
Mengxhi was asking in class why the SE’s for the terms generated by poly() were identical.

For background on exactly what the poly() function does, see the long answer starting with the bold faced heading
”Raw Polynomials” at

https://stackoverflow.com/questions/19484053/what-does-the-r-function-poly-really-do

The key point is that poly(x,p) generates a basis (new set of columns of the X matrix) for the same set of models as
x, x2, x3, ...xp, with the following properties:

1. Each new column in the basis has length 1

2. The columns are orthogonal to each other

3. All the columns are orthogonal to the column of 1’s that is needed for the intercept in the model

This means we take the original matrix X for the polynomial terms
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and replace it with

Xpoly =
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... o1 o2 · · · op
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where the columns o1, o2, . . . , op satisfy

1. ||o j|| =
√

oT
j o j = 1 for all j = 1, . . . , p

2. oT
j ok = 0 whenever j , k

3. oT
j 1 = 1T o j = 0 for all j

(for details on where the columns o j’s come from, see the stackoverflow answer above).

Now when we fit lm(y ∼ Xpoly) [which is the same as lm(y ˜ poly(x, p)], the standard errors for the β̂’s will be the
square roots of the diagonal elements of our old friend from the matrix algebra of multiple regression, (XT

polyXpoly)−1s2

Let’s see what this is:
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=



n 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
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0 0 0 · · · 1


,

using the three properties of the columns o j that we listed above.

So (XT
polyXpoly)−1 will be

(XT
polyXpoly)−1 =



1
n 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...
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Therefore, picking off the diagonal elements of the formula Var(β̂) = (XT

polyXpoly)−1s2 you can see that

Var(β̂0) = 1
n s2

Var(β̂1) = s2

Var(β̂2) = s2

...

Var(β̂p) = s2

Since all the β̂ j’s (except for β̂0) have the same variances, they will also have the same SE’s (square roots of the
variances).

(and so... matrix algebra helps us understand a curious result when we fit models with poly(x,p)...)

hope this helps,

-BJ
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