CHAPTER 13

Multilevel linear models: varying slopes,
non-nested models, and other
complexities

This chapter considers some generalizations of the basic multilevel regression. Mod-
els in which slopes and intercepts can vary by group (for example, y; = i) +
Bjgzi + -+, where o and 3 both vary by group j; see Figure 11.1c on page 238)
can also be interpreted as interactions of the group index with individual-level pre-
dictors.

Another direction is non-nested models, in which a given dataset can be struc-
tured into groups in more than one way. For example, persons in a national survey
can be divided by demographics or by states. Responses in a psychological experi-
ment might be classified by person (experimental subject), experimental condition,
and time.

The chapter concludes with some examples of models with nonexchangeable mul-
tivariate structures. We continue with generalized linear models in Chapters 14-15
and discuss how to fit all these models in Chapters 16-19.

13.1 Varying intercepts and slopes

The next step in multilevel modeling is to allow more than one regression coefficient
to vary by group. We shall illustrate with the radon model from the previous chap-
ter, which is relatively simple because it only has a single individual-level predictor,
2 (the indicator for whether the measurement was taken on the first floor).

We begin with a varying-intercept, varying-slope model including = but without
the county-level uranium predictor; thus,

vi ~ N(ayu + Bz, (ri), fori=1,...,n
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with variation in the a;’s and the 3;’s and also a between-group correlation param-
eter p. In R:
M3 <- lmer (y ~ x + (1 + x | county))
display (M3)
which yields
lmer(formula =y ~ x + (1 + x | county))
coef.est coef.se

(Intercept) 1.46 0.05
X -0.68 0.09
Error terms:
Groups  Name Std.Dev. Corr
county  (Intercept) 0.35
X 0.34 -0.34
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Residual 0.75
# of obs: 919, groups: county, 85
deviance = 2161.1

In this model, the unexplained within-county variation has an estimated standard
deviation of &, = 0.75; the estimated standard deviation of the county intercepts
is 6o = 0.35; the estimated standard deviation of the county slopes is 63 = 0.34;
and the estimated correlation between intercepts and slopes is —0.34.

We then can type

coef (M3)
to yield

$county

(Intercept) x
1 1.14 -0.54
2 0.93 -0.77
3 1.47 -0.67
85 1.38 -0.65

Or we can separately look at the estimated population mean coefficients piq, p1g and
then the estimated errors for each county. First, we type

fixef (M3)
to see the estimated average coefficients (“fixed effects”):

(Intercept) x
1.46 -0.68

Then, we type
ranef (M3)

to see the estimated group-level errors (“random effects”):

(Intercept) x
1 -0.32 0.14
2 -0.53 -0.09
3 0.01 o0.01
85 -0.08 0.03

We can regain the estimated intercept and slope «;, 3; for cach county by simply
adding the errors to j, and pg; thus, the estimated regression line for county 1 is
(1.46 — 0.32) + (—0.68 4+ 0.14)z = 1.14 — 0.54z, and so forth.

The group-level model for the parameters (o, 8;) allows for partial pooling in
the estimated intercepts and slopes. Figure 13.1 shows the results—the estimated
lines y = «o; + Bjz—for the radon data in eight different counties.

Including group-level predictors

We can expand the model of («,3) in (13.1) by including a group-level predictor
(in this case, soil uranium):
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The resulting estimates for the a;’s and (3;’s are changed slightly from what is
displayed in Figure 13.1, but more interesting are the second-level models them-
selves, whose estimates are shown in Figure 13.2. Here is the result of fitting the
model in R:
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Figure 13.1 Multilevel (partial pooling) regression lines y = oy + Bz, displayed for eight
counties j. In this model, both the intercept and the slope vary by county. The light solid
and dashed lines show the no-pooling and complete pooling regression lines. Compare to
Figure 12.4, in which only the intercept varies.
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Figure 13.2 (a) Estimates + standard errors for the county intercepts o, plotted versus
county-level uranium measurement uj, along with the estimated multilevel regression line,
a =15 +fu. (b) Estimates £ standard errors for the county slopes (3;, plotted versus
county-level uranium measurement uj, along with the estimated multilevel regression line,
B8 = 8 + yPu. Estimates and standard errors are the posterior medians and standard
deviations, respectively. For each graph, the county coefficients roughly follow the line
but not exactly; the discrepancies of the coefficients from the line are summarized by the
county-level standard-deviation parameters oo, o3.

lmer(formula = y ~ x + u.full + x:u.full + (1 + x | county))

coef.est coef.se

(Intercept) 1.47 0.04
X -0.67 0.08
u.full 0.81 0.09
x:u.full -0.42 0.23
Error terms:
Groups  Name Std.Dev. Corr
county  (Intercept) 0.12
X 0.31 0.41
Residual 0.75

# of obs: 919, groups: county, 85
deviance = 2114.3

The parameters 7§, 'yé’., 7, vf in model (13.2) are the coefficients for the intercept,
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x, u.full, and x:u.full, respectively, in the regression. In particular, the inter-
action corresponds to allowing uranium to be a predictor in the regression for the
slopes.

The estimated coefficients in each group (from coef (M4)) are:

$county

(Intercept) x u.full x:u.full
1 1.46 -0.65 0.81 -0.42
2 1.50 -0.89 0.81 -0.42
85 1.44 -0.70 0.81 -0.42

Or we can display the average coefficients (using fixef (M4)):

(Intercept) x u.full x:u.full
1.47 -0.67 0.81 -0.42

and the group-level errors for the intercepts and slopes (using ranef (M4)):

(Intercept) x
1 -0.01 0.02
2 0.03 -0.21
85 -0.02 -0.03

The coefficients for the intercept and x vary, as specified in the model. This can be
compared to the model on page 267 in which only the intercept varies.

Going from Imer output to intercepts and slopes

As before, we can combine the average coefficients with the group-level errors to
compute the intercepts a; and slopes §; of model (13.2). For example, the fitted
regression model in county 85 is y; = 1.47 — 0.67x; + 0.81lugs — 0.42z,;uss — 0.02 —
0.03z;. The log uranium level in county 85, ugs, is 0.36, and so the fitted regression
line in county 85 is y; = 1.73 — 0.85z;. More generally, we can compute a vector of
county intercepts « and slopes (:

a.hat.M4 <- coef(M4)[,1] + coef(M4)[,3]*u

b.hat.M4 <- coef(M4)[,2] + coef(M4)[,4]*u
Here it is actually useful to have the variable u defined at the county level (as
compared to u.full = ulcounty]l which was used in the Imer() call). We next
consider these linear transformations algebraically.

Varying slopes as interactions
Section 12.5 gave multiple ways of writing the basic multilevel model. These same
ideas apply to models with varying slopes, which can be considered as interactions
between group indicators and an individual-level predictor. For example, consider
the model with an individual-level predictor x; and a group-level predictor u;,

vi = oy BTt e
V6 s g

Q;j
Bj

We can re-express this as a single model by substituting the formulas for a;; and
(; into the equation for y;:

8
Yo 42 + ;-

vi= {76! i + "?[i]} + {Vg + 9w + 77;3[1]] T + €. (13.3)
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This expression looks messy but it is really just a regression including various
interactions. If we define a new individual-level predictor v; = wu;[;) (in the radon
example, this is the uranium level in the county where your house is located), we
can re-express (13.3) term by term as

Yi = a+bv; + ¢ + dri + evizi + fipTi + €
This can be thought of in several ways:

e A varying-intercept, varying-slope model with four individual-level predictors
(the constant term, v;, x;, and the interaction v;z;) and varying intercepts and
slopes that are centered at zero.

e A regression model with 4 4+ 2J predictors: the constant term, v;, ;, v;z;, indi-
cators for the J groups, and interactions between = and the J group indicators.

e A regression model with four predictors and three error terms.

e Or, to go back to the original formulation, a varying-intercept, varying-slope
model with one group-level predictor.

Which of these expressions is most useful depends on the context. In the radon
analysis, where the goal is to predict radon levels in individual counties, the varying-
intercept, varying-slope formulation, as pictured in Figure 13.2, seems most appro-
priate. But in a problem where interest lies in the regression coefficients for z;,
uj, and their interaction, it can be more helpful to focus on these predictors and
consider the unexplained variation in intercepts and slopes merely as error terms.

13.2 Varying slopes without varying intercepts

Figure 11.1 on page 238 displays a varying-intercept model, a varying-slope model,
and a varying-intercept, varying-slope model. Almost always, when a slope is al-
lowed to vary, it makes sense for the intercept to vary also. That is, the graph in
the center of Figure 11.1b usually does not make sense. For example, if the coeffi-
cient of floor varies with county, then it makes sense to allow the intercept of the
regression to vary also. It would be an implausible scenario in which the counties
were all identical in radon levels for houses without basements, but differed in their
coefficients for z.

A situation in which a constant-intercept, varying-slope model is appropriate

Occasionally it is reasonable to allow the slope but not the intercept to vary by
group. For example, consider a study in which J separate experiments are performed
on samples from a common population, with each experiment randomly assigning
a control condition to half its subjects and a treatment to the other half. Further
suppose that the “control” conditions are the same for each experiment but the
“treatments” vary. In that case, it would make sense to fix the intercept and allow
the slope to vary—thus, a basic model of:

yi ~ N(a+60;3T;, o)
8; ~ N(ug,05), (13.4)

where T; = 1 for treated units and 0 for controls. Individual-level predictors could
be added to the regression for y, and any interactions with treatment could also
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have varying slopes; for example,

yi ~ N(a+ 82+ 0,17 + BojziTs, o))

0. 2 of  po1oy )
N Jforj=1,...,J, (135
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The multilevel model could be further extended with group-level predictors char-
acterizing the treatments.

Fitting in R

To fit such a model in Imer (), we must explicitly remove the intercept from the
group of coefficients that vary by group; for example, here is model (13.4) including
the treatment indicator T" as a predictor:

Imer (y " T + (T - 1 | group))

The varying slope allows a different treatment effect for each group.
And here is model (13.5) with an individual-level predictor x:

Imer (y “x + T + (T + x:T - 1 | group))

Here, the treatment effect and its interaction with = vary by group.

13.3 Modeling multiple varying coefficients using the scaled
inverse-Wishart distribution

When more than two coefficients vary (for example, y; ~ N(Bo+ 1 X1 + 52 X2, 02),
with o, 1, and B2 varying by group), it is helpful to move to matrix notation in
modeling the coefficients and their group-level regression model and covariance
matrix.

Simple model with two varying coefficients and no group-level predictors

Starting with the model that begins this chapter, we can rewrite the basic varying-
intercept, varying-slope model (13.1) in matrix notation as

yi ~ N(XiBj, UZ), fori=1,...,n
B; ~ N(Mg,Sp), forj=1,...,1J, (13.6)

where

e X is the n x 2 matrix of predictors: the first column of X is a column of 1’s (that
is, the constant term in the regression), and the second column is the predictor
x. X; is then the vector of length 2 representing the i*? row of X, and XiBjpy is
simply o + B 2: from the top line of (13.1).

e B = (a,f3) is the J x 2 matrix of individual-level regression coefficients. For any
group j, B; is a vector of length 2 corresponding to the jth row of B (although
for convenience we consider B; as a column vector in the product X;Bjj; in
model (13.6)). The two elements of B; correspond to the intercept and slope,
respectively, for the regression model in group j. Bjp; in the first line of (13.6)
is the j [i]‘h row of B, that is, the vector representing the intercept and slope for
the group that includes unit .

o Mp = (pa, 1p) is a vector of length 2, representing the mean of the distribution
of the intercepts and the mean of the distribution of the slopes.
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e Y.p is the 2 X 2 covariance matrix representing the variation of the intercepts
and slopes in the population of groups, as in the second line of (13.1).
We are following our general notation in which uppercase letters represent matrices:
thus, the vectors a and 3 are combined into the matrix B.
In the fitted radon model on page 279, the parameters of the group-level model are

— - 52 pG.6
estimated at Mp = (1.46,—0.68) and S5 = | .o 727" ) where &, = 0.35,

/A)a'u,é'b é'),
6, = 0.34, and p = —0.34. The estimated coefficient matrix B is given by the 85 x 2
array at the end of the display of coef (M3) on page 280.

More than two varying coefficients

The same expression as above holds, except that the 2’s are replaced by K’s, where
K is the number of individual-level predictors (including the intercept) that vary by
group. As we discuss shortly in the context of the inverse-Wishart model, estimation
becomes more difficult when K > 2 because of constraints among the correlation
parameters of the covariance matrix Xpg.

Including group-level predictors

More generally, we can have J groups, K individual-level predictors, and L pre-
dictors in the group-level regression (including the constant term as a predictor in
both cases). For example, K = L = 2 in the radon model that has floor as an
individual predictor and uranium as a county-level predictor.

We can extend model (13.6) to include group-level predictors:

yi ~ N(X;Bjy,0p), fori=1,...,n

B]' o N(UJG, EB) forj = 1.,...,J, (137)

where B is the J x K matrix of individual-level coefficients, U is the J x L matrix
of group-level predictors (including the constant term), and G is the L x K matrix
of coefficients for the group-level regression. U; is the j** row of U, the vector of
predictors for group j, and so U;G is a vector of length K.

Model (13.1) is a special case with K = L = 2, and the coefficients in G are
then 'y{{,vg T 'yf. For the fitted radon model on page 279, the «’s are the four
unmodeled coefficients (for the intercept, x, u.full, and x:u.full, respectively),
and the two columns of the estimated coefficient matrix B are estimated by a.hat
and b.hat, as defined by the R code on page 282.

Including individual-level predictors whose coefficients do not vary by group

The model can be further expanded by adding unmodeled individual-level coeffi-
cients, so that the top line of (13.7) becomes

yi ~ N(XPB° + X By, 03), fori=1,...,n, (13.8)

where X0 is a matrix of these additional predictors and 3° is the vector of their
regression coefficients (which, by assumption, are common to all the groups).
Model (13.8) is sometimes called a mized-effects regression, where the 3°’s and
the B’s are the fixed and random effects, respectively. As noted on pages 2 and
245, we avoid these terms because of their ambiguity in the statistical literature.
For example, sometimes unvarying coefficients such as the 8°’s in model (13.8) are
called “fixed,” but sometimes the term “fixed effects” refers to intercepts that vary
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by groups but are not given a multilevel model (this is what we call the “no-pooling
model,” as pictured, for example, by the solid lines in Figure 12.2 on page 255).

Equivalently, model (13.8) can be written by folding X° and X into a common
predictor matrix X, folding 3° and B into a common coefficient matrix B, and
using model (13.1), with the appropriate elements in X set to zero, implying no
variation among groups for certain coefficients.

Modeling the group-level covariance matriz using the scaled inverse- Wishart
distribution

When the number K of varying coefficients per group is more than two, modeling
the correlation parameters p is a challenge. In addition to each of the correlations
being restricted to fall between —1 and 1, the correlations are jointly constrained in
a complicated way —technically, the covariance matrix 3z must be positive definite.
(An example of the constraint is: if p1o = 0.9 and p13 = 0.9, then pas must be at
least 0.62.)

Modeling and estimation are more complicated in this jointly constrained space.
We first introduce the inverse-Wishart model, then generalize to the scaled inverse-
Wishart, which is what we recommend for modeling the covariance matrix of the
distribution of varying coefficients.

Inverse-Wishart model. One model that has been proposed for the covariance
matrix ¥g is the inverse- Wishart distribution, which has the advantage of being
computationally convenient (especially when using Bugs, as we illustrate in Section
17.1) but the disadvantage of being difficult to interpret.

In the model ¥p ~ Inv-Wisharty1(I), the two parameters of the inverse-
Wishart distribution are the degrees of freedom (here set to K +1, where K is
the dimension of B, that is, the number of coefficients in the model that vary by
group) and the scale (here set to the K x K identity matrix).

To understand this model, we consider its implications for the standard deviation
and correlations. Recall that if there are K varying coefficients, then ¥p is a K x K
matrix, with diagonal elements X, = (r,% and off-diagonal-elements Xy = prioroy
(generalizing models (13.1) and (13.2) to K > 2).

Setting the degrees-of-freedom parameter to K +1 has the effect of setting a
uniform distribution on the individual correlation parameters (that is, they are
assumed equally likely to take on any value between —1 and 1).

Scaled inverse-Wishart model. When the degrees of freedom parameter of the
inverse-Wishart distribution is set to K41, the resulting model is reasonable for the
correlations but is quite constraining on the scale parameters oi. This is a prob-
lem because we would like to estimate oy from the data. Changing the degrees of
freedom allows the o1’s to be estimated more freely, but at the cost of constraining
the correlation parameters.

We get around this problem by expanding the inverse-Wishart model with a new
vector of scale parameters &:

Yp = Diag(§)QDiag(£),
with the unscaled covariance matriz Q being given the inverse-Wishart model:
Q ~ Inv-Wishart g1 (1).

The variances then correspond to the diagonal elements of the unscaled covariance



UNDERSTANDING GROUP-LEVEL CORRELATIONS - 287

o o o
blacks hispanics whites others

Figure 13.3 Multilevel regression lines y = a;+3;x for log earnings on height (among those
with positive earnings), in four ethnic categories j. The gray lines indicate uncertainty in
the fitted regressions.

Bo

Figure 13.4 Scatterplot of estimated intercepts and slopes (for whites, hispanics, blacks,
and others), (aj, B;), for the earnings-height regressions shown in Figure 13.3. The ex-
treme negative correlation arises because the center of the range of height is far from zero.
Compare to the coefficients in the rescaled model, as displayed in Figure 13.7.

matrix @), multiplied by the appropriate scaling factors :
0 =Y = EEQuk, fork=1,..., K,

and the covariances are

We prefer to express in terms of the standard deviations,

ok = &V Qi

and correlations

Pkt = ki /(Ok01).
The parameters in £ and @ cannot be interpreted separately: they are a convenient
way to set up the model, but it is the standard deviations oy, and the correlations py;
that are of interest (and which are relevant for producing partially pooled estimates
for the coefficients in B).

As with the unscaled Wishart, the model implies a uniform distribution on the
correlation parameters. As we discuss next, it can make sense to transform the data
to remove any large correlations that could be expected simply from the structure
of the data.

13.4 Understanding correlations between group-level intercepts and
slopes

Recall that varying slopes can be interpreted as interactions between an individual-
level predictor and group indicators. As with classical regression models with in-
teractions, the intercepts can often be more clearly interpreted if the continuous
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Figure 13.5 Sketch illustrating the difficulty of simultaneously estimating o and (3. The
lines show the regressions for the four ethnic groups as displayed in Figure 13.3: the center
of the range of x wvalues is far from zero, and so small changes in the slope induce large
changes in the intercept.

[=} [=} o o

blacks hispanics whites others

Figure 13.6 Multilevel regression lines y = o + 35z, for log earnings given mean-adjusted
height (z; = ©; — &), in four ethnic groups j. The gray lines indicate uncertainty in the
fitted regressions.

predictor is appropriately centered. We illustrate with the height and earnings ex-
ample from Chapter 4.

We begin by fitting a multilevel model of log earnings given height, allowing the
coefficients to vary by ethnicity. The data and fitted model are displayed in Figure
13.3. (Little is gained by fitting a multilevel model here—with only four groups,
a classical no-pooling model would work nearly as well, as discussed in Section
12.9—Dbut this is a convenient example to illustrate a general point.)

Figure 13.4 displays the estimates of (o, 8;) for the four ethnic groups, and they
have a strong negative correlation: the groups with high values of a have relatively
low values of 3, and vice versa. This correlation occurs because the center of the
z-values of the data is far from zero. The regression lines have to go roughly through
the center of the data, and then changes in the slope induce opposite changes in
the intercept, as illustrated in Figure 13.5.

There is nothing wrong with a high correlation between the a’s and (3’s, but
it makes the estimated intercepts more difficult to interpret. As with interaction
models in classical regression, it can be helpful to subtract the average value of the
continuous z before including it in the regression; thus, y; ~ N(a; [+ Bl s (r;j),
where z; = x; —Z. Figures 13.6 and 13.7 show the results for the earnings regression:
the correlation has pretty much disappeared. Centering the predictor = will not
necessarily remove correlations between intercepts and slopes—but any correlation
that remains can then be more easily interpreted. In addition, centering can speed
convergence of the Gibbs sampling algorithm used by Bugs and other software.

We fit this model, and the subsequent models in this chapter, in Bugs (see Chap-
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Figure 13.7 Scatterplot of estimated intercepts and slopes, (o, ;), for the regression of
earnings on mean-adjusted height z, for the four groups j displayed in Figure 13.6. The
coefficients are no longer strongly correlated (compare to Figure 13.4).

ter 17 for examples of code) because, as discussed in Section 12.4, the current
version of 1lmer () does not work so well when the number of groups is small—and,
conversely, with these small datasets, Bugs is not too slow.

13.5 Non-nested models

So far we have considered the simplest hierarchical structure of individuals ¢ in
groups j. We now discuss models for more complicated grouping structures such as
introduced in Section 11.3.

Ezample: a psychological experiment with two potentially interacting factors

Figure 13.8 displays data from a psychological experiment of pilots on flight simu-
lators, with n = 40 data points corresponding to J = 5 treatment conditions and
K = 8 different airports. The responses can be fit to a non-nested multilevel model
of the form

Voo~ N(O,cr?/)7 forj=1,...,J
8y ~ N(0,02), for k=1,..., K. (13.9)

The parameters v; and d represent treatment effects and airport effects. Their
distributions are centered at zero (rather than given mean levels 1, it5) because
the regression model for y already has an intercept, p, and any nonzero mean for
the v and ¢ distributions could be folded into . As we shall see in Section 19.4,
it can sometimes be effective for computational purposes to add extra mean-level
parameters into the model, but the coefficients in this expanded model must be
interpreted with care.

We can perform a quick fit as follows:

Imer (y ~ 1 + (1 | group.id) + (1 | scenario.id))

where group.id and scenario.id are the index variables for the five treatment
conditions and eight airports, respectively.

When fit to the data in Figure 13.8, the estimated residual standard deviations
at the individual, treatment, and airport levels are 6, = 0.23, &, = 0.04, and
65 = 0.32. Thus, the variation among airports is huge—even larger than that among
individual measurements—but the treatments vary almost not at all. This general
pattern can be seen in Figure 13.8.

R code
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Figure 13.8 Success rates of pilots training on a flight simulator with five different treat-
ments and eight different airports. Shadings in the 40 cells i represent different success
rates yi, with black and white corresponding to 0 and 100%, respectively. For convenience
in reading the display, the treatments and airports have each been sorted in increasing order
of average success. These 40 data points have two groupings—treatments and airports
which are not nested.

Data in vector form
Data in matrix form

y j k

airport treatment conditions 0.38 1 1
1 0.38 025 0.50 0.14 043 0.00 1 2

2 0.00 0.00 0.67 0.00 0.00 0.38 1 3

3 0.38 050 0.33 0.71 0.29 0.00 1 4

4 0.00 0.12 0.00 0.00 0.86 0.33 1 5

5 0.33 050 0.14 0.29 0.86 1.00 1 6

6 1.00 1.00 1.00 1.00 0.86 0.12 1 7

7 0.12 0.12 0.00 0.14 0.14 1.00 1 8

8 1.00 0.86 1.00 1.00 0.75 0.25 2 1

Figure 13.9 Data from Figure 13.8 displayed as an array (y;x) and in our preferred nota-
tion as a vector (y;) with group indicators j[i] and kli].

Model (13.9) can also be written more cleanly as y;r ~ N(u+y; + 0, 05), but we
actually prefer the more awkward notation using j[¢] and k[i] because it emphasizes
the multilevel structure of the model and is not restricted to balanced designs. When
modeling a data array of the form (y;x), we usually convert it into a vector with
index variables for the rows and columns, as illustrated in Figure 13.9 for the flight
simulator data.

Example: regression of earnings on ethnicity categories, age categories, and height

All the ideas of the earlier part of this chapter, introduced in the context of a
simple structure of individuals within groups, apply to non-nested models as well.
For example, Figure 13.10 displays the estimated regression of log earnings, y;, on
height, z; (mean-adjusted, for reasons discussed in the context of Figures 13.3—
13.6), applied to the J = 4 ethnic groups and K = 3 age categories. In essence,
there is a separate regression model for each age group and ethnicity combination.
The multilevel model can be written, somewhat awkwardly, as a data-level model,

Yi ~ N(oyjjig e + Bipa e zir 04), fori=1,...,n,
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blacks, age 18-34 hispanics, age 18-34 whites, age 18-34 others, age 18-34

others, age 35-49

Figure 13.10 Multilevel regression lines y = ﬁ?k + ﬁ}ykz, for log earnings y given mean-
adjusted height z, for four ethnic groups j and three age categories k. The gray lines
indicate uncertainty in the fitted regressions.

a decomposition of the intercepts and slopes into terms for ethnicity, age, and
ethnicity x age,

a thx a
ajk ) _ [ 1o %5 Yok Yok &
X - + eth + age —+ ethxage b
Bik 1 V14 Tk V1jk

and models for variation,

fyg;h ~ 0 eth g

<’Yf§'h N 0 , % yforg=1,...,J
age

(7%}@) - N<<8>7Eage>7fork:17”.7[(
Y1k

ethxage
< ,ygzﬁxage > ~ N<< 8 )7 Eethxage)7 forj=1,...,J; k=1,... K.
Tk

Because we have included means pg, 1 in the decomposition above, we can center
cach batch of coefficients at 0.

Interpretation of data-level variance. The data-level errors have estimated resid-
ual standard deviation &, = 0.87. That is, given ethnicity, age group, and height,
log earnings can be predicted to within approximately +0.87, and so earnings them-
selves can be predicted to within a multiplicative factor of €%87 = 2.4. So earnings
cannot be predicted well at all by these factors, which is also apparent from the
scatter in Figure 13.10.

Interpretation of group-level variances. The group-level errors can be separated
into intercept and slope coefficients. The intercepts have estimated residual stan-
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Figure 13.11 Data from a 5 X 5 latin square experiment studying the effects of five ordered
treatments on the yields of millet crops, from Snedecor and Cochran (1989). Each cell
shows the randomly assigned treatment and the observed yield for the plot.

dard deviations of (S§%)1/2 = 0.08 at the ethnicity level, (£2£°)/2 = 0.25 at the
age level, and (igf}‘“ge)l/ 2 = (.11 at the ethnicity x age level. Because we have
rescaled height to have a mean of zero (see Figure 13.10), we can interpret these
standard deviations as the relative importance of each factor (ethnicity, age group,
and their interaction) on log earnings at the average height in the population.

This model fits earnings on the log scale and so these standard deviations can
be interpreted accordingly. For example, the residual standard deviation of 0.08 for
the ethnicity coefficients implies that the predictive effects of ethnic groups in the
model are on the order of £0.08, which correspond to multiplicative factors from
about ¢~%% = 0.92 to 2% = 1.08. N

The slopes have estimated residual standard deviations of (Z5{")1/2 = 0.03 at
the ethnicity level, (£22°)1/2 = 0.02 at the age level, and (S$50X*2°)1/2 — 0,02 at
the ethnicity x age level. These slopes are per inch of height, so, for example, the
predictive effects of ethnic groups in the model are in the range of £3% in income
per inch of height. One can also look at the estimated correlation between intercepts
and slopes for each factor.

Example: a latin square design with grouping factors and group-level predictors

Non-nested models can also include group-level predictors. We illustrate with data
from a 5 x5 latin square experiment, a design in which 25 units arranged in a square
g g
grid are assigned five different treatments, with each treatment being assigned to one
unit in each row and each column. Figure 13.11 shows the treatment assignments
and data from a small agricultural experiment. There are three non-nested levels
of grouping—rows, columns, and treatments—and each has a natural group-level
predictor corresponding to a linear trend. (The five treatments are ordered.)
The corresponding multilevel model can be written as
1 treat 2 :
yi ~ N(p+ St PR B oy), fori=1,...,25
/SEOW ~ N(,.yrow '(jig)vo-?)’row)v forj=1,...,5
BzolumnN N(,Ycolumn . (k} _ 3)7 0_/23 column)7 for k= 17 o 5
ﬁltreat/\/ N(,.ytreat : (l - 3)7U%trea‘t)7 for I = 17 rrey 5. (1310)

Thus j, k, and [ serve simultaneously as values of the row, column, and treatment
predictors.

By subtracting 3, we have centered the row, column, and treatment predictors at
zero; the parameter p has a clear interpretation as the grand mean of the data, with
the different [’s supplying deviations for rows, columns, and treatments. As with
group-level models in general, the linear trends at each level potentially allow more
precise estimates of the group effects, to the extent that these trends are supported
by the data. An advantage of multilevel modeling here is that it doesn’t force a
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Figure 13.12 Estimates £1 standard error for the row, column, and treatment effects for
the latin square data in Figure 13.11. The five levels of each factor are ordered, and the
lines display the estimated group-level regressions, y=pu+y"" (x=3), y = pAy<"™0 (2—3),
and y=p+~"" (z—3).

choice between a linear fit and separate estimates for each level of a predictor. (This
is an issue we discussed more generally in Chapter 11 in the context of including
group indicators as well as group-level predictors.)

Figure 13.12 shows the estimated row, column, and treatment effects on graphs,
along with the estimated linear trends. The grand mean p has been added back to
each of these observations so that the plots are on the scale of the original data.
This sort of data structure is commonly studied using the analysis of variance,
whose connections with multilevel models we discuss fully in Chapter 22, including
a discussion of this latin square example in Section 22.5.

13.6 Selecting, transforming, and combining regression inputs

As with classical regression (sece Section 4.5), choices must be made in multilevel
models about which input variables to include, and how best to transform and
combine them. We discuss here how some of these decisions can be expressed as
particular choices of parameters in a multilevel model. The topic of formalizing
modeling choices is currently an active area of research—key concerns include using
information in potential input variables without being overwhelmed by the com-
plexity of the relating model, and including model choice in uncertainty estimates.
As discussed in Section 9.5, the assumption of ignorability in observational studies
is more plausible when controlling for more pre-treatment inputs, which gives us a
motivation to include more regression predictors.

Classical models for regression coefficients

Multilevel modeling includes classical least squares regression as a special case.
In a multilevel model, each coefficient is part of a model with some mean and
standard deviation. (These mean values can themselves be determined by group-
level predictors in a group-level model.) In classical regression, every predictor is
either in or out of the model, and each of these options corresponds to a special
case of the multilevel model.

“ws

e If a predictor is “in,” this corresponds to a coefficient model with standard
deviation of co: no group-level information is used to estimate this parameter,
so it is estimated directly using least squares. It turns out that in this case
the group-level mean is irrelevant (see formula (12.16) on page 269 for the case
04 = 00); for convenience we often set it to 0.

e If a predictor is “out,” this corresponds to a group-level model with group-level
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mean 0 and standard deviation 0: the coefficient estimate is then fixed at zero
(see (12.16) for the case o, = 0) with no uncertainty.

Multilevel modeling as an alternative to selecting regression predictors

Multilevel models can be used to combine inputs into more effective regression
predictors, generalizing some of the transformation ideas discussed in Section 4.6.
When many potential regression inputs are available, the fundamental approach is
to include as many of these inputs as possible, but not necessarily as independent
least squares predictors.

For example, Witte et al. (1994) describe a logistic regression in a case-control
study of 362 persons, predicting cancer incidence given information on consumption
of 87 different foods (and also controlling for five background variables which we do
not discuss further here). Each of the foods can potentially increase or decrease the
probability of cancer, but it would be hard to trust the result of a regression with
87 predictors fit to only 362 data points, and classical tools for selecting regression
predictors do not seem so helpful here. In our general notation, the challenge is to
estimate the logistic regression of cancer status y on the 362 x 87 matrix X of food
consumption (and the 362 x 6 matrix X° containing the constant term and the 5
background variables).

More information is available, however, because each of the 87 foods can be
characterized by its level of each of 35 nutrients, information that can be expressed
as an 87 x 36 matrix of predictors Z indicating how much of each nutrient is in
each food. Witte et al. fit the following multilevel model:

Pr(y; =1) = logit™ " (X?8° + X;By), fori=1,...,362
B; ~ N(Zjy,03), forj=1,...,87. (13.11)

The food-nutrient information in Z allows the multilevel model to estimate separate
predictive effects for foods, after controlling for systematic patterns associated with
nutrients. In the extreme case that og = 0, all the variation associated with the
foods is explained by the nutrients. At the other extreme, og = oo would imply
that the nutrient information is not helping at all.

Model (13.11) is helpful in reducing the number of food predictors from 87 to
35. At this point, Witte et al. used substantive understanding of diet and cancer
to understand the result. Ultimately, we would like to have a model that structures
the 35 predictors even more, perhaps by categorizing them into batches or com-
bining them in some way. The next example sketches how this might be done; it is
currently an active research topic to generally structure large numbers of regression
predictors.

Linear transformation and combination of inputs in a multilevel model

For another example, we consider the problem of forecasting presidential elections
by state (see Section 1.2). A forecasting model based on 11 recent national elections
has more than 500 “data points” —state-level elections—and can then potentially in-
clude many state-level predictors measuring factors such as economic performance,
incumbency, and popularity. However, at the national level there are really only
11 observations and so one must be parsimonious with national-level predictors.
In practice, this means performing some preliminary data analysis to pick a sin-
gle economic predictor, a single popularity predictor, and maybe one or two other
predictors based on incumbency and political ideology.
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Setting up a model to allow partial pooling of a set of regression predictors

A more general approach to including national predictors is possible using multilevel
modeling. For example, suppose we wish to include five measures of the national
economy (for example, change in GDP per capita, change in unemployment, and
so forth). The usual approach (which we have followed in the past in this problem)
is to choose one of these as the economic predictor, x, thus writing the model as

yi=a+fr;+---, (13.12)

where the dots indicate all the rest of the model, including other state-level and
national predictors, as well as error terms at the state, regional, and national levels.
Here we focus on the economic inputs, for simplicity setting aside the rest of the
model.

Instead of choosing just one of the five economic inputs, it would perhaps be
better first to standardize each of them (see Section 4.2), orient them so they are
in the same direction, label these standardized variables as X(;), for j = 1,...,5,
and then average them into a single predictor, defined for each data point as

5
1
Ve = EZZXU, fori=1,....n. (13.13)
j=1

This new £®# can be included in place of z as the regression predictor in (13.12)
or, equivalently,

vi a+ Bz 4

1 1
at eBXn 4k oBXip 4

The resulting model will represent an improvement to the extent that the average
of the five standardized economy measures is a better predictor than the single
measure chosen before.

However, model (13.13) is limited in that it restricts the coefficients of the five
separate 2%’s to be equal. More generally, we can replace (13.13) by a weighted
average:

5

ave 1

z; 8 = 5 Z’Y]'Xija fori=1,...,n, (13.14)
j=1
so that the data model becomes
vi = a+ /gx;‘)vsavg 4o
1 1

= a+ ngﬂXn +o ngBXis +o (13.15)

We would like to estimate the relative coefficients y; from the data, but we cannot
simply use classical regression, since this would then be equivalent to estimating a
separate coefficient for each of the five predictors, and we have already established
that not enough data are available to do a good job of this.

Instead, one can set up a model for the v;’s:

v; ~N(1,02), forj=1,...,5, (13.16)

so that, in the model (13.15), the common coefficient 3 can be estimated classically,
but the relative coefficients v, are part of a multilevel model. The hyperparameter
o, can be interpreted as follows:

e If 0, = 0, the model reduces to the simple averaging (13.14): complete pooling
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of the 7;’s to the common value of 1, so that the combined predictor x%¥-*'# is
simply #®#, the average of the five individual X;)’s.

o If 0, = oo, there is no pooling, with the individual coefficients %’yjﬁ estimated
separately using least squares.

e When o, is positive but finite, the ~;’s are partially pooled, so that the five
predictors x; have coeflicients that are near each other but not identical.

Depending on the amount of data available, o, can be estimated as part of the
model or set to a value such as 0.3 that constrains the 7;’s to be fairly close to 1
and thus constrains the coefficients of the individual 27’s toward each other in the
data model (13.15).

Connection to factor analysis

A model can include multiplicative parameters for both modeling and computa-
tional purposes. For example, we could predict the election outcome in year t in
state s within region r[s] as

yor = BOXD +01 Y BVX + aom + by o + €

7=1

where X (©) is the matrix of state x year-level predictors, X (1) is the matrix of year-
level predictors, and «y, §, and € are national, regional, and statewide error terms.
In this model, the auxiliary parameters as and ag exist for purely computational
reasons, and they can be estimated, with the understanding that we are interested
only in the products agy: and asd, . More interestingly, «; serves both a compu-

tational and modeling role—the B](.l) parameters have a common N(%, o2,) model,
and <7 has the interpretation as the overall coefficient for the economic predictors.
More generally, we can imagine K batches of predictors, with the data-level

regression model using a weighted average from each batch:

y:X(())/j(O) +ﬁlxw.a\/g71 ++/3ka(~1ng+ ,

where each predictor z) **'® is a combination of J; individual predictors x7%:

Ty
avg, kL ik )
for each k: z}*'®" = 7 E vikxl®, fori=1,...,n.
%

i
Jj=1
This is equivalent to a regression model on the complete set of available predictors,
o 12 2 WK 2 /K K where the predictor 27 gets the co-
efficient JLk"ij; Bk. Each batch of relative weights « is then modeled hierarchically:

for each k: i ~ N(l,agk)., forj=1,...,J,

with the hyperparameters o, estimated from the data or set to low values such
as 0.3.

In this model, each combined predictor x represents a “factor” formed by a
linear combination of the Ji individual predictors, 8x represents the importance of
that factor, and the +;;’s give the relative importance of the different components.

As noted at the beginning of this section, these models are currently the subject
of active research, and we suggest that they can serve as a motivation to specially
tailored models for individual problems rather than as off-the-shelf solutions to
generic multilevel problems with many predictors.

w.avg, k
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13.7 More complex multilevel models

The models we have considered so far can be generalized in a variety of ways.

Chapters 14 and 15 discuss multilevel logistic and generalized linear models. Other

extensions within multilevel linear and generalized linear models include the fol-

lowing:

e Variances can vary, as parametric functions of input variables, and in a mul-
tilevel way by allowing different variances for groups. For example, the model
yi ~ N(X;8,02), with o; = exp(X;7), allows the variance to depend on the
predictors in a way that can be estimated from the data, and similarly, in a
multilevel context, a model such as o; = exp(aj[i] + bx;) allows variances to vary
by group. (It is natural to model the parameters o on the log scale because they
are restricted to be positive.)

e Models with several factors can have many potential interactions, which them-
selves can be modeled in a structured way, for example with larger variances for
coefficients of interactions whose main effects are large. This is a model-based,
multilevel version of general advice for classical regression modeling.

e Regression models can be set up for multivariate outcomes, so that vectors of
coefficients become matrices, with a data-level covariance matrix. These models
become correspondingly more complex when multilevel factors are added.

e Time series can be modeled in many ways going beyond simple autoregressions,
and these parameters can vary by group with time-series cross-sectional data.
This can be seen as a special case of non-nested groupings (for example, country
x year), with calendar time being a group-level predictor.

e One way to go beyond linearity is with nonparametric regression, with the sim-
plest version being y; = g(X;,0) + €;, and the function g being allowed to have
some general form (for example, cubic splines, which are piecewise-continuous
third-degree polynomials). Versions of such models can also be estimated using
locally weighted regression, and again can be expanded to multilevel structures
as appropriate.

e More complicated models are appropriate to data with spatial or network struc-
ture. These can be thought of as generalizations of multilevel models in which
groups (for example, social networks) are not necessarily disjoint, and in which
group membership can be continuous (some connections are stronger than oth-
ers) rather than simply “in” or “out.”

We do not discuss any of these models further here, but we wanted to bring them
up to be clear that the particular models presented in this book are just the starting
point to our general modeling approach.

13.8 Bibliographic note

The textbooks by Kreft and De Leeuw (1998), Raudenbush and Bryk (2002), and
others discuss multilevel models with varying intercepts and slopes. For an early
example, see Dempster, Rubin, and Tsutakawa (1981). Non-nested models are dis-
cussed by Rasbash and Browne (2003). The flight simulator example comes from
Gawron et al. (2003), and the latin square example comes from Snedecor and
Cochran (1989).

Models for covariance matrices have been presented by Barnard, McCulloch, and
Meng (1996), Pinheiro and Bates (1996), Daniels and Kass (1999, 2001), Daniels
and Pourahmadi (2002). Boscardin and Gelman (1996) discuss parametric models
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for unequal variances in multilevel linear regression. The scaled inverse-Wishart
model we recommend comes from O’Malley and Zaslavsky (2005).

The models for combining regression predictors discussed in Section 13.6 ap-
pear in Witte et al. (1994), Greenland (2000), Gelman (2004b), and Gustafson and
Greenland (2005). See also Hodges et al. (2005) and West (2003) on methods of
including many predictors and interactions in a regression. Other work on select-
ing and combining regression predictors in multilevel models includes Madigan and
Raftery (1994), Hoeting et al. (1999), Chipman, George, and McCulloch (2001), and
Dunson (2006). The election forecasting example is discussed in Gelman and King
(1993) and Gelman et al. (2003, section 15.2); see Fair (1978), Rosenstone (1983),
Campbell (1992), and Wlezien and Erikson (2004, 2005) for influential work in this
area.

Some references for hierarchical spatial and space-time models include Besag,
York, and Mollie (1991), Waller et al. (1997), Besag and Higdon (1999), Wikle et al.
(2001), and Bannerjee, Gelfand, and Carlin (2003). Jackson, Best, and Richardson
(2006) discuss hierarchical models combining aggregate and survey data in public
health. Datta et al. (1999) compare hierarchical time series models; see also Fay and
Herriot (1979). Girosi and King (2005) present a multilevel model for estimating
trends within demographic subgroups.

For information on nonparametric methods such as lowess, splines, wavelets, haz-
ard regression, generalized additive models, and regression trees, see Hastie, Tibshi-
rani, and Friedman (2002), and, for examples in R, see Venables and Ripley (2002).
Crainiceanu, Ruppert, and Wand (2005) fit spline models using Bugs. MacLchose
et al. (2006) combine ideas of nonparametric and multilevel models.

13.9 Exercises

1. Fit a multilevel model to predict course evaluations from beauty and other pre-
dictors in the beauty dataset (see Exercises 3.5, 4.8, and 12.6) allowing the
intercept and coefficient for beauty to vary by course category:

(a) Write the model in statistical notation.

(b) Fit the model using lmer () and discuss the results: the coefficient estimates
and the estimated standard deviation and correlation parameters. Identify
cach of the estimated parameters with the notation in your model from (a).

(c) Display the estimated model graphically in plots that also include the data.

2. Models for adjusting individual ratings: a committee of 10 persons is evaluat-
ing 100 job applications. Each person on the committee reads 30 applications
(structured so that each application is read by three people) and gives each a
numerical rating between 1 and 10.

(a) It would be natural to rate the applications based on their combined scores;
however, there is a worry that different raters use different standards, and we
would like to correct for this. Set up a model for the ratings (with parameters
for the applicants and the raters).

(b) It is possible that some persons on the committee show more variation than
others in their ratings. Expand your model to allow for this.

3. Non-nested model: continuing the Olympic ratings example from Exercise 11.3:

(a) Write the notation for a non-nested multilevel model (varying across skaters
and judges) for the technical merit ratings and fit using 1mer ().
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(b) Fit the model in (a) using the artistic impression ratings.
(c) Display your results for both outcomes graphically.
(d) Use posterior predictive checks to investigate model fit in (a) and (b).

4. Models with unequal variances: the folder age . guessing contains a dataset from
Gelman and Nolan (2002) from a classroom demonstration in which 10 groups
of students guess the ages of 10 different persons based on photographs. The
dataset also includes the true ages of the people in the photographs.

Set up a non-nested model to these data, including a coefficient for each of the
persons in the photos (indicating their apparent age), a coefficient for each of
the 10 groups (indicating potential systematic patterns of groups guessing high
or low), and a separate error variance for each group (so that some groups are
more consistent than others).

. Return to the CD4 data introduced from Exercise 11.4.

(S

(a) Extend the model in Exercise 12.2 to allow for varying slopes for the time
predictor.

(b) Next fit a model that does not allow for varying slopes but does allow for
different cocfficients for cach time point (rather than fitting the linear trend).

(¢) Compare the results of these models both numerically and graphically.

6. Using the time-series cross-sectional dataset you worked with in Exercise 11.2,
fit the model you formulated in part (c) of that exercise.



