36-617: Applied Linear Regression

Multi-level glm's Brian Junker 132E Baker Hall brian@stat.cmu.edu

Announcements

- HW07 due tonight 1159
- HW08 out sometime today (I was wiped after standing at polls 7am-8pm yesterday)
- This week
 - Today G&H Ch 13: multiple random effects, sample size
 - Weds G&H Ch 14: multilevel logistic regression models
- Project: I will share a rough schedule later this week
 Hopefully Thu; Fri at the latest. Check your email.
- Today's class very R-centric
 - A closer look at model selection
 - Beginning lecture on multilevel glm's

Outline

- Review glm's, e.g.
 - Logistic Regression
 - Poisson Regression
- Clustering, growth curves, overdispersion
- Multi-level glm's
 - A.k.a. generalized linear mixed effects regression models (glmer!)
- Examples: (1) Hospital births; (2) Roach eradication

IMRAD & IDMRAD

Linear Regression, Logistic Regression

The <u>linear regression</u> model is:

$$y_i \stackrel{indep}{\sim} N(\theta_i, \sigma^2), \ i = 1, \dots, n$$

$$\theta_i = X_i \beta = \beta_0 X_{i0} + \cdots + \beta_p X_{ip}$$

• Each
$$y_i \in (-\infty, \infty)$$
 has some mean $\theta_i = E[y_i]$

- Each θ_i has some linear structure
- There is a statistical distribution N(*, σ^2) that describes unmodeled variation around $\theta_i = E[y_i]$

The generalized linear model (glm) is:

$$y_i \stackrel{indep}{\sim} f(y_i|\mu_i,\ldots), \ i=1,\ldots,n$$

$$\theta_i = g(\mu_i) = X_i\beta = \beta_0 X_{i0} + \cdots + \beta_k X_{ip}$$

- Each y_i has some mean $\mu_i = E[y_i]$
- Each $\theta_i = g(\mu_i)$ has some linear structure $[g(\mu)]$ is the "link function"]
- There is a statistical distribution $f(y_i | \mu_i, ...)$ that describes unmodeled variation around $\mu_i = E[y_i]$

Logistic regression, Poisson regression

The <u>logistic regression</u> model is:

$$y_i \stackrel{indep}{\sim} Binomial(n_i, p_i), \ i = 1, \dots, n$$

$$\theta_i = \log \frac{p_i}{1 - p_i} = X_i \beta = \beta_0 X_{i0} + \dots + \beta_p X_{ip}$$

- Each y ϵ {0, 1} has some mean $p_i = E[y_i]$
- □ Each $\theta_i = g(p_i)$ has some linear structure [$g(p) = \log p/(1-p)$!]
- There is a statistical distribution $f(y_i | p_i) = Binomial(n_i, p_i)$ that describes unmodeled variation around $p_i = E[y_i]$

The <u>Poisson Regression</u> model is:

$$y_i \overset{indep}{\sim} Poisson(\lambda_i), \ i = 1, \dots, n$$

$$\theta_i = \log \lambda_i = X_i \beta = \beta_0 X_{i0} + \cdots + \beta_p X_{ip}$$

- **Each** $y_i \in \{0, 1, 2, 3, ...\}$ has some mean $\lambda_i = E[y_i]$
- □ Each $\theta_i = g(\lambda_i)$ has some linear structure $[g(\lambda_i) = \log(\lambda_i) !]$
- There is a statistical distribution $f(y_i | \lambda_i) = Poiss(\lambda_i)$ that describes unmodeled variation around $\lambda_i = E[y_i]$

Clustering, growth curves, overdispersion

- Just as with linear models, glm data can involve
 - <u>Clustering</u>: groups of observations more similar to each other within group than between groups
 - Growth curves: the clusters are individuals, and the observations are measurements at successive time points
- And with glm's we also sometimes see
 - Overdispersion: Although the variance should be a function of the mean (Var_{Poiss}(y) = λ; Var_{Bern}(y)=p(1-p)), when it is not, we need a way to model it

Multi-level glm's

Level 1 (a glm, modeling the data itself):

$$y_i \stackrel{indep}{\sim} f(y_i|\mu_i,\ldots), \ i=1,\ldots,n$$

$$\theta_i = g(\mu_i) = X_i \alpha = \alpha_{0j[i]} X_{i0} + \cdots + \alpha_{pj[i]} X_{ip}$$

Level 2 (modeling level 1 coefficients):

$$\begin{aligned} \alpha_{0j} &= \beta_{00} + \beta_{01} W_{j1} + \dots + \beta_{0q} W_{jq} + \eta_0 , \quad \eta_0 \sim N(0, \tau_0^2) \\ \alpha_{1j} &= \beta_{10} + \beta_{11} W_{j1} + \dots + \beta_{1q} W_{jq} + \eta_1 , \quad \eta_1 \sim N(0, \tau_1^2) \\ \vdots &\vdots \\ \alpha_{pj} &= \beta_{p0} + \beta_{p1} W_{j1} + \dots + \beta_{pq} W_{jq} + \eta_p , \quad \eta_p \sim N(0, \tau_p^2) \end{aligned}$$

Can fit with¹ glmer() from library(lme4) ...

¹Not the Imer() function, as suggested by G&H (they had an older version of Ime4).

Example 1: Deliver babies in a hospital or at home?

 hosp.txt contains data from Lillard & Panis
 (2000)'s study of the decisions of 501 mothers to give birth in a hospital or elsewhere, for 1060 births:

```
'data.frame': 1060 obs. of 6 variables:
$ hospital: int 0 0 1 0... 1 = hospital birth, 0 = elsewhere
$ loginc : num 4.33 5.62... Log_e of family income (log dollars)
$ distance: num 1.7 7.9... distance (miles) to nearest hospital
$ dropout : int 0 0 0 0 0... 0 = mom completed hs , 1 = did not
$ college : int 1 0 0 0 0... 1 = mom attended coll, 0 = did not
$ mom : int 1 2 2 2 2... unique identifier for each mother
```

Lillard, L. A., & Panis, C. W. (2000). aML multilevel multiprocess statistical software, release 1.0. (current version: http://www.applied-ml.com/) *Los Angeles: EconWare*.

8

Example 1: Hospital Birth Choices

See R handout/demonstration hosp-births-part-1.r

Example 2: Cockroach Eradication

 roachdata.csv contains data from an experiment on the effectiveness of an "integrated pest management system" in apartment buildings in a particular city (from G&H).

<pre># \$ y : int 153 127 7 7 0 0 [# of roaches trapped</pre>	
# \$ roach1 : num 308 331.25 1.67 [# of roaches before	
experiment]	
<pre># \$ treatment: int 1 1 1 1 1 1 1 1 [pest mgmt tx in this</pre>	
apt bldg?]	
<pre># \$ senior : int 0 0 0 0 0 0 0 0 [apts restricted to</pre>	
sr citzns?]	
<pre># \$ exposure2: num 0.8 0.6 1 1 1.14 [avg # of trap-days period</pre>	er
apt for y]	

Example 2: Cockroach Eradication

See R handout/demonstration Roachdata-part-1.r

IMRAD – A canonical way to organize empirical papers & reports

- Abstract
 Summarize I, M, R and D of paper
- (I)introduction
- Why would anyone want to read this paper?
- What questions will be addressed?
- (M)ethods
 What did you do, to address these questions?
- (R)esults
 What did you find?

(a)nd

(D)iscussion

- What does it all mean?
- Typically: answer questions, discuss generalizations & limitations

More information on IMRAD...

- How prevalent are IMRAD papers? Very... Sollaci et al. (2004). The introduction, methods, results, and discussion (IMRAD) structure: a fiftyyear survey. J Med Libr Assoc 92(3), 364—367.
- Quick advice on IMRAD contents...
 Aggarwal (2004). IMRAD: What goes into each section? (slides). <u>http://www.jpgmonline.com</u>
 /documents/author/24/2 Aggarwal 10.pdf

From IMRAD to IDMRAD...

- Abstract
- (I)introduction
- (D)ata
- (M)ethods
- (R)esults
 - (a)nd
- (D)iscussion

- Summarize I, D, M, R and D of paper
- Why would anyone want to read this paper?
- What questions will be addressed?
- What dataset was used for this study?
- Typically: Variable definitions, sample size, quick summaries and initial descriptive EDA
- What did you do, to address these questions?
- What did you find?

- What does it all mean?
- Typically: answer questions, discuss generalizations
 & limitations
- Technical Appendix
 Technical details of carrying out the (M)ethods

The Technical Appendix

- Most statistics papers are based on lots of technical analysis.
- Most readers of the main paper won't want to see all the details, but some (me!) will want to know that you handled the details well.
- A technical appendix is a good place to collect together the analyses that contributed to the main paper, in the order they will be presented in the paper.
 - NOT the order in which you did the analyses!!
- Don't include lots of analyses not mentioned in the paper.
 - <u>The paper can and should cite sections of the appendix</u> to show reader where the details are, for the interested reader.
- Do include text and comments in the appendix explaining why you did the analyses you did.

Summary

- Review glm's, e.g.
 - Logistic Regression
 - Poisson Regression
- Clustering, growth curves, overdispersion
- Multi-level glm's
 - A.k.a. generalized linear mixed effects regression models (glmer!)
- Examples: (1) Hospital births; (2) Roach eradication

IMRAD & IDMRAD