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1 Splines, regression splines

1.1 Splines

• Smoothing splines, like kernel regression and k-nearest-neigbors regression, provide a flexible
way of estimating the underlying regression function r(x) = E(Y |X = x). Though they can be
defined for higher dimensions, we’ll assume for simplicity throughout that X ∈ R, i.e., there
is only one predictor variable

• Before introducing smoothing splines, however, we first have to understand what a spline is.
In words, a kth order spline is a piecewise polynomial function of degree k, that is continuous
and has continuous derivatives of orders 1, . . . k − 1, at its knot points

• Formally, a function f : R→ R is a kth order spline with knot points at t1 < . . . < tm, if

– f is a polynomial of degree k on each of the intervals (−∞, t1], [t1, t2], . . . [tm,∞), and

– f (j), the jth derivative of f , is continuous at t1, . . . tm, for each j = 0, 1, . . . k − 1.

Splines have some very special properties are have been a topic of interest among statisticians
and mathematicians for a long time

• The most common case considered is k = 3, i.e., that of cubic splines. These are piecewise
cubic functions that are continuous, and have continuous first, and second derivatives. Note
that the continuity in all of their lower order derivatives makes splines very smooth. A bit
of statistical folklore: it is said that a cubic spline is so smooth, that one cannot detect the
locations of its knots by eye!

• How can we parametrize the set of a splines with knots at a given set of points t1, . . . tm? The
most natural way is to use the truncated power basis, g1, . . . gm+k+1, defined as

g1(x) = 1, g2(x) = x, . . . gk+1(x) = xk,

gk+1+j(x) = (x− tj)k+, j = 1, . . .m.

Here x+ denotes the positive part of x, i.e., x+ = max{x, 0}

• While these basis functions are natural, a much better computational choice, both for speed
and numerical accuracy, is the B-spline basis. This was a major development in spline theory
and is now pretty much the standard in software; we won’t cover these, but it doesn’t hurt to
be aware of them
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1.2 Regression splines

• So, what can you do with splines? Well, for one, we can perform regression on them! In other
words, given samples (xi, yi), i = 1, . . . n, we can consider estimating the regression function
r(x) = E(Y |X = x) by fitting a kth order spline with knots at some prespecified locations
t1, . . . tm

• This means considering functions of the form
∑m+k+1

j=1 βjgj , where β1, . . . βm+k+1 are coeffi-
cients and g1, . . . gm+k+1, are the truncated power basis functions for kth order splines over
the knots t1, . . . tm

• The coefficients β1, . . . βm+k+1 above are just estimated by least squares. That is, we first find
β̂1, . . . β̂m+k+1 to minimize the criterion

n∑
i=1

(
yi −

m∑
j=1

βjgj(xi)
)2
, (1)

and then define the regression spline

r̂(x) =

m+k+1∑
j=1

β̂jgj(x)

• The expression in (1) looks more familiar after a change in notation. Write y = (y1, . . . yn) ∈
Rn, and define the basis matrix G ∈ Rn×(m+k+1) by

Gij = gj(xi), i = 1, . . . n, j = 1, . . .m+ k + 1.

(I.e., the jth column G gives the evaluations of gj over the points x1, . . . xn.) Then we can
rewrite the criterion in (1) as

‖y −Gβ‖22. (2)

Of course, from what we know about linear regression, the optimal coefficients are

β̂ = (GTG)−1GT y

• Regression splines are linear smoothers. To see this, denote g(x) = (g1(x), . . . gm+k+1(x)), and
then the regression spline estimate at x is

r̂(x) = g(x)T β̂ = g(x)T (GTG)−1GT y,

a weighted combination of yi, i = 1, . . . n (where the weights are given by the components of
G(GTG)−1g(x))

• Regression splines are a classic tool, and can work well provided we choose good knot points
t1, . . . tm; but in general choosing knots is a tricky business. This is the beauty behind smooth-
ing splines—with them, we don’t have to choose knots! Before discussing them, we have to
take a little detour, though, to learn that they operate on a slightly different kind of piecewise
polynomial

1.3 Natural splines

• One problem with regression splines is that the estimates tend to display erractic behavior,
i.e., they have high variance, at the boundaries of the domain of x1, . . . xn. This gets worse as
the order k gets larger
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• A way to remedy this problem is to force the piecewise polynomial function to have a lower
degree to the left of the leftmost knot, and to the right of the rightmost knot—this is exactly
what natural splines do. A natural spline of order k, with knots at t1 < . . . < tm, is a piecewise
polynomial function f such that

– f is a polynomial of degree k on each of [t1, t2], . . . [tm−1, tm],

– f is a polynomial of degree (k − 1)/2 on (−∞, t1] and [tm,∞),

– f is continuous and has continuous derivatives of orders 1, . . . k− 1 at its knots t1, . . . tm.

It is implicit here that natural splines are only defined for odd orders k. The most common
case: k = 3, i.e., cubic natural splines, which are linear beyond the boundaries

• Note that there is a variant of the truncated power basis for natural splines (and a variant
of the B-spline basis for natural splines). This time, though, we only need m basis functions,
g1, . . . gm, to span the space of kth order natural splines with knots at t1, . . . tm

1.4 Smoothing splines

• Smoothing splines are an interesting creature: these estimators perform (what we will come
to know as) a regularized regression over the natural spline basis, placing knots at all points
x1, . . . xn. Smoothing splines circumvent the problem of knot selection (as they just use the
inputs as knots), and simultaneously, they control for overfitting by shrinking the coefficients
of the estimated function (in its basis expansion)

• We will focus on cubic smoothing splines (though they can be defined for any odd polynomial
order). We consider functions of the form

∑n
j=1 βjgj , where g1, . . . gn are the truncated power

basis functions for natural cubic splines with knots at x1, . . . xn. Specifically, the coefficients
are chosen to minimize

‖y −Gβ‖22 + λβT Ωβ, (3)

where G ∈ Rn×n is the basis matrix defined as

Gij = gj(xi), i, j = 1, . . . n,

and Ω ∈ Rn×n is the penalty matrix defined as

Ωij =

∫
g′′i (t)g′′j (t) dt, i, j = 1, . . . n.

Given the optimal coefficients β̂ minimizing (3), the smoothing spline estimate at x is defined
as

r̂(x) =

n∑
j=1

β̂jgj(x)

• The exact form of the penalty matrix Ω is actually not so important. What you should pay
attention to is that there is an extra term λβT Ωβ in (3) compared to the usual criterion (2)
for regression splines; this is called a regularization term, and it has the effect of shrinking the
components of the solution β̂ towards zero. The parameter λ ≥ 0 is a tuning parameter, often
called the smoothing parameter, and the higher the value of λ, the more shrinkage

• Recall that each computed coefficient β̂j corresponds to a particular basis function gj . The
term βT Ωβ in (3) imparts more shrinkage on the coefficients β̂j that correspond to wigglier
functions gj . Hence, as we increase λ, we are shrinking away the wiggler basis functions
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• Similar to least squares regression, it may (should) not surprise you that the coefficients β̂
minimizing (3) are

β̂ = (GTG+ λΩ)−1GT y.

Again, then smoothing splines are seen to be linear smoothers. With g(x) = (g(x1), . . . g(xn)),
we have

r̂(x) = g(x)T β̂ = g(x)T (GTG+ λΩ)−1GT y,

which is linear combination of the points yi, i = 1, . . . n

• What makes smoothing splines even more interesting is that they can be alternatively mo-
tivated directly from a functional minimization perspective. Consider minimizing, over all
functions f ,

n∑
i=1

(
yi − f(xi)

)2
+ λ

∫ (
f ′′(x)

)2
dx. (4)

This criterion trades off the least squares error of f over (xi, yi), i = 1, . . . n, with a regular-
ization term that grows large when the second derivative of f is wiggly. Remarkably, it so
happens that there is a unique function minimizing this criterion, and further, this function is
exactly the cubic smoothing spline estimator r̂ defined above!

• A practical note: smoothing splines often deliver similar fits to those from kernel regression.
However, they are in a sense simpler. Yes, both have a tuning parameter—the bandwidth h
for kernel regression, and the smoothing parameter λ for smoothing splines—which we would
typically need to choose by cross-validation. But that’s it for smoothing splines, i.e., we don’t
require a choice of kernel. Also, it should be noted that smoothing splines are generally much
more computationally efficient (this will be true when you use software that employs the B-
spline basis, which is the case in R)
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