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Summary. | discuss the production of low rank smoothers for d > 1 dimensional data, which
can be fitted by regression or penalized regression methods. The smoothers are constructed
by a simple transformation and truncation of the basis that arises from the solution of the thin
plate spline smoothing problem and are optimal in the sense that the truncation is designed to
result in the minimum possible perturbation of the thin plate spline smoothing problem given the
dimension of the basis used to construct the smoother. By making use of Lanczos iteration the
basis change and truncation are computationally efficient. The smoothers allow the use of ap-
proximate thin plate spline models with large data sets, avoid the problems that are associated
with ‘knot placement’ that usually complicate modelling with regression splines or penalized
regression splines, provide a sensible way of modelling interaction terms in generalized additive
models, provide low rank approximations to generalized smoothing spline models, appropriate
for use with large data sets, provide a means for incorporating smooth functions of more than one
variable into non-linear models and improve the computational efficiency of penalized likelihood
models incorporating thin plate splines. Given that the approach produces spline-like models
with a sparse basis, it also provides a natural way of incorporating unpenalized spline-like terms
in linear and generalized linear models, and these can be treated just like any other model terms
from the point of view of model selection, inference and diagnostics.
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1. Introduction

Smoothing splines (Duchon, 1977, Wahba, 1990; Gu, 2002) provide an excellent means for
estimation and inference with models like

yi = fxi) + &, )]
yi = fx1i, x2i) + €i 2

or
yi = filx) + fa(x2i, x30) + f304) + ...+ & 3)

where in all cases y is a response variable, the xs are covariates, the f's are smooth functions and
the e-terms are random variables (independent for different 7).

For example, model (1) can be estimated by finding the function from an appropriate repro-
ducing kernel Hilbert space which minimizes

Iy —£17 + A / £ dx @
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where y is a vector of y;s, f is the corresponding vector of f(x;)-values and ||-|| is the Euclidean
norm. A is a smoothing parameter, which must be chosen appropriately if the right balance is
to be struck between minimizing model badness of fit as measured by the first term and model
wiggliness as measured by the second. The result of this minimization turns out to be finite
dimensional and is a cubic spline, which is a special case of a thin plate spline. In general these
are obtained as the solution of the generalization of expression (4) to problems in which f is a
function of any finite number d > 1 of covariates and the order m of differentiation in the wig-
gliness penalty can be any integer satisfying 2m > d (see Section 2). A further straightforward
generalization of expression (4) is the replacement of the least squares term in the objective with
a negative log-likelihood based on an exponential family distribution (see for example Green
and Silverman (1994) and Gu (2002)).

There are two obstacles to the widespread adoption of thin plate spline smoothers in practi-
cal statistical work. The first is computational. To fit a thin plate spline to n data requires the
estimation of n parameters and an additional smoothing parameter. Except in the case d = 1
this involves O(n?) operations, which is frequently prohibitive. Indeed, without the availability
of efficient O(n) algorithms for the d = 1 case (e.g. Hutchinson and de Hoog (1995)) it is doubt-
ful that cubic smoothing splines would have achieved their current popularity. (Furthermore,
although not generally critical, thin plate spline fitting problems can have condition numbers
in excess of 10°, which has the potential to cause problems if a thin plate spline is embedded
in a non-linear model, for example.) The second obstacle to a widespread adoption of these
smoothers is the fact that their use requires a change in modelling methodology relative to
conventional linear or generalized linear modelling: the flexibility of a fitted model must be
selected by adjusting the smoothing parameter A, rather than by adding or dropping model
terms. This precludes many model building strategies that are ordinarily used for (generalized)
linear models.

One approach to the problem of computational cost is to employ regression splines. The basis
implied by solving the spline smoothing problem for a small representative data set is found
and this small basis is used to construct a model for the full data set of interest. The model is
typically fitted as a linear or generalized linear model without imposing a wiggliness penalty.
The covariate points that are used to obtain the reduced basis are known as the ‘knots’ of the
regression spline. The number of knots controls the flexibility of the model, but unfortunately
their location also tends to have a marked effect on the fitted model (see for example Hastie
and Tibshirani (1990), section 9.3). In principle, conventional hypothesis-testing-based model
selection can be used to determine the appropriate flexibility for regression spline models, but
in practice there are difficulties. If the knots of order k and order k — 1 regression spline models
for a data set are arranged to ensure the best performance of both models, then the two models
will not generally be nested. Alternatively, if knots are not moved, but some knots are simply
dropped during model selection, then nesting is maintained, but very uneven knot spacings
can result: this has undesirable approximation theoretic consequences (see for example Wahba
(1990), page ix). Another more subtle problem with the latter strategy is ‘knot confounding’
(Zhou and Shen, 2001). Finally, when d > 1, even deciding where to place knots so that they
appear evenly spread through the covariates can become problematic.

Some of the problems with knot placement can be partially alleviated by abandoning pure
regression splines in favour of penalized regression splines (e.g. Wahba (1980) and Parker and
Rice (1985)), where the required penalty is that associated with the regression spline basis. But
in this case model flexibility is again controlled by a smoothing parameter A, rather than the
basis dimension, so that some conventional (generalized) linear modelling methods are once
again inapplicable.
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The first aim of this paper is to find optimal approximations to the thin plate splines which
will remove the computational obstacles to their use, while minimizing the deterioration in
model performance that is entailed by the approximation (i.e. to find optimal penalized regres-
sion splines). The second aim is to remove the knot placement problem from regression spline
modelling in a way that will allow model selection by the hypothesis testing methods that are
usually employed in regression modelling. Two immediate results of achieving these aims are
to provide a good way of incorporating smooth function terms into non-linear models and to
provide a way of incorporating thin plate spline like terms into generalized additive models
(GAMs).

2. Low rank thin plate spline like smoothers

This section begins with standard, but essential, background material on thin plate splines
(Duchon, 1977) and then uses these standard results as the starting-point for the production of
low rank smoothers with ‘good’ properties. Purely for simplicity of presentation, I shall ignore
the possibility of tied covariate values for the moment and cover them later. Consider the prob-
lem of estimating the smooth function f(x) where x is a d-vector, from n (> d) observations
(i, X;) such that

yi = f(Xi) + &

where ¢; is a random error term. Thin plate splines can be used to estimate f* by finding the
function g minimizing

Iy — gl + A Jma(9) Q)

where y is the vector of y; data, g = (g(x1), g(x2), ..., 9(X»)), Jma(g) is a penalty functional
measuring the wiggliness of g and A controls the trade-off between data fitting and smoothness
of g. The wiggliness penalty is defined as

! m 2
de=/.../ D = '( e u,,) dxy... dxg. 6)
N v +..4vg=m V1:. .. Vd- 8)61 ...de

Provided that we impose the technical restriction 2m > d, it can be shown that the function
minimizing expression (5) has the form

n M
g(x) = Zlémmd(llx—xl-ll) + Zlajsbj(X) (N
i= j=

where 6§ and « are unknown parameter vectors subject to the constraint that T'6 =0 and
T = ¢j(x;). The M = (’"+j_1) functions ¢; are linearly independent polynomials spanning
the space of polynomials in 3¢ of degree less than m (i.e. the space of polynomials for which
Jima 18 0). Furthermore

(_1)m+1+d/2
22m=lgd/2(m — 1) (m — d/2)!
T'(d/2 — m) 2m—d
22mpd/2(m — 1))

prm—d log(r) d even,
Nmd (1) =
d odd.

Now, defining matrix E by E;; = n,,q(lIx; — X;||), the spline fitting problem becomes
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minimize ||y — E§ — Tax||? + A6'ES subject to T'6 = 0 (8)

with respect to § and a.. The function g obtained by solving this system is something of an ideal
smoother—it has been constructed by defining exactly what is meant by smoothness, exactly
how much weight to give to the conflicting goals of matching the data and making g smooth,
and finding the function that best satisfies the resulting smoothing objective. The disadvantage
is that the resulting smoother has a rather high rank—its computation requires that we estimate
as many parameters as there are data: except for the case when d = 1 this means that the calcu-
lations require O(n3) operations. See Wahba (1990) or Green and Silverman (1994) for further
information about thin plate splines.

2.1. Constructing an optimal approximating basis

In this section a family of low rank smoothers is constructed by starting from the ideal smooth-
ing problem (8), finding the parameter space basis of a given rank that perturbs this problem
as little as possible and solving the resulting low rank problem. The basis of the unpenalized
functions is left unchanged—since these are the functions of zero wiggliness according to the
measure used, it would make little sense to truncate their basis. I shall concentrate instead on the
basis for the 6 parameter space. The ideal basis would be one that results in minimum change
of both the goodness-of-fit term and the penalty term for any given 8, but of course no single
basis can achieve this for all 8, so less ambitious criteria must be adopted.

To motivate the criteria for choosing a truncated basis, consider the rank k matrix Ty, the
columns of which form a k-dimensional orthonormal basis for the § parameter space, so that
6 = I'y 6 where 6y, is a k-vector. kK must be greater than M. Within the space spanned by I';
problem (8) becomes

minimize |y — ET;6; — Ta||? + A8, T, ET6; subject to T'T;6; = 0.

Defining the rank k matrices E; = ETT"}, and E; = T\ T, ETT, problem (8) can be written
as

minimize ||y — Ex6 — Tar||> + A\6'Ex 8 subject to T'6 = 0 9

where § = T'y 6. An ideal I'y would induce a problem of the form (9) that is as close as possible
to problem (8). To find such a basis requires a definition of what constitutes ‘as close as possible’.

Considering the least squares term first, it is clear that the goal of minimizing the change
in this term for all y and & (or even for those y and é that are consistent with being best fits
according to the objective) cannot be achieved with a single basis selected independently of
the data and parameter values. Instead, for a given 8, I focus on trying to minimize the change
in fitted values (E6 + Ta) caused by substituting E with Ey, the rank deficient approximation
induced by the change and truncation of basis. The basis change and truncation will cause a
change (E — E)é in the fitted values. It is clearly not possible to find a single basis that will uni-
formly minimize this quantity for all §, but a more feasible objective is obtained by weakening
requirements further and seeking to minimize the ‘worst’ possible change:

B I(E — Ep)é||
g =max{ —
870 181

where ||-|| is the usual Euclidean norm. The scaling by ||§]| is necessary to ensure, for exam-
ple, that the resulting smoothers do not have different behaviours when different measurement
scales for y; are used. The intuitive idea is that the basis change and truncation should make
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minimal change to the model fit, although the measure that is used for this necessarily weakens
the intuitive criterion a little.

Turning to the penalty term, similar reasoning suggests that a suitable measure of the worst
possible change introduced by the basis truncation is

ax 5 E — Eé
e = _
S 16112

and again the aim is to choose the basis minimizing this quantity, for a given k. The intuitive
idea is that the basis change and truncation should make minimal change to the shape of the
smooth function as measured by the penalty functional.

Given the goal of simultaneously minimizing e; and &, the appropriate basis to use turns out
to be a truncated eigenbasis of E. Specifically let E = UDU’ where D is a diagonal matrix of ei-
genvalues of E arranged so that |D; ;| > |Djt1,i+1],i = 1,...,n—1, and U is a matrix whose ith
column is the eigenvector corresponding to D; ;. The best basis of rank k is given by Uy (i.e. by
setting I'y = Uy): the first k£ columns of U, which implies that E = E = Uk]~)kU,’{ (= Eg, say).

It is easy to demonstrate that the basis chosen minimizes ¢;. ey = ||E — Eg|», the spectral
norm of E — Ey, (see for example Watkins (1991)). But it is well known that of all rank k matri-
ces Fy, the matrix E; based on truncating the eigenvalues of smallest magnitude in the spectral
decomposition of E, minimizes ||E — Fy||, (see for example Watkins (1991), page 413).

Demonstrating that the basis also minimizes e, is only slightly more involved. First define the
(symmetric) matrix Ay = E — Ej. It is straightforward to produce a square root of Ay, Ak 2,
by taking square roots of the eigenvalues of Ay in its spectral decomposition. This means that

1/2
oo = max 4 1A
60 116112

so thate; = || A,i/ 2 ||2, the squared spectral norm of A,lc/ 2 Since the spectral norm of a matrix is
given by its largest singular value (which here corresponds to the ma nltude ofits largest (magm-
tude) eigenvalue), it is clear from the construction ofA1 that ||A ||2 = | Akll2 = |E—=Exll,
and hence that ¢; is minimized by the same basis that minimizes ;. (This somewhat remarkable
fact is clearly rather special to splines, as is easily verified by considering more general penalized
regression problems.)

So, given the choice of basis, § = Uiy (in which case 6; = U} 6) and the approximation to
problem (8) becomes

minimize |y — UyDy6x — Tax||? + A6, Dy subject to T'Ugé; = 0.

Now find any orthogonal column basis Z; such that T'U;Z; = 0 (QR- or QT -factorization
will provide this easily; see for example Gill ef al. (1981)). Restricting 8y to this space by writ-
ing 6; = Z;6 yields the unconstrained problem that must be solved to fit this ‘best’ rank k
approximation to the smoothing spline:

minimize |y — UgDyZd — Toe||> + \6' Z, D 6

with respect to & and cv. Having fitted the model, evaluation of the spline at any point is easy:
just evaluate & = UiZ;6 and use equation (7). In the rest of this paper I shall often refer to
the parameter vector and design matrix of a thin plate regression spline as 3’ = (6 a’) and
X = (UgDiZg, T) respectively and the wiggliness penalty matrix as S, which will have Z; D Z;
in its top left-hand corner and Os elsewhere, so that the wiggliness penalty is 3'Sg3.
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These thin plate regression splines can be treated as pure regression splines by setting A to 0.
In this case model selection becomes a matter of choosing k, which can be performed either by
criteria like generalized cross-validation (GCV) and the Akaike information criterion (AIC) or
by conventional hypothesis-testing-based model selection, since the columns of Uy _1Dy_1Z;_;
clearly span a subspace of the space spanned by the columns of U;D;Z; (the subspace of the
latter is the intersection of the null space of the constraints and the subspace spanned by U Dy
whereas the subspace of the former is the intersection of the same null space of the constraints
with a subspace of UiDy). Of course the model terms are not orthogonal but, since there is
a natural order in which to consider their deletion from the model, this does not matter for
practical purposes.

Alternatively thin plate regression splines can be treated as penalized regression splines,
in which case the value chosen for k& will not be critical (see Eilers and Marx (1996) for
illustration of this in the case of ‘P-splines’), but should be somewhat larger than the
degrees of freedom believed to be required for the modelling situation concerned. The actual
model degrees of freedom will be controlled by A, which must be selected by some crite-
rion like GCV, generalized maximum likelihood or AIC (see for example Craven and
Wahba (1979), Wahba (1990) and Akaike (1973)) or by considering the spline as a random
effect. In practice £ should probably be increased if the estimated ) is too close to 0: one
pragmatic approach would be to increase k if the estimated degrees of freedom (see Section
3.1) for a thin plate regression spline exceeds some specified proportion (e.g. 0.8-0.9) of the
basis dimension. Note that in the penalized case the penalty (6) has not been replaced by an
approximate penalty: & ZkaZk(S is exactly penalty (6) for any function in the truncated
space.

Tied covariate values are dealt with by simply reducing the data set to one involving only
unique covariate combinations, setting up the thin plate regression spline for this reduced data
set and then duplicating rows of the resulting U Dy Z;- and T-matrices as necessary to model
the full set of data.

This section has presented a way of obtaining approximate thin plate splines, which are suit-
able for incorporation into a wide range of model structures. The approximations are ‘optimal’,
but in a slightly weak sense: the criteria are not minimized subject to the linear restrictions
T'6 = 0 that are applied for model fitting (it is not possible to minimize both criteria simulta-
neously under that restriction). None-the-less, given the good performance of the approximation
reported below, it is useful to know the sense in which the approximation is optimal (and in
practice it was the search for some sort of optimality that led to the approach reported here,
rather than more obvious approaches).

2.2. Computational issues

Discarding the small magnitude eigenvectors of E can only improve the numerical conditioning
of the thin plate regression splines relative to full thin plate splines, but in addition they have
two further computational advantages:

(a) for small data sets they can be implemented very easily using linear algebra routines that
are readily available in standard statistical packages;

(b) for large data sets it is possible to obtain thin plate regression spline bases very efficiently
by using Lanczos iteration.

The first point is best appreciated by examining the steps, given in Appendix A, for implementing
thin plate regression splines by using standard software. Such an approach might be appropriate
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for incorporating smooth functions into a linear, generalized linear or non-linear model of a
relatively small set of data.

For larger data sets the potential computational benefits of the thin plate regression spline
approach relative to full thin plate spline models will only be fully realized if the truncated eigen-
decomposition of E can be calculated in substantially fewer than the O(n?) operations required
for a full eigendecomposition. Lanczos iteration (see for example Demmel (1997)) is a method
which obtains the truncated eigendecomposition in O(kn2) operations, by iteratively building
up a tridiagonal matrix, the eigenvalues of which converge (in order of decreasing magnitude)
to those required, as iteration proceeds. Appendix B gives details of an implementation that is
suitable for use with E. Note, for example, that fitting a thin plate regression spline to 5000 data
using k = 50 will be of the order of 100 times faster using an O(kn?) algorithm as opposed to a
standard O(n?) algorithm.

In the context of very large data sets, even greater computational efficiency could be achieved
by using an approximate eigendecomposition calculated using the Nystrom methods described,
for example, in Williams and Seeger (2001) (see also Smola and Scholkopf (2000) for a related
approach—I am grateful to a referee for pointing this out). However, in such cases it is probably
more straightforward to subsample the data (e.g. to select randomly 1000 data points), to pro-
duce a thin plate regression spline basis for this subsample and to use this basis for the model
of the whole data set.

Finally, note two computational tricks for avoiding poor numerical conditioning. Firstly,
when m > 2, collinearity in the columns of T can be avoided by subtracting the mean from
each covariate, so that each is centred near 0. Secondly, it is worth linearly transforming the
model parameters to ensure that the columns of X have broadly similar average element sizes;
otherwise ‘poor scaling’ of X can sometimes detract from numerical stability.

3. Practical properties: some simulation results

This section provides some straightforward illustrations of the advantages of the thin plate
regression spline approach, relative to the more obvious ‘knot placement’ approaches and to
full spline smoothing.

3.1. Comparison with ‘knot-based’ regression splines
The suggested thin plate regression spline basis allows model selection by using conventional
hypothesis testing approaches in a way that is difficult by using traditional regression splines.
Furthermore, given its theoretical motivation, a thin plate regression spline should be better able
to represent most smooth functions than a smoother based on selecting a small set of ‘knots’
with which to construct a basis.

To illustrate the latter point, 100 random (x, z) points in the unit square were chosen and the
test function

exp{—(x — 0.2)* /03 — (z — 0.3)*/07}

0
fx,2) =
T

XYz

+

exp{—(x — 0.7)%/0% — (z — 0.8)%*/o?} (10)
xYz

was evaluated at each (o, = 0.3 and o, = 0.4). The function was then reconstructed by fitting

these data using a rank 16 thin plate regression spline and a more traditional rank 16 regres-

sion spline. The traditional regression spline was constructed by placing 16 points on a regular
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lattice across the unit (x, z) square and obtaining the basis that would have resulted by fitting
a thin plate spline to response data at these 16 points. This basis was then used to represent
the function to be fitted to the 100 data points from the test function. 16-dimensional bases
were chosen because they allow a favourable regular lattice to be used for the knot-based spline
but are also close to the basis dimension selected by hypothesis testing in the next example in
this subsection. The results are shown in Fig. 1. For this rank of smoother in this example the
thin plate regression spline improves considerably on the knot-based spline. Such differences
become less marked for much higher or lower ranks but, for pure regression spline modelling
(as opposed to penalized regression spline modelling), intermediate ranks are of most interest
(rank 15 is selected for this test function in the next example). The ability of the thin plate
regression spline to represent underlying functions using relatively few parameters should
reduce estimator variances relative to approaches requiring more parameters.

The example shown in Fig. 1 was also repeated with noisy data. 100 parameter sets were
generated at each of seven noise levels. For each replicate, 100 (x;, z;) points were generated
randomly from a uniform distribution on the unit square. Function (10) was evaluated at each
point and perturbed by additive Gaussian noise with standard deviation o. The test function
was reconstructed by fitting a thin plate regression spline and a knot-based spline to each repli-
cate, with the mean-square error (MSE) of reconstruction calculated for both methods (means
taken over the 100 (x;, z;) points). Table 1 summarizes the results in terms of

Amsg = {MSE(knot based) — MSE(TPRS)}/MSE(TPRS).

The final column in Table 1 gives the number of replicates, out of 100, in which the thin plate
regression spline had a lower MSE than the knot-based spline. This comparison is of perfor-
mance in a pure regression context: Section 3.2 also reports comparisons of thin plate regression
and knot-based splines in the context of penalized regression modelling.

Turning to model selection: one approach is to start with a basis that is overparameterized and
to truncate it until the truncated model differs significantly from the overparameterized model
according to a conventional hypothesis test. As an example, data were simulated from function
(10), by randomly choosing 100 (x;, z;) locations in the unit square, and then forming data:

vi = flxi, zp) + &
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Fig. 1. Comparison of alternative reconstructions of the smooth function, using different low rank
spline-based approaches (100 noise-free sample points were randomly placed over the function domain
shown): (a) true function; (b) reconstruction from using a rank 16 thin plate regression spline basis of the type
proposed; (c) reconstruction from using a rank 16 basis constructed by dividing the domain into 16 equal
squares and placing a point at the centre of each—the thin plate spline basis that would result from fitting a
thin plate spline to data at just these 16 points was then used as the model basis (e.g. Wahba (1980))
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Table 1. Results of comparing MSE performance of thin plate and knot-
based regression splinest

o Mean Aysg Minimum Aysg Maximum Aysg Amsg > 0
0 4.85 0.31 22.77 100
0.01 4.68 0.40 16.00 100
0.02 3.34 0.44 20.62 100
0.05 1.32 0.01 5.38 100
0.1 0.42 —0.07 1.76 96
0.2 0.12 —0.31 0.83 71
0.5 0.02 —0.49 0.70 52

TSee Section 3.1 for details.

where the & were independent and identically distributed N(0,0.12). Let rss; denote the
residual sum of squares for the rank k thin plate regression spline model of these data. Testing
the null hypothesis that the rank & basis describes the model generating the data against the
larger alternative that the rank k; basis is appropriate uses the standard result that under the
null hypothesis

(rssg, — 188¢,)/ (k1 — ko)
rssg, /(n —kp)

where n is the number of data. This result depends on the nested nature of the thin plate
regression spline bases of different ranks. In practice, starting from a k; that is larger than is
needed, k¢ is reduced until the above F-ratio is significant at the investigator’s favourite level.
Fig. 2 shows the results of applying this approach with a significance level of 5% to select a
pure thin plate regression spline model for simulated data and compares this with a penalized
thin plate regression spline model of the same data where smoothing parameter (\) selection
was by GCV. k; was set to 40, as was k for the penalized model. GCV selected 22 effective
degrees of freedom for the model (for penalized models effective degrees of freedom are defined
as tr{XX'X+ AS)~! X}, where \is the estimated smoothing parameter; see for example Wahba
(1990)). Significance testing at the 5% level selected 15 degrees of freedom. This sort of difference
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Fig. 2. Comparison of a pure thin plate regression spline selected by analysis of variance and a penalized
thin plate regression spline: (a) true underlying function from which data have been sampled with Gaussian
error (o = 0.1), at the n = 100 randomly chosen sample locations shown; (b) pure regression spline fitted to
the data with the rank (15) of the basis chosen by using conventional F-ratio testing; (c) penalized regression
spline fit to the same data, with the smoothing parameter A chosen by GCV (effective degrees of freedom,
22)
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is expected, since GCV is a mean-square prediction error criterion, whereas hypothesis testing
addresses the question of how simple a model is plausible for a set of data.

3.2. Comparison with ‘full’ spline models
What is gained and what is lost by using thin plate regression splines rather than full thin plate
splines?

One expected gain is computational speed. To illustrate this some timing experiments were
carried out using full generalized smoothing spline models as implemented in R package gss,
and using thin plate regression splines as implemented (by the author) in R package mgcv. The
results are for estimating the GAM (see Section 4)

log(pi) = fi(xi, zi) + fa(wp)

where the response variable y; ~ Poi(y;),i = 1,...,n, and the f] and f; used for simulation
were both quadratics. Timings given are central processor unit seconds (on a PII 400 MHz
computer running Linux). The thin plate penalized regression spline based model used a total
of 50 parameters and all smoothing parameters were estimated by GCV. The results are given
in Table 2.

The 0.25 Gbytes of memory that were available on the test computer were insufficient for
gss above n = 600, so the final gss timing is estimated from the cubic dependence on n. As
expected, the thin plate regression splines produce quite large reductions in the computational
effort required. Partly, this is because the thin plate regression spline calculations are at most
O(kn?), rather than the O(n?) required for generalized smoothing spline models, but the com-
putational saving is actually greater than the simple comparison of leading order terms would
suggest, since the computationally costly model selection algorithm is O(n?) for the generalized
smoothing spline case but only O(nk?) in the thin plate regression spline case.

The obvious expected loss from using thin plate regression splines would be a degradation of
MSE performance. To examine this, experiments were performed using two test functions:

f1(x, 2) = 1.9[1.45 + exp(x) sin{13(x — 0.6)>}] exp(—z) sin(7z)

and
fr(x, 2) = exp[{—(x — 0.25)% — (z — 0.25)%}/0.1]
+0.5exp[{—(x — 0.7)> — (z — 0.7)%}/0.07].

Table 2. Central processor unit times required to fit full thin plate
spline and thin plate regression spline based GAMS+}

n Central processor unit times (s) from the following methods:

Generalized spline smoothing  Thin plate regression spline

100 2.68 1.75
200 11.31 2.82
400 88.07 4.38
600 316.49 6.46
1200 2530% 15.65

+See Section 3.2 for full details.
iEstimated time.
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Each test function was sampled at a set of 200 randomly chosen points in the unit square, and
the function values at these points were perturbed with additive independent normal random
deviates (o = 0.5 for f; and o = 0.05 for f3). 100 replicate data sets were generated for each
model (design points and errors were different for each replicate), and for each replicate the
MSE in reconstructing f; and f, was assessed for a thin plate regression spline, a knot-based
spline and a full thin plate spline. For each replicate the MSE was averaged over all design points.
The basis dimensions for the knot basis and the thin plate regression spline were both 49 for
f1 and 36 for f>, choices made to ensure that the knot basis operated on a favourable square
regular grid, whereas the model-estimated degrees of freedom were below three-quarters of the
basis dimension. For all models the smoothing parameter A was selected by GCV. The full thin
plate spline model was fitted by using R package gss; other models were fitted by using mgcv.
The results are summarized in Table 3.

The first row gives the number of times that the MSE of each competing method was lower
than the MSE of the thin plate regression spline. The thin plate regression spline has superior
performance in most cases. The second row shows the largest MSE difference between the thin
plate regression spline and a competing method when the thin plate regression spline had the
larger MSE. The third row shows the largest difference between a competing method and a thin
plate regression spline when the thin plate regression spline had the smaller MSE. The fourth
row shows the mean difference in MSE between each competing method and the thin plate
regression spline: note that the thin plate regression spline has the lower mean MSE in all cases.
The mean MSE for the thin plate regression spline method was 0.050 for f; and 3.8 x 10~* for
f»>. Table 3 shows that the thin plate regression spline usually has the better MSE performance
and has better MSE performance on average: in the most extreme cases the improvement is
of the same order as the MSE for the thin plate regression spline, whereas the occasional
improvements of the competing methods over the thin plate regression spline are quite modest
in size.

Fig. 3 shows a randomly chosen example comparison of reconstructions of f] using the three
alternative methods. Fig. 4 shows equivalent example comparative reconstructions for f>—for
illustration this shows the worst overfit by the full thin plate spline model obtained in three trial
runs.

At first sight the improvement of the truncated model relative to the full spline model is
counter-intuitive, but it almost certainly reflects the fact that for the full thin plate spline the
degree of model complexity is chosen entirely by GCV, whereas the thin plate regression spline

Table 3. Results of comparing MSE performance of thin plate regression splines with full thin plate
splines and knot-based regression splinest

1 f

Full thin plate spline  Knot basis  Full thin plate spline  Knot basis

Outperformed thin plate 5 30 0 9
regression spline/100

Best MSE advantage 0.0033 0.0075 — 22 %1073

Worst MSE disadvantage 0.18 0.050 22x 1072 1.9 x 1074

Mean MSE difference 0.0091 0.0084 1.7 x 1074 5.5%x 1073

Mean MSE 0.059 0.058 55%x 1074 43 x 1074

tFull details are given in Section 3.2.



106 S. N. Wood

e
=

@
o

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

(c) (d)

Fig. 3. Example reconstructions of the smooth function contoured in (a) from observations of the function
taken at the randomly chosen points plotted in (a) and perturbed with zero-mean normal random deviates with
standard deviation 0.5: (a) true function; (b) penalized thin plate regression spline reconstruction using a 49-
dimensional basis; (c) equivalent reconstruction using a thin plate spline with a 49-knot basis, where the
knots are on a regular 7 x 7 grid; (d) full thin plate spline reconstruction (for (b)—(d) GCV was used to select
the smoothing parameter)

is already restricted to a space of relatively smooth functions: hence the full thin plate spline is
free to overfit the data substantially in a way that the thin plate regresssion spline cannot. For
these examples, where the underlying truth is smooth and any possible reduction in bias that
might be obtainable by using the full thin plate spline is dwarfed by sampling variability, the
thin plate regression spline hence has an advantage.

4. Example: generalized additive models

One obvious use of thin plate regression splines is as a way of efficiently incorporating multi-
dimensional smoothers into GAMs, in a manner that allows statistically well-founded model
selection for such models. GAMs address the problem of modelling response data y; from an ex-
ponential family distribution, in terms of multiple covariates xy;, x2;, x3;, ..., by using a model
structure of the form

g(ui) = o + fi(x) + fa(x2i, x31) + ..., (11)



Thin Plate Regression Splines 107

1.0
1.0

0.8
0.8
1

/ 0.\0‘2 03/
.4

(q_/.
04—
=

0.4

0.2

1.0

0.8

0.4

0.2

0.0

(c) (d)

Fig. 4. Asfor Fig. 3, except that the reconstructions are of the function plotted in (a) and both the knot place-
ment basis and the thin plate regression spline basis were of dimension 36 (the noise standard deviation in
this case was 0.05): this example shows one of the occasional overfits produced by the full spline model with
smoothness selected by GCV

where p; = E(y;), g is a monotonic link function, the f's are smooth functions to be estimated
and «; represents any strictly parametric model components (e.g. a simple constant, or per-
haps a linear term in another covariate or whatever), i.e. the key feature of these models is
that the mean of the response depends on the covariates through a sum of smooth terms, each
of which is a function of only one or a few covariates. Side-conditions are required to ensure
identifiability. To date users of these methods have had a choice between the mathematically
elegant but computationally very costly generalized smoothing spline approach of Wahba, Gu
and co-workers in which the model estimation problem is formulated as a variational problem
in an appropriate reproducing kernel Hilbert space (e.g. Wahba (1990), Gu and Wahba (1993),
Wahba et al. (1995) and Gu (2002)), or of the more ad hoc, but much more efficient, methods
of Hastie and Tibshirani (1990). The generalized smoothing spline approach has the advantage
that it is feasible to select the wiggliness of the components of the GAM by using well-founded
criteria such as GCV, generalized maximum likelihood or AIC, and that model inference has
a solid theoretical underpinning. To maintain computational efficiency, Hastie and Tibshirani
types of GAM rely on more ad hoc approaches to model selection and require a slightly less
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well-founded approach to inference. In practice the much greater computational efficiency of
Hastie and Tibshirani’s approach has meant that it is the more widely used.

The thin plate regression splines provide a means by which it should be possible to retain
many of the advantages of the generalized smoothing spline approach to GAMs in terms of
well-founded model selection and good practical properties deriving from a firm theoretical
basis, while also benefiting from the kind of computational efficiency that characterizes Hastie
and Tibshirani’s approach.

In practice it is straightforward to represent a GAM by producing a thin plate regression
spline basis for each model term. Taking the example of model (11) and assuming that the
parametric term consists only of a constant, then a design matrix X; and wiggliness penalty
matrix S; would be produced for each component smooth function f;. The design matrix for
the whole model is then something like X = (1, X1, X, ...) (where 1 is a column of 1s). Writing
the parameter vector for the ith term as 3; then an appropriate side-condition ensuring model
identifiability would be that the sum of f; evaluated over all observed covariate values should be
0,i.e. 1'X;3; = 0 (where 1 is an appropriate column vector of 1s). Writing 3’ = (&, 3], 35, ...)
(where « is the vector of parameters of the strictly parametric part of the model «;), we have
that the model would be estimated by maximizing the penalized log-likelihood

1B) — 3 2 NBSiB;, (12)

subject to the linear identifiability constraints on 3, where / is the log-likelihood of the model
and the penalty terms penalize model components for being wiggly. Expression (12) is solved
by penalized iteratively reweighted least squares (see for example Wood (2000)), so that, given
the kth estimate of the parameter vector, 8K, B*+11 is found by solving the weighted penalized
least squares problem

minimize WM @K — X3))12 + Z A\iBiSiB;

where zI = X8 + T¥l(y — k1), Wl is a diagonal matrix with W[k] ={J (Mz h2 [k]} 172,
V[k] is the variance of y; accordmg to the estimates ugk], implied by 6 ,and T js a dlag-
onal matrix with I‘[ I = =y (u ) Again, solution is subject to the linear constramts on (3 that
ensure 1dent1ﬁab1hty Estimation of smoothing parameters is performed at each iterate by using
a generalization (Wood, 2000) of the multiple smoothing parameter GCV method of Gu and
Wahba (1991).

As an example of the use of these methods I modelled some fisheries data that were first
analysed using GAMs by Borchers et al. (1997). The response data are densities per metre
squared of sea surface of mackerel eggs produced per day at each of 634 survey locations, along
with covariates at each station. The response data have been gathered from research vessels by
hauling sampling nets vertically through the water column. Some preprocessing was done to
convert the raw data to egg densities produced per day. The purpose of the surveys is to estimate
the total egg production rate, to be able to estimate the total mass of parent fish required to
produce this rate. An important part of the estimation process is the modelling of the egg dis-
tribution. The method is one of the few feasible ways of assessing the size of fish stock without
recourse to commercial fisheries data. The latter tend to suffer from severe biases.

The data to be modelled are shown in Fig. 5(a). Since the modelling of these data is not the
primary purpose of this paper, I shall use a relatively unsophisticated error structure and shall
not discuss model term selection here; rather I shall assume that the important covariates to
consider are seabed depth, distance from the 200 m seabed depth contour, longitude and lati-
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Fig. 5. Raw data and fitted model predictions for the mackerel egg GAM example: (a) raw egg density
(the areas of the circles are proportional to the densities, with the circles being centred on the sample haul
locations); (b) fitted model daily egg production densities

tude. Each of the covariates is available for all 634 egg density estimates. In the original GAM
analysis of these data, Borchers et al. (1997) modelled egg abundance by using a sum of four
univariate smoothers of these four covariates, but there are strong arguments for not modelling
the dependence on longitude and latitude in this way, instead using a bivariate smooth function
of longitude and latitude (given the isotropic nature of thin plate regression splines there is also
an argument for replacing longitude and latitude with co-ordinates on a squarer grid, but to
maintain comparability with the analysis of Borchers et al. (1997) I have not done that here).
Consequently, the model structure used was

Jyi = a+ fi(loj, la;) + fr(c.dist;) + f3(b.depth;) + ¢&;

where the ¢; are independent and identically distributed normal random variables, y; is the ith
observation of egg density produced per day and lo, la, b.depth and c.dist are longitude, latitude,
seabed depth and distance to the 200 m contour respectively. f> and f3 were represented by using
rank 10 thin plate regression spline bases, whereas f] used a rank 50 thin plate regression spline
basis. The square-root transform was employed to stabilize variances. Using the mgcv package
this model was fitted with the command

mack.mod<-gam(y0.5 7 s(lo,la,k=50)+s(c.dist)+ s (b.depth),data =mack)

Fig. 6 shows the estimated model terms, whereas Fig. 5(b) contours the fitted model egg
density daily production estimates (the plots in Fig. 5 are essentially those produced by us-
ing plot.gam from mgcv: plot (mack.mod), although Fig. 5(b) has been modified). The
plotted confidence intervals are obtained by using the approximation that the parameter esti-
mators are normally distributed about their true values, with a covariance matrix that can be
estimated as

Z(Z/X'WXZ + S NZ'SiZ) ™' 7/ 62,
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Fig. 6. Estimated model terms for the mackerel egg GAM: (a) smooth function of seabed depth and 95%
confidence limits; (b) smooth function of distance from the 200 m contour and its 95% confidence limits;
contours of the smooth function of longitude and latitude and sample locations

where Z is a column basis for the null space of the identifiability constraints on the model,
&* = IW@z —XB)|I* /(L — A)
and
A =XZZXWXZ+ S NZ'SiZ)~ ' 2/X'W?,

all quantities being estimated at convergence of the iterative fitting procedure. This is based
on a Bayesian argument (see Silverman (1985) and Wood (2000)), and the resulting confidence
intervals are quite similar to those proposed by Wahba (1983).

5. Discussion

The thin plate regression splines proposed here meet the objectives that were set out in Section 1.
For penalized regression modelling they provide optimal low rank approximations to thin plate
splines that are both computationally efficient and stable. In pure regression contexts they also
provide a way of avoiding the problems of knot placement, while allowing model selection to
be carried out by using methods that are dependent on model nesting.

This computational efficiency and stability should be beneficial when non-linear models are
employed which contain embedded smooth functions (see Wood (2000), section 5, for example).
As demonstrated in Section 4, the method provides a computationally efficient way of incor-
porating multidimensional smooth terms into GAMs, in a way that facilitates the well-founded
approaches to model selection and inference characteristic of the generalized smoothing spline
models of Gu, Wahba and co-workers (e.g. Wahba (1990), Wahba et al. (1995) and Gu (2002)),
but with the considerable practical advantage of greatly enhanced computational efficiency (see
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Section 3.2). It would also be straightforward to incorporate thin plate regression spline based
smoothers directly into Hastie and Tibshirani’s GAM framework, and by using pure (rather
than penalized) thin plate regression splines GAMs could also be constructed entirely within a
generalized linear model framework.

There are some interesting open questions relating to thin plate regression splines. Firstly, the
sense in which a thin plate regression spline is optimal is slightly weak: one could argue that the
measures of approximation error are formulated in too large a space. It is not clear whether it is
possible to produce more strongly optimal approximations, although the structure of the prob-
lem suggests that it is unlikely that stronger results are possible if any computational advantage
over full spline models is to be maintained. In response to this a referee suggested concentrating
on only one of & or ¢, but working in the space where T'6 = 0, which implies setting T’y to
the first k& right singular vectors of EZ, (ordered by decreasing singular values) or to the first
k eigenvectors of Z, EZ, (ordered by decreasing eigenvalues) respectively. This has the appeal
that the optimality criterion is now in the ‘correct’ space, and in limited numerical simulations
for them = 1, d = 1 case the results are rather similar to the thin plate regression spline results:
the modified ¢, basis tends to give slightly more smooth but slightly worse fitting results, where-
as the modified g; basis gives slightly better fitting but more wiggly estimates. Computational
costs are doubled by use of the modified ¢; basis (each Lanczos step requiring a vector to be
multiplied by EZ,, and its transpose) but are almost unchanged by using the modified ¢; basis.
In a pure regression context both alternative bases are even easier to use than the thin plate
regression spline basis since reducing the order of the model function is now a simple matter
of dropping design matrix columns. However, the minimization of either g; or ¢, alone is not
a satisfactory way of arriving at an optimal basis in general: minimizing the change in fitted
values without regard to a change in the function norm has the potential to lead to very wiggly
results, whereas concentrating solely on avoiding big changes in the function norm can result in
a poor fit. This is perhaps most readily appreciated by considering a cubic or thin plate spline
parameterized directly in terms of the function values f, corresponding to the response data y,
so that the fitting problem is to minimize ||y — f||2 + M’Sf, where S is a positive semidefinite
matrix—it is clear that an approach based solely on a suitably modified g criterion is unlikely
to result in a useful truncation here. The likely explanation for the relatively good performance
of the bases derived from applying the modified e or & criteria singly to the thin plate spline in
its standard parameterization is that the resulting truncated bases in fact almost minimize the
neglected criterion in each case, but it is not obvious how to formalize this statement.

Another open question relates to the automatic selection of the basis dimension k in the
penalized regression context. If k is not too small then model results should be rather insensitive
to its value: practical experience to date suggests that this is so, in which case the pragmatic ap-
proach suggested in Section 2.1 is a reasonable approach to adopt. Nevertheless it would be more
satisfactory to have some theoretical guidance on this point. A further open issue is the question
of when we might want to use a knot-based penalized regression spline, rather than the eigenbasis
proposed here. Purely on computational grounds a knot-based scheme should be more efficient
because it does not require a truncated eigendecomposition to be obtained. In principle the
computational saving could be ‘spent’ on more knots, in which case the knot-based scheme
might approach or exceed the eigenbased scheme in terms of MSE performance: however,
for models with multiple smoothing parameters or those requiring an iteratively reweighted
least squares method for fitting, I found that the eigenbased models tended to converge faster
than the knot-based models for a given basis dimension. If this is a general phenomenon then
it clearly deserves further study. In any case the optimal solution in terms of performance for a
given amount of computing effort is probably to select a set of knots that is intermediate in size
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between the number of data and the desired number of parameters and to obtain a thin plate
regression spline basis from this set of knots.

Finally there is the issue of anisotropy. A thin plate regression spline is an isotropic smoother,
which is appropriate for spatial co-ordinates, for example, but may not be as suitable if the
arguments of the smoother are covariates measured in different units. One could adopt the
approach, taken with many smoothing methods, of rescaling covariates to lie in the unit square,
cube or hypercube, but this is essentially arbitrary (when used with all methods, not just splines).
In principle the problem could be approached in a non-arbitrary way, by treating the relative
scaling of axes as extra smoothing parameters in the problem (see for example Wood (2000)),
and work on the production of a general method for doing this is on going.

Thin plate regression splines are available as part of the author’s R package mgcv, available
from www.cran.r-project.org. The package includes full source code in C.
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Appendix A: Implementation by using standard software

Here are the steps required to construct a rank k basis for smoothing.

(a) Form the n x n matrix E and the n x M matrix T defined in Section 2.

(b) Obtain the truncated spectral decomposition E, = U;D,Uj, by the use of any standard eigen-
routines to find the full spectral decomposition of E.

(c) Using standard routines, form the QR-decomposition QR = U; T where the last n — M rows of R
are 0 and Q is orthonormal. Then the final n — M columns of Q give Z, the basis for the null space
of the equality constraints. If efficiency matters then Z; can be stored as M Householder rotations
(see for example Watkins (1991)). »

(d) Writing the parameter k-vector of the thin plate regression spline as 3 = (6 , &), then the n x k
design matrix for the thin plate regression spline is X = (U;D;Z;, T). Similarly the penalty matrix
for using this thin plate regression spline in penalized regression would be

S— (Z}chZk 0)
0 0
where the padding with zero matrices is for notational convenience.

(e) To fit a pure thin plate regression spline to response data y, ||y — X3||> is minimized with respect to
3, whereas the incorporation of the thin plate regression spline into any generalized linear model
is simply a matter of incorporating the thin plate regression spline design matrix into the generalized
linear model design matrix.

(f) To fit a penalized thin plate regression spline requires minimization of

ly — X8I+ \8'SB

with respect to 3, given a value for the smoothing parameter .

The evaluation of any bounded linear functional of g is self-evidently linear in (5/, o), with the coef-
ficients easily obtained given Z;, D, and U;. For example g(x) can be written g(x) = a’§ + b’ where a;
and b; are known coefficients, depending only on x:

@ = zl Mna (1% = X;11) (UeZy) ;.
=
b; = ¢i(x).
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Appendix B: Lanczos iteration

(In this appendix only E refers to the same quantity that it refers to in the main body of the paper.) The
Lanczos algorithm is iterative, and at the ith iteration produces an (i x i) symmetric tridiagonal matrix
(T, say), the eigenvalues of which approximate the i largest magnitude eigenvalues of the original matrix:
these eigenvalues converge as the iteration proceeds, with those of largest magnitude converging first. The
eigenvalues and vectors of T; can be obtained in order i> operations (using the usual Q R-algorithm to
find the eigenvalues and then inverse iteration to find the eigenvectors); however, the inverse iteration
appears to be insufficiently stable in some cases, so it is probably preferable simply to accumulate the
eigenvectors as part of the QR-algorithm at a cost of order i*. The eigenvectors of the original matrix
are easily obtained from the eigenvectors of T;. A complete version of the algorithm, which is suitable for
finding the truncated decomposition of E, is as follows.

(a) Let b be an arbitrary non-zero n-vector: it may be best to initialize this from a simple random-
number generator, to reduce the risk of starting out orthogonally to some eigenvector (exact
repeatability can be ensured by starting from the same random-number generator seed).

(b) Setq; < b/||b]|.

(c) Repeat steps (d)—(1) for j = 1,2, ... until enough eigenvectors have converged.

(d) Formz « Egq;.

(e) Calculate a; < qz.

(f) Reorthogonalize z to ensure numerical stability, by performing the following step twice:

J

1
(Z'q)q;.

1ez-3
i=1
(g) Setf; < |z|.
(h) Setqi1 < z/8;.
(i) LetT; be the (j x j) tridiagonal matrix with a1, ..., a; on the leading diagonal and fi, ..., 8-

on the leading subdiagonals and superdiagonals.

() [Ifiteration has proceeded sufficiently far to make it worthwhile, find the eigendecomposition (spec-
tral decomposition) T; = VAV’, where columns of V are eigenvectors of T; and A is diagonal with
eigenvalues on the leading diagonal.

(k) Compute ‘error bounds’ for each A, ;: |5,V .

() Use the error bounds to test for convergence of the k largest magnitude eigenvalues. Terminate the
loop if all have converged.

(m) The ith eigenvalue of E is A; ;. The ith eigenvector of E is Qv;, where Q is the matrix whose columns
are the q; (for all j calculated) and v; is the ith column of V (again calculated at the final iteration).
Hence D, and U, can easily be formed.

This algorithm is stabilized by orthogonalization against all previous vectors q;: several selective or-
thogonalization schemes have been proposed to reduce the computational burden of this step, but I
experienced convergence problems when trying to use these schemes with E, especially in the one-
dimensional case (d = 1): in any case the computational cost of the method is dominated by the O(n?)
step z < Eq;, so the efficiency benefits of using a selective method are unlikely to be very great, in the
current case (if E were sparse then selective methods would offer a benefit).

Finally note that E need never be formed and stored as a whole: it is only necessary that its product with
a vector can be formed. It is this feature that suggests that thin plate regression splines could be used on
very large data sets without causing storage problems. For a fuller treatment of the Lanczos method see
Demmel (1997), from which the algorithm given here has been modified.
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