that
higher-income people have been consistently more likely to vote Republican. These
patterns remain when ethnicity, sex, education, and age are added into the model:
after controlling for these other individual-level predictors, the coefficient of income
is still consistently positive.

A paradoz? The conflicting patterns of Figures 14.7 and 14.8 have confused many
political commentators. How can we understand the pattern of richer states sup-
porting the Democrats, while richer voters support the Republicans? We shall use
multilevel modeling to simultancously study patterns within and between states.

Varying-intercept model of income and vote preference within states

We now focus on the 2000 presidential election using the National Annenberg Elec-
tion Survey, which, with more than 100,000 respondents, allows accurate estimation
of patterns within individual states. We fit a multilevel model that allows income to
predict vote preference within each state, while also allowing systematic differences
between states:

Pr(y;=1) = logitfl(a]-[,;] + Bxz;), fori=1,...,n, (14.6)

1 The National Election Study uses 1 = 0-16 percentile, 2 = 17-33 percentile, 3 = 34-67 per-
centile, 4 = 68-95 percentile, 5 = 96-100 percentile. We label these as —2, —1,0, 1, 2, centering
at zero (see Section 4.2) so that we can more easily interpret the intercept terms of regressions
that include income as a predictor.
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Intercept vs. state income, 2000
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Figure 14.9 FEstimated state intercepts «; in the varying-intercept logistic regression model
(14.6)—(14.7) predicting Republican vote intention given individual income, plotted versus
average state income. A nonparametric regression line fitted to the estimates is overlain
for convenience.

Varying-intercept model, 2000

Figure 14.10 The paradoz is no paradox. From the multilevel logistic regression model for
the 2000 election: probability of supporting Bush as a function of income category, for a
a rich state (Connecticut), a medium state (Ohio), and a poor state (Mississippi). The
open circles show the relative proportion (as compared to national averages) of households
in each income category in each of the three states, and the solid circles show the average
income level and estimated average support for Bush for each state. Within each state,
richer people are more likely to vote Republican, but the states with higher income give
more support to the Democrats.

where j[i] indexes the state (from 1 to 50) corresponding to respondent i, x; is
the person’s household income (on the five-point scale), and n is the number of
respondents in the poll.

We set up a state-level regression for the coefficients a;, using the state average
income level as a group-level predictor, which we label w;:

a; ~N(yo +muy, 03), for j=1,...,50. (14.7)

Figure 14.9 shows the estimated state intercepts o, plotted versus average state
income. There is a negative correlation between intercept and state income, which
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Varying-intercept, varying-slope model, 2000
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Figure 14.11 From the multilevel logistic regression with varying intercepts and slopes for
the 2000 election: probability of supporting Bush as a function of income category, for a
a rich state (Connecticut), a medium state (Ohio), and a poor state (Mississippi). The
open circles show the relative proportion (as compared to national averages) of households
in each income category in each of the three states, and the solid circles show the average
income level and estimated average support for Bush for each state. Income is a very strong
predictor of vote preference in Mississippi, a weaker predictor in Ohio, and does not predict
vote choice at all in Connecticut. See Figure 14.12 for estimated slopes in all 50 states,
and compare to Figure 14.10, in which the state slopes are constrained to be equal.

Slope vs. state income, 2000

Figure 14.12 Estimated coefficient for income within state plotted versus average state
income, for the varying-intercept, varying-slope multilevel model (14.8)—(14.9) fit to the
Annenberg survey data from 2000. A nonparametric regression line fitted to the estimates
is overlain for convenience.

tells us that, after adjusting for individual income, voters in richer states tend to
support Democrats.

To understand the model as a whole, we display in Figure 14.10 the estimated
logistic regression line, 1ogit71(aj + fz), for three states j: Connecticut (the richest
state), Ohio (a state in the middle of the income distribution), and Mississippi (the
poorest state). The graph shows a statistical resolution of the red-blue paradox.
Within each state, income is positively correlated with Republican vote choice,
but average income varies by state. For each of the three states in the plot, the
open circles show the relative proportion of households in each income category (as
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compared to national averages), and the solid circle shows the average income level
and estimated average support for Bush in the state. The Bush-supporting states
have more lower-income people, and as a result there is a negative correlation
between average state income and state support for Bush, even amid the positive
slope for each state. The poor people in “red” (Republican-leaning) states tend
to be Democrats; the rich people in “blue” (Democratic-leaning) states tend to
be Republicans. Income matters; also geography matters. Individual income is a
positive predictor, and state average income is a negative predictor, of Republican
presidential vote support.

Varying-intercept, varying-slope model

As Figure 14.10 shows, income and state are both predictive of vote preference.
It is thus natural to consider their interaction, which in a multilevel context is a
varying-intercept, varying-slope model:

Pr(y;=1) = logitfl(aj[z-] + Biwi), fori=1,...,m, (14.8)

where, as in (14.6), z; is respondent ¢’s income (on the —2 to +2 scale). The state-
level intercepts and slopes that are themselves modeled given average state incomes
Uj:

aj = 5 2y te;, forj=1,...,50
B = v +u+e, forj=1,...,50, (14.9)

with errors €7, e_/; having mean 0, variances o2, crg, and correlation p, all estimated
from data. By including average income as a state-level predictor, we are not re-
quiring the intercepts and slopes to vary linearly with income—the error terns e;
allow for deviation from the model-—but rather are allowing the model to find such
linear relations to the extent they are supported by the data.

From this new model, we indeed find strong variation among states in the role
of income in predicting vote preferences. Figure 14.11 recreates Figure 14.10 with
the estimated varying intercepts and slopes. As before, we see generally positive
slopes within states and a negative slope between states. What is new, though, is a
systematic pattern of the within-state slopes, with the steepest slope in the poorest
state—Mississippi—and the shallowest slope in the richest state—Connecticut.

Figure 14.12 shows the estimated slopes for all 50 states and reveals a clear
pattern, with high coefficients—steep slopes—in poor states and low coefficients in
rich states. Income matters more in “red America” than in “blue America.” The
varying-intercept, varying-slope multilevel model has been a direct approach for us
to discover these patterns.

14.3 Item-response and ideal-point models

We could have introduced these in Chapter 6 in the context of classical generalized
linear models, but item-response and ideal-point models are always applied to data
with multilevel structure, typically non-nested, for example with measurements
associated with persons and test items, or judges and cases. As with the example of
the previous section, we present the models here, deferring computation until the
presentation of Bugs in Part 2B of this book.
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Figure 14.13 Illustration of the logistic item-response (Rasch) model, Pr(y; = 1) =
l()gz'fl(aj[i] — Brpig), for an example with 5 persons j (with abilities o) and 10 items
k (with difficulties By ). If your ability o is greater than the difficulty B8 of an item, then
you have a better-than-even chance of getting that item correct. This graph also illustrates
the nonidentifiability in the model: the probabilities depend only on the relative positions
of the ability and difficulty parameters; thus, a constant could be added to all the o;’s and
all the B ’s, and the model would be unchanged. One way to resolve this nonidentifiability
is to constrain the a;’s to have mean 0. Another solution is to give the a;’s a distribution
with mean fized at 0.

Q
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The basic model with ability and difficulty parameters

A standard model for success or failure in testing situations is the logistic item-
response model, also called the Rasch model. Suppose J persons are given a test
with K items, with y;r = 1 if the response is correct. Then the logistic model can
be written as

Pr(y;,=1) = logit™" (ej — Br), (14.10)
with parameters:
o «;: the ability of person j
o [ the difficulty of item k.

In general, not every person is given every item, so it is convenient to index the

individual responses as i = 1,...,n, with each response i associated with a person
jli] and item k[i]. Thus model (14.10) becomes
Pr(y;=1) = logit ™" (] — Bepi)- (14.11)

Figure 14.13 illustrates the model as it might be estimated for 5 persons with
abilities j, and 10 items with difficulties 8. In this particular example, questions
5, 3, and 8 are easy questions (relative to the abilities of the persons in the study),
and all persons except person 2 are expected to answer more than half the items
correctly. More precise probabilities can be calculated using the logistic distribution:
for example, g is 2.4 higher than (5, so the probability that person 2 correctly
answers item 5 is logit ™ (2.4) = 0.92, or 92%.

Identifiability problems

This model is not identified, whether written as (14.10) or as (14.11), because a
constant can be added to all the abilities a; and all the difficulties §j, and the
predictions of the model will not change. The probabilities depend only on the
relative positions of the ability and difficulty parameters. For example, in Figure
14.13, the scale could go from —104 to —96 rather than —4 to 4, and the model
would be unchanged—a difference of 1 on the original scale is still a difference of 1
on the shifted scale.

From the standpoint of classical logistic regression, this nonidentifiability is a
simple case of collinearity and can be resolved by constraining the estimated pa-
rameters in some way: for example, setting o; = 0 (that is, using person 1 as a
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“baseline”), setting 31 = 0 (so that a particular item is the comparison point), con-
straining the a;’s to sum to 0, or constraining the 3;’s to sum to 0. In a multilevel
model, such constraints are unnecessary, as we discuss next.

Multilevel model

The natural multilevel model for (14.11) assigns normal distributions to the ability
and difficulty parameters:

Qj o~ N(Mm”(zm)v forj=1,...,J
B o~ N(,ug,a%;) fork=1,...,K.

This model is nonidentified for the reasons discussed above: now it is o and pg
that are not identified, because a constant can be added to each without changing
the predictions. The simplest way to identify the multilevel model is set pq to 0, or
to set pg to 0 (but not both).

As usual, we can add group-level predictors. In this case, the “groups” are the
persons and items:

aj ~ N(Xf7a,00), forj=1,....J

B ~ N(XJ02), fork=1,... K.
In an educational testing example, the person-level predictors X could include
age, sex, and previous test scores, and the item-level predictors X# could include

a prior measure of item difficulty (perhaps the average score for that item from a
previous administration of the test).

Defining the model using redundant parameters

Another way to identify the model is by allowing the parameters o and 3 to “float”
and then defining new quantities that are well identified. The new quantities can
be defined, for example, by rescaling based on the mean of the a;’s:

aj—dj aj—a, forj=1,...,J
i = B —a, fork=1,... K. (14.12)

The new ability parameters Y and difficulty parameters ﬁzdj are well defined,

and they work in place of o and ( in the original model:
_ _ s —1/ adj adj
Pr(y; =1) = logit (aj[i] - ﬁk:[iJ]).
This holds because we subtracted the same constant from the a’s and 3’s in (14.12).
For example, it would not work to subtract @ from the «;’s and § from the §;’s
because then we would lose our ability to distinguish the position of the parameters
relative to cach other.

Adding a discrimination parameter

The item-response model can be generalized by allowing the slope of the logistic
regression to vary by item:

Pr(yi=1) = logit ™" (v (e — Brga)))- (14.13)

In this new model, vy is called the discrimination of item k: if v, = 0, then the
item does not “discriminate” at all (Pr(y;=1) = 0.5 for any person), whereas high
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Figure 14.14 Curves and simulated data from the logistic item-response (Rasch) model for
items k with “difficulty” parameter S, = 1 and high, low, zero, and negative “discrimina-
tion” parameters .

values of vj correspond to strong relation between ability and the probability of
getting a correct response. Figure 14.14 illustrates.

In educational testing, it is generally desirable for items k to have high values
of v, because the responses to these items can better “discriminate” between high
and low abilities (see the left plot in Figure 14.14). The ideal test would have
several items, each with high v, and with difficulties G that span the range of the
abilities of the persons being tested. Items with 5 near zero do not do a good job
at discriminating between abilities (see the center two plots in Figure 14.14), and
negative values of 7y, correspond to items where low-ability persons do better. Such
items typically represent mistakes in the construction of the test.

Including the discrimination parameter creates additional identifiability problems
which we will discuss in the context of an example in the next section.

An ideal-point model for Supreme Court voting

Ideal-point modeling is an application of item-response models to a setting where
what is being measured is not “ability” of individuals and “difficulty” of items, but
rather positions of individuals and items on some scale of values.

We illustrate with a study of voting records of U.S. Supreme Court justices, using
all the Court’s decisions since 1954. Each vote 7 is associated with a justice j[¢] and
a case kl[i], with an outcome y; that equals 1 if the justice voted “yes” on the case
and 0 if “no.” In this particular example, the votes have been coded so that a
“yes” response (y; = 1) is intended to correspond to the politically “conservative”
outcome, with “no” (y; = 0) corresponding to a “liberal” vote.

As with the item-response models discussed above, the data are modeled with
a logistic regression, with the probability of voting “yes” depending on the “ideal
point” «; for each justice, the “position” i for each case, and a “discrimination
parameter” ~ for each case, following the three-parameter logistic model (14.13).

The positions on this scale (equivalent to the a’s and 3’s on Figure 14.14) rep-
resent whatever dimension is best able to explain the voting patterns. For the
Supreme Court, we represent it as an ideological dimension, with liberal justices
having positions on the left side of the scale (negative «;’s) and conservatives being
on the right side (positive a;’s).

For any given justice j and case k, the difference between a; and 3 indicates
the relative positions of the justice and the case—if a justice’s ideal point is near
a case’s position, then the case could go either way, but if the ideal point is far
from the position, then the justice’s vote is highly predictable. The discrimination
parameter 7, captures the importance of the positioning in determining the justices’
votes: if v = 0, the votes on case k are purely random; and if 7 is very large (in
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absolute value), then the relative positioning of justice and case wholly determines
the outcome. Changing the sign of v changes which justices are expected to vote
yes and which to vote no.

Model (14.13) has two indeterminacies: an additive aliasing in o and 3 (that is,
a situation in which values of o and 3 can be changed while keeping the model’s
predictions unchanged), and a multiplicative aliasing in all three parameters. The
additive aliasing occurs because a constant can be added to all the a’s and all
the @’s, leaving the model predictions (and thus the likelihood) unchanged. The
multiplicative aliasing arises when multiplying the +’s by a constant and dividing
the a’s and (3’s by that same constant. We can resolve both these indeterminacies
by constraining the «;’s to have mean 0 and standard deviation 1 or, in a multilevel
context, by giving the o; a N(0,1) distribution. In contrast the parameters 8 and
~ are unconstrained (or, in a multilevel context, have N(umoﬁ) and N(u,,02)
distributions whose means and variances are estimated from the data, as part of a
multilevel model).

Even after constraining the distribution of the position parameters o, one inde-
terminacy remains in model (14.13): a reflection invariance associated with multi-
plying all the 44’s, a;’s, and B;’s by —1. If no additional constraints are assigned to
this model, this aliasing will cause a bimodal likelihood and posterior distribution.
It is desirable to select just one of these modes for our inferences. (Among other
problems, if we include both modes, then each parameter will have two maximum
likelihood estimates and a posterior mean of 0.)

We first briefly discuss two simple and natural ways of resolving the aliasing. The
first approach is to constrain the 4’s to all have positive signs. This might seem to
make sense, since the outcomes have been precoded so that positive y;’s correspond
to conservative votes. However, we do not use this approach because it relies too
strongly on the precoding, which, even if it is generally reasonable, is not perfect.
We would prefer to estimate the ideological direction of each vote from the data
and then compare to the precoding to check that the model makes sense (and to
explore any differences found between the estimates and the precoding).

A second approach to resolving the aliasing is to choose one of the a’s, 3’s, or v’s,
and restrict its sign or choose two and constrain their relative position. For example,
we could constrain a; to be negative for the extremely liberal William Douglas, or
constrain a; to be positive for the extremely conservative Antonin Scalia. Or, we
could constrain Douglas’s «; to be less than Scalia’s a;.

Only a single constraint is necessary to resolve the two modes; if possible, how-
ever, it should be a clear-cut division. One can imagine a general procedure that
would be able to find such divisions based on the data, but in practice it is simpler
to constrain using prior information such as the identification of extremely liberal
and conservative judges in this example. (Not all choices of constraints would work.
For example, if we were to constrain «; > 0 for a merely moderately conservative
judge such as Sandra Day O’Connor, this could split the likelihood surface across
both modes, rather than cleanly selecting a single mode.)

The alternative approach we actually use in this example is to encode the addi-
tional information in the form of a group-level regression predictor, whose coefficient
we constrain to be positive. Various case-level and justice-level predictors can be
added to model (14.13), but the simplest is an indicator that equals 1 for Scalia,
—1 for Douglas, and 0 for all other justices. We set up a multilevel model for the
justices’ ideal points,

a; = 0x; + error; (14.14)

where z; is this Scalia/Douglas predictor. Constraining the regression coefficient
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0 > 0 identifies the model (by aligning the positive direction with the difference
between these two extreme justices) but in a flexible way that allows us to estimate
our full model.

Two-dimensional item-response or ideal-point models

In a two-dimensional item-response model, the task of getting an item correct re-
quires a combination of two “skills,” which can be represented for each person j
as a two-dimensional “ability” vector (aﬁl),a?))‘ (For example, on a high school
general aptitude test, the two dimensions might correspond to verbal and mathe-
matical ability.) The two-dimensional “difficulty” parameter (ﬁ,il), 3,&2)) represents
the thresholds required to perform well on the task, and the discrimination param-
cters ’y,(C ), ’y,(f) indicate the relevance of each of the two skills to task k.

Success on the two skills can be combined in a variety of ways. For example, in

a “conjunctive” model, both skills are required to perform the task correctly; thus,

conjunctive model: Pr(y; =1) = logit™* [fy,i][l)] ( ;L)] - ﬁ,il[z]ﬂ

i (2) (.2 (2)
x logit™" [ (i) — B33} |-
In a “disjunctive” model, either skill is sufficient to perform the task:

disjunctive model: 1 —Pr(y; =1) = (1 — logit™! {V,i%) ( ;L) ﬁ;(cg )D

x (1flogit7 [%(ci) ( ﬁ)] - i@l)])

Perhaps the most straightforward model is additive on the logistic scale:

Jli] k]
#23 (o - o).

In the “ideal-point” formulation of these models, «; represents the ideal point of
justice j in two dimensions (for example, a left-right dimension for economic issues,
and an authoritarian-libertarian dimension on social issues), B is the indifference
point for case k in these dimensions, the signs of the two components of v give
the direction of a Yes vote in terms of the two issues, and the absolute values of

(1), ’Yl(c indicate the importance of each issue in determining the vote.

additive model: Pr(y; = 1) = logit™ {7,5[)] ( w (1))

Other generalizations

As formulated so far, the probabilities in the item-response and ideal-point models
range from 0 to 1 and are symmetric about 0.5 (see Figure 14.14). Real data do
not necessarily look like this. One simple way to generalize the model is to limit
the probabilities to a fixed range:

Pr(y;=1) = m1 + (1 — o — m1)logit™ [ [](Oé]m — O l])]
In this model, every person has an immediate probability of m; of success and 7y of
failure, with the logistic regression model applying to the remaining (1 — mp — 1)
of outcomes. For example, suppose we are modeling responses to a multiple-choice
exam, and m; = 0.25 and 7y = 0.05. We could interpret this as a 25% chance of
getting an item correct by guessing, along with a 5% chance of getting an item
wrong by a careless mistake.
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Another way to generalize item response and ideal point models is to go beyond
the logistic distribution, for example using a robit model as described in Section
6.6 that allows for occasional mispredictions.

14.4 Non-nested overdispersed model for death sentence reversals

So far in this chapter we have presented logistic regression for binary data points
y; that can equal 0 or 1. The model can also be used for proportions, in which each
data point y; equals the number of “successes” out of n; chances. For example,
Section 6.3 describes data on death penalty reversals, in which ¢ indexes state-
years (for example, Alabama in 1983), n; is the number of death sentences given
out in that particular state in that particular year, and y; is the number of these
death sentences that were reversed by a higher court. We now describe how we
added multilevel structure to this model.

Non-nested model for state and year coefficients

The death penalty model had several predictors in X, including measures of the
frequency that the death sentence was imposed, the backlog of capital cases in the
appeals courts, the level of political pressure on judges, and other variables at the
state-year level.

In addition, we included indicators for the years from 1973 to 1995 and the 34
states (all of those in this time span that had death penalty laws). The regression
model with all these predictors can be written as

yi ~ Bin(ng,p;)
pi = logit™ " (XiB + oy + Ve (14.15)

where j indexes states and ¢ indexes years. We complete the multilevel model with
distributions for the state and year coefficients,

a; ~ N(0,02)
v ~ N(a+bt, o2).

The coefficients for year include a linear time trend to capture the overall increase
in reversal rates during the period under study. The model for the v;’s also includes
an intercept, and so we do not need to include a constant term in the model for the
a;’s or in the matrix X of individual-level predictors in (14.15).

In this particular example, we are not particularly interested in the coefficients
for individual states or years; rather, we want to include these sources of variability
into the model in order to get appropriate uncertainty estimates for the coefficients
of interest, 3.

Multilevel overdispersed binomial regression

Testing for overdispersion. Model (14.15) is inappropriate for the death penalty
data because the data are overdispersed, as discussed in Section 6.3. To measure the
overdispersion, we compute the standardized residuals, z; = (y;—p;)//Pi(1 — p:i) /1
with p; as defined in (14.15). Under the binomial model, the residuals should have
mean 0 and standard deviation 1, and so >, 22 should look like a random draw from
a x2 distribution with degrees of freedom equal to 520 (the number of state-years
in the data).

Testing for overdispersion in a classical binomial regression is described in Section
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6.3, where the z;’s are computed based on estimated probabilities p;, and >, 22 is
compared to a x? distribution with degrees of freedom adjusted for the number of
coefficients estimated in the model.

Beta-binomial model. There are two natural overdispersed generalizations of the
multilevel binomial regression (14.15). The first approach uses the beta-binomial
distribution:

y; ~ beta-binomial(n;, p;,w),

where w > 1 is the overdispersion parameter (and the model with w = 1 reduces to
the binomial).

Binomial-normal model. The other direct way to construct an overdispersed bino-
mial distribution is to add normal errors on the logistic scale, keeping the binomial
model but adding a data-level error & to the linear predictor in (14.15):

pi = logit ™ (X, 8 + Qg + e + i)
with these errors having their own normal distribution:
§i~ N(07 U? )

The resulting model reduces to the binomial when ¢ = 0; otherwise it is overdis-
persed.

With moderate sample sizes, it is typically difficult to distinguish between the
beta-binomial and binomial-normal models, and the choice between them is one of
convenience. The beta-binomial model adds only one new parameter and so can be
casier to fit; however, the binomial-normal model has the advantage that the new
error term §&; is on the same scale as the group-level predictors, a; and ~y;, which
can make the fitted model easier to understand.

14.5 Bibliographic note

Multilevel logistic regression has a long history in the statistical and applied liter-
ature which we do not attempt to trace here: the basic ideas are the same as in
multilevel linear models (see references in Sections 12.10 and 13.8) but with com-
plications arising from the discreteness of the data and the nonlinearity of some of
the computational steps.

The example of state-level opinions from national polls comes from Gelman and
Little (1997) and Park, Gelman, and Bafumi (2004). The analysis of income and vot-
ing comes from Gelman, Shor, et al. (2005); see also Wright (1989), Ansolabehere,
Rodden, and Snyder (2005), and McCarty, Poole, and Rosenthal (2005) for related
work. Wainer (2002) discusses “B-K” plots (named after ), which similar to Figure
14.10, which simultaneously displays patterns within and between groups, is related
to the “B-K plot” (discussed by Wainer, 2002, and named after Baker and Kramer,
2001).

The multilevel framework for item-response and ideal-point models appears in
Bafumi, Gelman, and Park (2005). See Lord and Novick (1968) and van der Linden
and Hambleton (1997) for more on item-response models, and Poole and Rosenthal
(1997), Jackman (2001), and Martin and Quinn (2002a) for more on ideal-point
models. Loken (2004) discusses identifiability problems in models with aliasing.

The death sentencing example comes from Gelman, Liebman, et al. (2004). See
Donohue and Wolfers (2006) for an overview of some of the research literature on
death sentencing.
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14.6 Exercises

1. The folder nes contains the survey data of presidential preference and income for
the 1992 election analyzed in Section 5.1, along with other variables including
sex, ethnicity, education, party identification, political ideology, and state.

(a) Fit a logistic regression predicting support for Bush given all these inputs
except state. Consider how to include these as regression predictors and also
consider possible interactions.

(b) Now formulate a model predicting support for Bush given the same inputs
but allowing the intercept to vary over state. Fit using lmer () and discuss
your results.

(c¢) Create graphs of the probability of choosing Bush given the linear predictor
associated with your model separately for each of eight states as in Figure
14.2.

2. The well-switching data described in Section 5.4 are in the folder arsenic.

(a) Formulate a multilevel logistic regression model predicting the probability
of switching using log distance (to nearest safe well) and arsenic level and
allowing intercepts to vary across villages. Fit this model using lmer () and
discuss the results.

(b) Extend the model in (b) to allow the coefficient on arsenic to vary across
village, as well. Fit this model using 1mer () and discuss the results.

(¢) Create graphs of the probability of switching wells as a function of arsenic
level for eight of the villages.

(d) Compare the fit of the models in (a) and (b).

3. Three-level logistic regression: the folder rodents contains data on rodents in a
sample of New York City apartments.

(a) Build a varying intercept logistic regression model (varying over buildings) to
predict the presence of rodents (the variable rodent2 in the dataset) given
indicators for the ethnic groups (race) as well as other potentially relevant
predictors describing the apartment and building. Fit this model using 1mer ()
and interpret the coefficients at both levels.

(b) Now extend the model in (b) to allow variation across buildings within com-
munity district and then across community districts. Also include predictors
describing the community districts. Fit this model using 1mer () and interpret
the coefficients at all levels.

(c) Compare the fit of the models in (a) and (b).

4. Item-response model: the folder exam contains data on students’ success or failure
(item correct or incorrect) on a number of test items. Write the notation for an
item-response model for the ability of each student and level of difficulty of each
item.

5. Multilevel logistic regression with non-nested groupings: the folder speed.dating
contains data from an experiment on a few hundred students that randomly as-
signed each participant to 10 short dates with participants of the opposite sex
(Fisman et al., 2006). For each date, each person recorded several subjective
numerical ratings of the other person (attractiveness, compatibility, and some
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other characteristics) and also wrote down whether he or she would like to meet
the other person again. Label

1 if person ¢ is interested in seeing person j again
Yij = .
Yig 0 otherwise

and 7451, .., Tij6 as person 4’s numerical ratings of person j on the dimensions

of attractiveness, compatibility, and so forth.

(a) Fit a classical logistic regression predicting Pr(y;; = 1) given person i’s 6

(b

(c

=

)

ratings of person j. Discuss the importance of attractiveness, compatibility,
and so forth in this predictive model.

Expand this model to allow varying intercepts for the persons making the
evaluation; that is, some people are more likely than others to want to meet
someone again. Discuss the fitted model.

Expand further to allow varying intercepts for the persons being rated. Discuss
the fitted model.

6. Varying-intercept, varying-slope logistic regression: continuing with the speed-
dating example from the previous exercise, you will now fit some models that
allow the coefficients for attractiveness, compatibility, and the other attributes
to vary by person.

(a) Fit a no-pooling model: for each person i, fit a logistic regression to the data

<5

yi; for the 10 persons j whom he or she rated, using as predictors the 6
ratings riji, ..., 756 - (Hint: with 10 data points and 6 predictors, this model
is difficult to fit. You will need to simplify it in some way to get reasonable
fits.)

Fit a multilevel model, allowing the intercept and the coefficients for the 6
ratings to vary by the rater 4.

Compare the inferences from the multilevel model in (b) to the no-pooling
model in (a) and the complete-pooling model from part (a) of the previous
exercise.



