
Analyzing Fixed and Random E↵ects of Musical Predictors on
Classical and Popular Music Stimulus Ratings

Je↵rey Ho
⇤

jmho@andrew.cmu.edu

8 December 2019

Abstract

Instruments, harmonic motion, and voice leading are often seen as three main predictive
factors that di↵erentiate major genres of music. Given a sampling of song features and test
subjects’ musical backgrounds from Ivan Jimenez at the University of Pittsburgh, we will use
exploratory data analysis, model fitting, and various statistical criteria to determine any associ-
ations between predictors in the musical data set provided data with classical and popular song
stimula, as well as whether these results change between musicians and non-musicians. Through
this analysis, we will justify our models’ accuracy robustness based on prior intuition of musical
genre di↵erences and significance testing between various models we create.

1 Introduction

Visiting University of Pittsburgh composer and musicologist Ivan Jimenez and a student of his
designed an experiment to discover associations between predictors such as instrument, harmonic
motion, and voice leading on how listeners perceive classical and popular music. Primarily, they
wanted to investigate how these three main factors a↵ect classical and popular stimuli.

Additionally, Jimenez wants to determine whether the harmonic motion I-V-vi has a strong
associating with classical ratings due to its prevalence in classical pieces such as Pachebel’s Canon
in D, despite many popular songs in the last ⇠20 years using such a progression (in songs such
as Paravonian’s Axis of Evil). He also hypothesizes that contrary motion is commonly a strong
predictor of classical ratings, as it historically has been a common voice leading among classical
music.

Secondarily, Jimenez would like to determine whether musicians and non-musicians classify
classical music, and whether these results are sensitive to how we choose to dichotomize whether
one is a musician.

Finally, Jimenez would like to know whether the covariates provided as measures from his
data collection di↵er between predicting classical and popular stimuli. If stimulus ratings do di↵er
between classical and popular songs, then simply acknowledging the di↵erences in covariates that
predict each stimulus can provide a more quantifiable metric for classifying such music.
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2 Methods

2.1 Data Collection and Processing

First, we would like to determine if we want to perform any transformations on our variables. It is
important to note that all of our variables are discrete other than OMSI, X16.minus.17, and NoClass
(number of music classes taken). For reference, table 1 contains the list of predictors provided in
our dataset:

Table 1: Variable definitions for Music Rating data from Ivan Jimenez, Univeresity of Pittsburgh.

Since we know that there are NA values associated with our data, we want to determine if we
can simply eliminate all rows with NA values. We see this is not possible, because not only do some
ratings inherenly not have values associated with them (ie. X2ndInstr, APTheory, etc.), but if we
were to discard every single row with an NA value, then we’d only be left with 180 rows out of
2520.

Because we are trying to predict classical and popular stimuli, we can eliminate any rows
in which the stimulus rating for both classical and popular are NA. Additionally, based on one
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examination of the unique values in our data, it appears that the value 19 may be either an outlier,
unclean data, or another category we were not specified of beforehand, so we eliminate these values
as well. We eliminate X1stInstr and X2ndInstr due to having many NA values (1512 and 2196),
and then remove all rows NA values in the table afterward.

We won’t be transforming any variables because they are all discrete, and transforming any
variable in our dataset would make it more di�cult to interpret in any model. 1

2.2 Modeling Methodology

To determine optimal models predicting both classical and popular ratings, we can systematically
test for fixed e↵ects by adding a multitude of fixed e↵ects to a model predicting ratings, and then
reduce them with a criterion like AIC. Once we have a series of fixed e↵ects that we’ve found to
be significant, we can add random e↵ects one by one through the use of R’s lmer function. To test
the significance of our random e↵ect, we can compare AIC values or make REML false in our lmer
models and use R’s ANOVA function.

More specifically, to determine which predictors’ levels are most significant, we can do this by
eliminating the intercept of our best model. This will allow us to see the individual e↵ects of each
level of a predictor and compare t-values in a standardized manner.

To determine both whether any dichotomization of musician e↵ects the responses as given by
our predictors, we can create multiple dichotomizations, find our best model, and interact each
term with musicians. If we take every fixed e↵ect and include their interaction with musicians and
reduce the model with a criterion like AIC, then we are left with fixed e↵ects that are significant,
any any term with an interaction with musician is influenced by whether one is a musician. Finally,
we can add random e↵ects one by one, conditioned on musician, and keep significant random e↵ects
in our model. Any di↵erences between models depending on our dichotomization of musician will
determine how sensitive our models and predictors are to how we dichotomize.

3 Results

3.1 Influences of Instrument, Harmonic Motion, and Voice Leading on Ratings

Firstly, Jimenez proposes that song scores may be influenced by three main factors of a song: the
instrument, harmonic motion, and voice leading. More specifically, he hypothesizes that instrument
has the strongest influence among these three predictors.

To determine the validity of this claim, we can begin by determining adding all interactions
between these three variables as fixed e↵ects on scores, and then eliminating the predictors in which
their inclusion doesn’t significantly improve the variance explained by their model with a criterion
like AIC2. If instrument ends up being the most significant predictor of both types of scores, then
Jimenez’s claim will be successfully verified.

When we step backwards from a full model that includes all interactions between instrument,
harmonic, motion, and voice leading in predicting classical scores with AIC as or criterion, we
find that only instrument, harmonic motion, voice leading, and the interaction between harmony

1
Just to gauge distributions of our variables, we plot bar charts of the distributions on pages 1-4 of the code

appendix
2
A more detailed process of this can be found in the Code Appendix, pages 14-27 for our model predicting classical

scores, and 39-47 for our model predicting popular scores.
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and voice are statistically significant. The coe�cients pertaining to the model we obtained when
backward stepping from our full model are listed in Table 2 (for simplicity, we eliminated the
intercept term to catch the direct a↵ects of each variable):

Table 2: Coe�cients of classical score model obtained from backward-stepping all interactions
between instrument, harmonic motion, and voice leading

For each categorical variable, we can interpret the coe�cient associated with its linear e↵ect on
classical scores as follows:

• Holding all else constant, if the instrument in the song is a [insert category of instrument ],
then the rating of how classical the stimulus sounds would increase by [coe�cient of Estimate

”Instrument” in Table 2] in expectation.

• Holding all else constant, if the harmonic motion in the song is [insert category of harmonic

motion], then the rating of how classical the stimulus sounds would increase by [coe�cient of

Estimate ”Harmony” in Table 2] in expectation.

• Holding all else constant, if the voice leading in the song is [insert category of voice leading ],
then the rating of how classical the stimulus sounds would increase by [coe�cient of Estimate

”Harmony” in Table 2] in expectation.

• Holding all else constant, if the instrument in the song is a [insert category of voice leading ],
then the rating of how classical the stimulus sounds would increase by [coe�cient of Estimate

”Voicepar” in Table 2] in expectation.

• Holding all else constant, if the harmonic motion in the song is [insert category of harmonic

motion], then the rating of how classical the stimulus sounds would increase by an additional
[coe�cient of Estimate ”harmony:voice” in Table 2] in expectation if the voice leading in the
song is [insert category of ”Voicepar”].

From the t-values in Figure 2, when standardizing errors associated with each coe�cient in
our model, the t-values which are most significant are those for instrument (only values with
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Pr(> |t|) < 2⇥ 10�16). As a result, it is fair to conclude that out of instrument, harmonic motion,
and voice leading, instrument is the most significant predictor.

Similarly, we use the above procedure to create a model predicting popular scores against all
significant predictors between instrument, harmonic motion, voice leading, and all interactions
between these three variables. By backward-stepping with AIC, we obtain a model that predicts
popular scores against only instrument. Our model’s coe�cients for predicting popular scores is
show in Table 3:

Table 3: Coe�cients of popular score model obtained from backward-stepping all interactions be-
tween instrument, harmonic motion, and voice leading

The interpretation of coe�cients in our model predicting popular scores from instrument is the
same as that of classical scores, and is as follows:

• Holding all else constant, if the instrument in the song is a [insert category of instrument ],
then the rating of how popular the stimulus sounds would increase by [coe�cient of Estimate

”Instrument” in Table 3] in expectation.

As a result, since we can conclude that instrument is the most significant predictor of both clas-
sical and popular scores, we can a�rm Jimenez’s hypothesis that among the three main predictors,
instrument has the strongest influence on scores.

NOTE: For the next parts, we will analyze each predictor or condition based on our best-fitting
models of classical and popular music on the rest of our predictors.

3.2 E↵ects of Harmonic Motion and Voice Leading in Classical Music Ratings

Harmonic Motion
Additionally, we would like to determine whether out of our levels of harmonic motion, the

”I-V-VI” motion has a strong (or the strongest) association with classical ratings, and whether this
is influenced on whether one is familiar with Pachelbel’s rant.

To do this, we create a model predicting classical scores from combinations of fixed and random
e↵ects of our predictors and check whether harmonic motion is significant, the ”I-V-VI” motion
has a strong association with classical ratings, and the interaction term between harmonic motion
and knowledge of Pachelbel’s rant is significant.

After testing for the significance of both fixed and random e↵ects of numerous predictors, our
best model predicts classical scores from fixed e↵ects of Instrument, Harmonic Motion, Voice, Being
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a self-declared musician, concentration on notes, knowledge of Pachelbel Rant, whether one took
AP Music Theory, how well one plays piano, and how well one plays guitar, as well as the random
e↵ects of an intercept, Instrument, Harmony, and concentration on notes conditioned on subject.
A table of coe�cients of this model is provided in Table 4:

6



Fixed E↵ects

Random E↵ects

Random E↵ect Variance
(Intercept) 0.5127
Instrumentpiano 1.9496
Instrumentstring 3.6977
HarmonyI-V-IV 0.1830
HarmonyI-V-VI 1.4175
HarmonyIV-I-V 0.1952
APTheory1 0.8914

Table 4: Coe�cients of best model predicting classical scores from relevant predictors
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We can interpret our fixed e↵ects as follows:

• Holding all else constant, if the instrument in the song is a [level within a predictor ], then the
rating of how classical the stimulus sounds would increase by [coe�cient of estimate in Table

4] in expectation.

and our random e↵ects as below3:

• Holding all else constant, the random e↵ects of our intercept conditioned by subject is drawn
iid from a normal distribution (ie. etaj ⇠ N(0, ⌧2), where ⌧2 = 0.5095)

• Holding all else constant, the random e↵ects of instrument conditioned by subject is drawn
iid from a normal distribution (ie. etaj ⇠ N(0, ⌧2), where ⌧2 = 1.9394) if our instrument is a
piano rather than a guitar.

• Holding all else constant, the random e↵ects of instrument conditioned by subject is drawn
iid from a normal distribution (ie. etaj ⇠ N(0, ⌧2), where ⌧2 = 3.6935) if our instrument is
another string instrument rather than a guitar.

• Holding all else constant, the random e↵ects of harmony conditioned by subject is drawn iid
from a normal distribution (ie. etaj ⇠ N(0, ⌧2), where ⌧2 = 0.1618) if our harmony is I-V-IV
rather than a I-IV-V

• Holding all else constant, the random e↵ects of harmony conditioned by subject is drawn iid
from a normal distribution (ie. etaj ⇠ N(0, ⌧2), where ⌧2 = 0.1585) if our harmony is I-V-VI
rather than a I-IV-V

• Holding all else constant, the random e↵ects of harmony conditioned by subject is drawn iid
from a normal distribution (ie. etaj ⇠ N(0, ⌧2), where ⌧2 = 0.1909) if our harmony is IV-I-V
rather than a I-IV-V

• Holding all else constant, the random e↵ects of AP Music Theory conditioned by subject is
drawn iid from a normal distribution (ie. etaj ⇠ N(0, ⌧2), where ⌧2 = 0.9495) if the subject
took AP Music Theory

Holding all else constant, self-declaration decreased with higher ratings of whether one is a
musician and higher concentration on notes when predicting classical scores. In contrast, if the
song’s instrument wasn’t a guitar, someone taking AP Music Theory, playing the piano, knowing
of Rob Paravonian’s Pachelbel Rant, and playing the guitar at an intermediate level generally
increased classical scores.

From this initial model, harmonic motion is a significant predictor in modeling classical scores.
Based on the model, the ”I-V-VI” harmonic motion is a strong predictor, with the highest stan-
dardized t-value out of the harmonic motion levels (t-score=3.66). 4.

We can see that while both harmonic motion and knowledge of Pachebel’s rant are significant
predictors, their interaction is not significant. After running an ANOVA test comparing models

3
Note: the random e↵ects added onto each fixed e↵ect can be interpreted as an additional change ⌘j increase on

popular stimulus rating directly conditioned on the subject, holding all else constant.
4
To see computation of significance in adding Harmony:KnowRob as a predictor and associated t-values, see pages

22-27 in the code appendix

8



with and without the interaction between harmonic motion and knowledge of Pachebel’s rant, the
probability of obtaining a chi-square value greater than the one we see in our model is 0.285, per
Table 5:

DF AIC BIC logLik deviance Chisq Chi Df Pr(¿Chisq)
Reduced Model 56 6202.0 6501.0 -3045.0 6090.0
Full Model 62 6206.6 6537.7 -3041.3 6082.6 7.3951 6 0.2858

Table 5: ANOVA Test for significance of interaction between Harmonic Motion and Knowledge of
Pachebel’s Rant

As a result, we can conclude that the ”I-V-VI” motion has a strong association with classical
ratings, and this association is not influenced on whether one is familiar with Pachelbel’ rant.

Voice Leading
Furthermore, we would like to determine whether out of our levels of Voice Leading, contrary

motion has a strong (or the strongest) association with classical ratings.
Above, we created a model predicting classical scores from fixed and random e↵ects of relevant

predictors, and the coe�cients pertaining to our final model can be found in Table 4. However, if
we remove our intercept from our model, we expect that the level of voice leading corresponding
to the most extreme t-value would have the strongest association with classical ratings5.

When doing this, we find that contrary motion is indeed the strongest level of voice leading,
with a t-value of 12.118 (compared to 11.374 and 11.129 for 5th and 3rd motions, respectively).

3.3 Di↵erences in Classical Scores for Musicians and Non-Musicians

We want to try and distinguish between musicians and non-musicians, and determine whether how
we make such a classification significantly a↵ects any model we might produce as a result. To test
this hypothesis, we will perform the same analysis as we did in problem 2(b), but try di↵erent
dichotomizations of whether one is a musician.

Once we form dichotomizations, we can add significant predictors into a model that predicts
classical ratings. To do this, we add interactions between musician and our three main predictors
(instrument, harmonic motion, and and voice leading), reduce the model with a criterion like AIC
to determine fixed e↵ects Then, we can proceed by adding random e↵ects that are conditioned on
our musician dichotomization to determine which random e↵ects are statistically significant.6.

For our first model, our dichotomization yielded the following coe�cients of random e↵ects, as
stated in Table 6:

5
This computation can be found on pages 12-13

6
To see more detailed testing of our dichotomizations, see pages 28-38 of the code appendix
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Fixed E↵ects

Random E↵ects

Random E↵ect Variance
(Intercept) 1.6443
HarmonyI-V-IV 0.1141
HarmonyI-V-VI 1.3478
HarmonyIV-I-V 0.0839
Instrumentpiano 1.8226
Instrumentstring 3.3377

Table 6: Coe�cients of best model predicting classical scores from first musician dichotomization

One first, naive split is whether one self-declared themselves as a musician or not. If we split
based on whether self-declared store is at least a 3/6, then we get that 713 rows have been evaluated
by musicians, and 827 rows have been evaluated by non-musicians. We find that the interaction
of our dichotomization with both instrument and harmony were significant fixed e↵ects, while we
found no random e↵ects that were significant when conditioned on musisican.

A second distinction of whether one is a musician can be determined by whether one concen-
trated on the notes with a rating of at least 3/5 and whether one concentrated on the instruments
with a rating of at more than 4/5. This yields 864 musicians and 676 non-musicians. We find that
the interaction of our dichotomization with instrument was a significant fixed e↵ect, while we found
no random e↵ects that were significant when conditioned on musisican.

For our second model, our dichotomization yielded the following coe�cients of random e↵ects,
as stated in Table 7:
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Fixed E↵ects

Random E↵ects

Random E↵ect Variance
(Intercept) 1.6684
HarmonyI-V-IV 0.1091
HarmonyI-V-VI 1.7451
HarmonyIV-I-V 0.1062
Instrumentpiano 1.9164
Instrumentstring 3.6956

Table 7: Coe�cients of best model predicting classical scores from second musician dichotomization

A third distinction of whether one is a musician can be determined by whether one rated
their piano playing or guitar playing at at least 2/5. We get that 784 rows of our dataset were
evaluated by musicians, and 756 were evaluated by non-musicians. We find that the interaction
of our dichotomization with both instrument and harmony were significant fixed e↵ects, while we
found that our intercept had a significant random e↵ect when conditioned on musician.

For our third model, our dichotomization yielded the following coe�cients of random e↵ects, as
stated in Table 8:
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Fixed E↵ects

Random E↵ects

Random E↵ect Variance
Intercept) 1.518
HarmonyI-V-IV 0.1348
HarmonyI-V-VI 1.620
HarmonyIV-I-V 0.1256
Instrumentpiano 1.919
Instrumentstring 3.631

Table 8: Coe�cients of best model predicting classical scores from third musician dichotomization

As a result, from this small series of tests, we conclude that while in people who self-identify
as musicians may be influenced by things that do not influence non-musicians in some cases, our
results are sensitive to where we choose to dichotomize musicians.

3.4 Predicting Popular Scores from Fixed and Random E↵ects of Dataset Pre-

dictors

In order to analyze the di↵erences in predictors for classical and popular music, we must first begin
by developing an optimal model that predicts popular music ratings from both fixed and random
e↵ects of other predictors in our dataset similar to how we created a model predicting classical
ratings from the same predictors in Section 3.2.

We add all of predictors as fixed e↵ects, and eliminate those that aren’t statistically significant
with a criterion like AIC. Then, by incrementally adding random e↵ects, we can finalize a single
model we believe is su�cient in e↵ectively predicting popular music ratings.

The model we finalized on for predicting popular music ratings depends on the fixed e↵ects
of Instrument, Voice, Self-declared musician rating, concentration on instrument, concentration on
notes, familiarity with Pachebel’s Canon in D, classical music listening rating, knowledge of Axis
of Evil’s Comedy bit on the 4 Pachelbel chords,pop listening ratings from 1990s and 2000s, and
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Composing, as well as the random e↵ects of instrument and voice conditioned on subject7. The
equation of our final model can be illustrated as

Populari = ↵0j[i]+↵1j[i]Instrumenti+↵2j[i]V oicei+�3iSelfdeclarei+�4iConsInstri+�5iConsNotesi+
�6iPachListeni + �7iClsListeni + �8iKnowAxisi + �9iX1990s2000si + �10iComposingi + ✏i; ✏i ⇠
N(0,�2), where �2 = 2.93849.

Coe�cients of this model can be found in Table 9:
7
To see the full process of selecting a final model that predicts popular ratings from our predictors, see pages 39-47

of the code appendix
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Fixed E↵ects

Random E↵ects

Random E↵ect Variance
(Intercept) 1.283222
Instrumentpiano 1.617602
Instrumentstring 2.556281
Voicepar3rd 0.039568
Voicepar5th 0.004443

Table 9: Coe�cients of best model predicting popular scores from significant predictors
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In short, to interpret:

• fixed e↵ects (�ij ’s): Holding all else constant, if predictor i’s fixed e↵ect lies in group j rather
than the base level assumed by our intercept term, then in expectation our popular stimulus
score increases by �ij

• random e↵ects (⌘ij ’s): Holding all else constant, if predictor i’s random e↵ect lies in group j
rather than the base level assumed by our intercept term, then in expectation our popular
stimulus score increases by an iid draw from N(0, ⌧2j ), where ⌧2j is the variance associated
with a random e↵ect within the predictor’s group j, conditioned on subject.

Holding all else constant, if the song’s instrument wasn’t a guitar, low or high self-declaration
of being a musician, higher familiarity of Pachelbel’s Canon in D, and more composing skills gener-
ally result in decreased popular music scores. Concentration on instrument seemed to have mixed
e↵ects on popular music scores, while greater exposure to 1990s and 2000’s popular songs generally
increased one’s popular song score.

4 Discussion

4.1 Di↵erences in Predictors for Classical and Popular Scores

Influence on Main Experimental Factors (Instrument, Harmony, and Voice)

Our models developed in predicting classical scores from instrument, harmony, voice showed a
statistically significant dependence on all three variables on predictors. We found that in our final
model, classical scores depended on both the fixed and random e↵ects of instrument and harmony,
while we only found a statistically significant fixed e↵ect dependence on voice.

On the other hand, the models we created in predicting popular scores showed a statistically
significant dependence on only instrument and voice. We found that out of these three predictors,
our model only found the fixed e↵ects of instrument to be statistically significant, while it also
incorporated the random e↵ects of voice to be significant as well, conditioned on subject.

Our secondary hypothesis of whether musicians and non-musicians might be influenced by
di↵erent predictors was found to be plausible, as our results in Sections 3.3 and 3.4 for both
classical and popular song scores indicate that there exists predictors in which random e↵ects
are statistically significant when conditioned on a dichotomized ”musician” variable. However, we
found that while determining which random e↵ects are significant was sensitive to the methods
of dichotomization when predicting classical scores, predicting popular scores were not nearly as
sensitive to methods of dichotomization. For predicting popular scores, we found that only none
of our variables were significant depending on dichotomization, but the fixed e↵ects of instrument
and harmony were generally dependent on musician dichotomization.

Variance Components

The models that we created for predicting both classical and popular song scores included
multiple variance components.
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As found in Section 3.3, we predicted classical scores using variance components stemming from
random e↵ects that included our intercept, instrument, harmony, and taking AP Music Theory,
conditioned on the subject associated with a data point.

As found in Section 3.4, we predicted popular scores using variance components stemming from
random e↵ects included our intercept, instrument, and voice, conditioned on the subject associated
with a data point.

In both models, we found the intercept and instrument to be statistically significant in displaying
random e↵ects that varied depending on subject. The indication that we had multiple random e↵ects
indicates that our model incorporates e↵ects statistically significantly di↵erent than what’s defined
for a standard repeated measures model.

Other Individual Covariates

As found in Section 3.3, we predicted classical song scores from fixed e↵ects of instrument,
harmony, self-declaring as a musician, concentration on notes, knowledge of Pachebel rant, whether
one took AP Music Theory, one’s piano playing rating, and one’s guitar playing rating. As found
in Section 3.4, we predicted popular song scores from fixed e↵ects of instrument, self-declaring as a
musician, concentration on instrument, concentration on notes, knowledge of Axis of Evil’s Comedy
bit, familiarity with Pachebel’s Canon in D, how much one listened to classical music, how much
one listened to popular music, and whether one has conducted before.

While most inferences we can extract from our models show consistent associations with what
we’d expect, one would intuitively think that higher ratings of being a musician would associate
with higher classical or popular scores. Additionally, familiarity with note structure should would
intuitively signal a higher classical stimulus score due to classical music’s general score complexity.
However, for the most part, directional associations between predictors and our popular stimulus
scores seem fairly reasonable.

4.2 Future Scope

The results we found in predicting classical and popular scores indicated that they do indeed depend
on di↵erent predictors, and our dichotomization of musician is significant in mapping dependencies
on various predictors. In the future, this work may be generalized to other genres of music that
may seem closer in nature (unlike the perceived distance between classical and popular music
characterizations).
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# reading in data

ratings = read_csv("ratings.csv")%>%
dplyr::select(-c(X1, first12))

1. Data Cleaning, Transformations, EDA

# filter data by NA values

ratings = ratings %>%
dplyr::filter(!is.na(Classical)) %>%
dplyr::filter(!is.na(Popular)) %>%
dplyr::filter(!is.na(Subject)) %>%
dplyr::filter(Classical != 19.0) %>%
dplyr::filter(Popular != 19.0) %>%
dplyr::select(-c(X1stInstr, X2ndInstr))

ratings = na.omit(ratings)

I−IV−V I−V−IV I−V−VI IV−I−V

Bar Chart of Harmony

0
20
0

guitar piano string

Bar Chart of Instrument

0
20
0

50
0

contrary par3rd par5th

Bar Chart of Voice

0
20
0

50
0

1 2 3 4 5 6

Bar Chart of Selfdeclare

0
30
0
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11 31 67 145 233 466 749

Bar Chart of OMSI
0

40
10
0

−4 −1 0 2 4 6 9

Bar Chart of X16.minus.17

0
20
0

0 1 2.33 3 3.67 4.33

Bar Chart of ConsInstr

0
15
0

0 1 3 4 5

Bar Chart of ConsNotes

0
20
0

−4 −1 0 1 2 3 4

Bar Chart of Instr.minus.Notes

0
20
0

2 3 4 5

Bar Chart of PachListen
0

60
0

0 1 3 4 5

Bar Chart of ClsListen

0
30
0

0 1 5

Bar Chart of KnowRob

0
60
0
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0 1 5

Bar Chart of KnowAxis
0

60
0

0 2 3 4 5

Bar Chart of X1990s2000s

0
40
0

10
00

−3 −2 0 1 2 3 4 5

Bar Chart of X1990s2000s.minus.1960s1970s

0
20
0

50
0

0 1

Bar Chart of CollegeMusic

0
60
0

0 1 2 3 4 8

Bar Chart of NoClass

0
30
0

70
0

0 1

Bar Chart of APTheory
0

60
0

0 1 2 3 4 5

Bar Chart of Composing

0
40
0

0 1 4 5

Bar Chart of PianoPlay

0
40
0
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0 1 2 4 5

Bar Chart of GuitarPlay
0

60
0

0 1 2 3 4 5 6 7 8 9 10

Bar Chart of Classical

0
10
0

0 1 2 3 4 5 6 7 8 9

Bar Chart of Popular

0
10
0
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2. Main Experimental Factors

# separate out classical and popular ratings

classical = ratings %>% dplyr::select(-Popular)
popular = ratings %>% dplyr::select(-Classical)

a.

We want to begin by examining the influence of the three main experimental factors (Instrument, Harmony
& Voice) on Classical ratings, using conventional linear models and/or analysis of variance models.

We begin by fitting a multiple least-squares regression model on all interactions between our predictors in
order to predict Classical ratings. Then, we can elminiate predictors that aren’t statistically significant by
stepping backward with AIC. We do this below, while printing the summary of our reduced model, the VIF
values associated with each predictor, and the diagnostic plots associated with our reduced model:
classical_lm1 = lm(Classical ~ Instrument * Harmony * Voice - 1, data=classical)

classical_lm_step1 = stepAIC(classical_lm1, trace=FALSE)
x = summary(classical_lm_step1)
knitr::kable(x$coefficients)

Estimate Std. Error t value Pr(>|t|)
Instrumentguitar 3.8032723 0.2156485 17.6364457 0.0000000
Instrumentpiano 5.4585042 0.2157396 25.3013553 0.0000000
Instrumentstring 7.3893863 0.2156335 34.2682667 0.0000000
HarmonyI-V-IV 0.2223321 0.2828291 0.7861005 0.4319307
HarmonyI-V-VI 1.2619038 0.2833874 4.4529278 0.0000091
HarmonyIV-I-V -0.3023256 0.2822775 -1.0710224 0.2843287
Voicepar3rd -0.3100775 0.2822775 -1.0984845 0.2721663
Voicepar5th -0.1917304 0.2828291 -0.6779022 0.4979365
HarmonyI-V-IV:Voicepar3rd -0.4399225 0.3999797 -1.0998621 0.2715657
HarmonyI-V-VI:Voicepar3rd -0.7138692 0.4003752 -1.7830005 0.0747849
HarmonyIV-I-V:Voicepar3rd 0.7566102 0.3995909 1.8934619 0.0584855
HarmonyI-V-IV:Voicepar5th -0.2223321 0.4003691 -0.5553178 0.5787587
HarmonyI-V-VI:Voicepar5th -0.5314136 0.4003762 -1.3272857 0.1846127
HarmonyIV-I-V:Voicepar5th 0.3235134 0.3995909 0.8096115 0.4182897

vif(classical_lm_step1)

## GVIF Df GVIF^(1/(2*Df))
## Instrument 11.93840 3 1.511788
## Harmony 107.93929 3 2.182043
## Voice 47.78387 2 2.629180
## Harmony:Voice 432.03900 6 1.658162
# plot diagnostic plots of our data

par(mfrow=c(2,2))
plot(classical_lm_step1)
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b.

i.
We fit a random-intercept model for each participant below:
library(lme4)
lmer.intercept.only = lmer(Classical ~ 1 + (1 | Subject), data=classical,

control=lmerControl(optimizer = �bobyqa�))
summary(lmer.intercept.only)

## Linear mixed model fit by REML [�lmerMod�]
## Formula: Classical ~ 1 + (1 | Subject)
## Data: classical
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 7251.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.67457 -0.78816 -0.03926 0.78468 2.60867
##
## Random effects:
## Groups Name Variance Std.Dev.
## Subject (Intercept) 1.394 1.181
## Residual 6.103 2.470
## Number of obs: 1540, groups: Subject, 43
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 5.6104 0.1908 29.41

ii.
We want to test whether our random intercept is needed in our model. We do this by creating a null model,
one only containing a fixed intercept, before running an ANOVA test to determine whether adding the
random intercept makes for a statistically significantly better model.
lmer.fixed.only = lm(Classical ~ 1, data=classical)

summary(lmer.fixed.only)

##
## Call:
## lm(formula = Classical ~ 1, data = classical)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6101 -2.6101 0.3899 2.3899 4.3899
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.61006 0.06963 80.56 <2e-16 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
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## Residual standard error: 2.733 on 1539 degrees of freedom

# check difference in AIC of two models (one including random intercept, one not)

# to determine significance of random intercept

AIC(lmer.fixed.only) - AIC(lmer.intercept.only)

## [1] 211.8694

When running an ANOVA test where our reduced model is a fixed intercept-only model and our full model is
our random-intercept model, we can see that the di�erence in AIC of our linear model with only a fixed term
and a linear model with the random intercept is 211.8694. We therefore have reasonable evidence that

iii.
Now that we know our random intercept improves our model compared to our fixed-intercept model, we
re-fit our model found in (a), where our model predicted Classical from Instrument, Harmony, Voice, and the
interaction between Harmony and Voice. To determine whether they are all significant when we incorporate
our random intercept, we incrementally add each predictor to our model and run an ANOVA model where
the full model has only one more predictor than its repsective reduced model. Below, we do this by adding
Instrument, Harmony, Voice, and Harmony:Voice in order to determine if individiaul predictors statistically
significantly improve our model. We find that adding all four predictors (similar to the model we found in (a),
but with a random intercept) still improved our model because the p-values associated with each ANOVA
test are statistically significant at any reasonable alpha level.
lmer.random2 = lmer(Classical ~ Instrument + (1 | Subject), data=classical,

REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
anova(lmer.intercept.only, lmer.random2)

## Data: classical
## Models:
## lmer.intercept.only: Classical ~ 1 + (1 | Subject)
## lmer.random2: Classical ~ Instrument + (1 | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.intercept.only 3 7256.2 7272.2 -3625.1 7250.2
## lmer.random2 5 6584.5 6611.2 -3287.2 6574.5 675.71 2
## Pr(>Chisq)
## lmer.intercept.only
## lmer.random2 < 2.2e-16 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

lmer.random3 = lmer(Classical ~ Instrument + Harmony + (1 | Subject),
data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

anova(lmer.random2, lmer.random3)

## Data: classical
## Models:
## lmer.random2: Classical ~ Instrument + (1 | Subject)
## lmer.random3: Classical ~ Instrument + Harmony + (1 | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.random2 5 6584.5 6611.2 -3287.2 6574.5
## lmer.random3 8 6538.5 6581.2 -3261.2 6522.5 52.014 3 2.975e-11
##
## lmer.random2
## lmer.random3 ***
## ---
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## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

lmer.random4 = lmer(Classical ~ Instrument + Harmony + Voice + (1 | Subject),
data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

anova(lmer.random3, lmer.random4)

## Data: classical
## Models:
## lmer.random3: Classical ~ Instrument + Harmony + (1 | Subject)
## lmer.random4: Classical ~ Instrument + Harmony + Voice + (1 | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.random3 8 6538.5 6581.2 -3261.2 6522.5
## lmer.random4 10 6530.1 6583.5 -3255.1 6510.1 12.346 2 0.002085 **
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

lmer.random5 = lmer(Classical ~ Instrument + Harmony + Voice + Harmony:Voice
+ (1 | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

anova(lmer.random4, lmer.random5)

## Data: classical
## Models:
## lmer.random4: Classical ~ Instrument + Harmony + Voice + (1 | Subject)
## lmer.random5: Classical ~ Instrument + Harmony + Voice + Harmony:Voice + (1 |
## lmer.random5: Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.random4 10 6530.1 6583.5 -3255.1 6510.1
## lmer.random5 16 6520.2 6605.6 -3244.1 6488.2 21.951 6 0.001236 **
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
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c.

i.
We first want to determine whether we can find any random e�ects beyond an intercept that might improve
our model. We can do this by incrementally by adding random e�ects and running ANOVA tests on the
addition of signle e�ects to determine their significance. We do this below, when adding combinations of
instrument, harmony, and voice as random e�ects:
lmer.random6 = lmer(Classical ~ Instrument + Harmony + Voice + Harmony:Voice

+ (1 + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# check difference in AIC of two models (one including random intercept, one not)

# to determine significance of random intercept

AIC(lmer.random5) - AIC(lmer.random6)

## [1] 251.7203

lmer.random7 = lmer(Classical ~ Instrument + Harmony + Voice + Harmony:Voice
+ (1 + Instrument + Harmony | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# check difference in AIC of two models (one including random intercept, one not)

# to determine significance of random intercept

AIC(lmer.random6) - AIC(lmer.random7)

## [1] 82.49552

lmer.random8 = lmer(Classical ~ Instrument + Harmony + Voice + Harmony:Voice
+ (1 + Instrument + Harmony + Voice | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# check difference in AIC of two models (one including random intercept, one not)

# to determine significance of random intercept

AIC(lmer.random7) - AIC(lmer.random8)

## [1] -8.953879

ii.
Given we want our random e�ects to include instrument and harmonies that depend on subject, we want to
re-investigate the influences of our three main experimental factors as fixed e�ects: instrument, harmony, and
voice.

To do this, we take our random e�ects (intercept, instrument, and harmony), and begin including our three
predictors in order. After adding each predictor, we run an ANOVA test on models that di�er by a single
predictor in order to find the model that most statistically significantly improves our prediction of classical
stimulus rating.
# most reduced model - only contains random effects of intercept, instrument, harmony

lmer.random.bii.1 = lmer(Classical ~ 1 +
(1 + Instrument + Harmony | Subject), data=classical,

REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

lmer.random.bii.2 = lmer(Classical ~ Instrument +
(1 + Instrument + Harmony | Subject), data=classical,

REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
anova(lmer.random.bii.1, lmer.random.bii.2)
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## Data: classical
## Models:
## lmer.random.bii.1: Classical ~ 1 + (1 + Instrument + Harmony | Subject)
## lmer.random.bii.2: Classical ~ Instrument + (1 + Instrument + Harmony | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.random.bii.1 23 6293.7 6416.5 -3123.9 6247.7
## lmer.random.bii.2 25 6227.5 6361.0 -3088.7 6177.5 70.262 2
## Pr(>Chisq)
## lmer.random.bii.1
## lmer.random.bii.2 5.531e-16 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

lmer.random.bii.3 = lmer(Classical ~ Instrument + Harmony +
(1 + Instrument + Harmony | Subject),

data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

anova(lmer.random.bii.2, lmer.random.bii.3)

## Data: classical
## Models:
## lmer.random.bii.2: Classical ~ Instrument + (1 + Instrument + Harmony | Subject)
## lmer.random.bii.3: Classical ~ Instrument + Harmony + (1 + Instrument + Harmony |
## lmer.random.bii.3: Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.random.bii.2 25 6227.5 6361.0 -3088.7 6177.5
## lmer.random.bii.3 28 6219.7 6369.2 -3081.8 6163.7 13.783 3
## Pr(>Chisq)
## lmer.random.bii.2
## lmer.random.bii.3 0.003217 **
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

lmer.random.bii.4 = lmer(Classical ~ Instrument + Harmony + Voice +
(1 + Instrument + Harmony | Subject),

data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

anova(lmer.random.bii.3, lmer.random.bii.4)

## Data: classical
## Models:
## lmer.random.bii.3: Classical ~ Instrument + Harmony + (1 + Instrument + Harmony |
## lmer.random.bii.3: Subject)
## lmer.random.bii.4: Classical ~ Instrument + Harmony + Voice + (1 + Instrument +
## lmer.random.bii.4: Harmony | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.random.bii.3 28 6219.7 6369.2 -3081.8 6163.7
## lmer.random.bii.4 30 6205.8 6366.0 -3072.9 6145.8 17.841 2
## Pr(>Chisq)
## lmer.random.bii.3
## lmer.random.bii.4 0.0001336 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

lmer.random.bii.5 = lmer(Classical ~ Instrument + Harmony + Voice + Harmony:Voice
+ (1 + Instrument + Harmony | Subject), data=classical,
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REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
anova(lmer.random.bii.4, lmer.random.bii.5)

## Data: classical
## Models:
## lmer.random.bii.4: Classical ~ Instrument + Harmony + Voice + (1 + Instrument +
## lmer.random.bii.4: Harmony | Subject)
## lmer.random.bii.5: Classical ~ Instrument + Harmony + Voice + Harmony:Voice + (1 +
## lmer.random.bii.5: Instrument + Harmony | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.random.bii.4 30 6205.8 6366.0 -3072.9 6145.8
## lmer.random.bii.5 36 6185.9 6378.2 -3057.0 6113.9 31.902 6
## Pr(>Chisq)
## lmer.random.bii.4
## lmer.random.bii.5 1.704e-05 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

From our series of ANOVA tests above, we find that our model containing Instrument, Harmony, Voice, and
Harmony:Voice as fixed e�ects, as well as our intercept, Instrument, and Harmony as random e�ects that
depend on subject turn out to be our best model.

Below is the final model we have produced:
summary(lmer.random.bii.5)

## Linear mixed model fit by maximum likelihood [�lmerMod�]
## Formula: Classical ~ Instrument + Harmony + Voice + Harmony:Voice + (1 +
## Instrument + Harmony | Subject)
## Data: classical
## Control: lmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6185.9 6378.2 -3057.0 6113.9 1504
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.6169 -0.5611 0.0264 0.5316 3.3929
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 1.6820 1.2969
## Instrumentpiano 1.9104 1.3822 -0.26
## Instrumentstring 3.6865 1.9200 -0.54 0.62
## HarmonyI-V-IV 0.1105 0.3324 0.72 -0.66 -0.80
## HarmonyI-V-VI 1.7542 1.3245 0.21 -0.40 -0.59 0.46
## HarmonyIV-I-V 0.1221 0.3494 0.18 -0.26 -0.29 -0.10 0.41
## Residual 2.4374 1.5612
## Number of obs: 1540, groups: Subject, 43
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.8027 0.2473 15.374
## Instrumentpiano 1.6554 0.2324 7.124
## Instrumentstring 3.5877 0.3085 11.628
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## HarmonyI-V-IV 0.2115 0.2013 1.050
## HarmonyI-V-VI 1.2659 0.2810 4.506
## HarmonyIV-I-V -0.3023 0.2016 -1.500
## Voicepar3rd -0.3101 0.1944 -1.595
## Voicepar5th -0.2034 0.1948 -1.044
## HarmonyI-V-IV:Voicepar3rd -0.4172 0.2755 -1.514
## HarmonyI-V-VI:Voicepar3rd -0.7074 0.2758 -2.565
## HarmonyIV-I-V:Voicepar3rd 0.7516 0.2752 2.731
## HarmonyI-V-IV:Voicepar5th -0.2107 0.2758 -0.764
## HarmonyI-V-VI:Voicepar5th -0.5238 0.2759 -1.898
## HarmonyIV-I-V:Voicepar5th 0.3352 0.2752 1.218
## convergence code: 0
## boundary (singular) fit: see ?isSingular
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3. Individual Covariates

Now that we have a baseline model that predicts how classical a stimulus sounds, we want to determine any
fixed e�ects that should be added to our model. To do this, we can fit a base model that
library(LMERConvenienceFunctions)

# make all discrete variables factors

cols = c("Selfdeclare", "ConsInstr", "ConsNotes", "PachListen", "ClsListen", "KnowRob", "KnowAxis", "X1990s2000s", "CollegeMusic", "APTheory", "Composing", "PianoPlay", "GuitarPlay")
classical[cols] <- lapply(classical[cols], as.factor)
popular[cols] <- lapply(popular[cols], as.factor)

a.

We want to start by determining which variables ought to be added to our model as fixed e�ects. To do
this, we will add all our predictors and backward step wtih AIC. However, due to many NA values, we will
eliminate X2ndInstr, as this is not defined for the vast majority of rows inour dataset. We do this by reducing
our model below:
lmer.full.1 = lmer(Classical ~ Subject + Harmony + Instrument + Voice + Selfdeclare + OMSI + X16.minus.17 + ConsInstr + ConsNotes + Instr.minus.Notes + PachListen + ClsListen + KnowRob + KnowAxis + X1990s2000s + X1990s2000s.minus.1960s1970s + CollegeMusic + NoClass + APTheory + Composing + PianoPlay + GuitarPlay + (1 | Subject) ,

data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
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# going to delete all extraneous pages associated with trace output I can�t hide

lmer.reduced.1 = fitLMER.fnc(lmer.full.1, method="AIC",
ran.effects=c("(0 + Instrument | Subject)", "(0 + Harmony | Subject)"),
set.REML.FALSE = TRUE)

By reducing our model, we simply want to gain a model with significant, but fewer fixed predictors than we’d
get by fitting every single predictor. We go back to fit the random e�ects we found in Section 2, as below:

Our final model leaves the following predictors: Instrument, harmony, voice, selfdeclare, OMSI, ConsNotes,
KnowRob, NoClass, APTheory, PianoPlay, GuitarPlay, and the random e�ect of our intercept, instrument,
and harmony all conditioned on subject.

However, we do want to eliminate predictors that are collinear with other predictors in our dataset. To do
this, we call vif() to determine whether we should eliminate predictors.
# summary(lmer.reduced.1)

vif(lmer.reduced.1)

## GVIF Df GVIF^(1/(2*Df))
## Instrument 1.370700 2 1.082021
## Harmony 1.370718 3 1.053961
## Voice 1.000029 2 1.000007
## Selfdeclare 329.867893 5 1.785805
## OMSI 8.544558 1 2.923108
## ConsNotes 8.449957 4 1.305740
## KnowRob 4.649962 2 1.468461
## NoClass 6.188159 1 2.487601
## APTheory 2.625147 1 1.620230
## PianoPlay 17.786799 3 1.615659
## GuitarPlay 51.969196 4 1.638582

From our table of Generalized VIF values, we want to see if eliminating NoClass su�ciently reduces
multicollinearity. We update our model below:
lmer.reduced.1 = update(lmer.reduced.1, . ~ . - NoClass - OMSI, data=classical)
summary(lmer.reduced.1)

## Linear mixed model fit by maximum likelihood [�lmerMod�]
## Formula:
## Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## Harmony | Subject)
## Data: classical
## Control: lmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6204.8 6466.5 -3053.4 6106.8 1491
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.6060 -0.5658 -0.0030 0.5518 3.4598
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 0.2909 0.5394
## Instrumentpiano 1.9203 1.3858 0.08
## Instrumentstring 3.6846 1.9195 -0.25 0.62
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## HarmonyI-V-IV 0.1207 0.3475 0.53 -0.60 -0.75
## HarmonyI-V-VI 1.7560 1.3252 0.22 -0.40 -0.59 0.47
## HarmonyIV-I-V 0.1326 0.3641 0.51 -0.23 -0.25 0.06 0.42
## Residual 2.4931 1.5790
## Number of obs: 1540, groups: Subject, 43
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 4.207408 0.448363 9.384
## Instrumentpiano 1.653873 0.233329 7.088
## Instrumentstring 3.588421 0.308807 11.620
## HarmonyI-V-IV 0.002132 0.125554 0.017
## HarmonyI-V-VI 0.853828 0.231951 3.681
## HarmonyIV-I-V 0.058625 0.126495 0.463
## Voicepar3rd -0.401961 0.098605 -4.076
## Voicepar5th -0.301487 0.098556 -3.059
## Selfdeclare2 -0.651313 0.526993 -1.236
## Selfdeclare3 0.050942 0.653726 0.078
## Selfdeclare4 -1.692256 0.759992 -2.227
## Selfdeclare5 0.083614 1.077007 0.078
## Selfdeclare6 -1.795251 1.412940 -1.271
## ConsNotes1 0.420950 0.537470 0.783
## ConsNotes3 -0.089227 0.416576 -0.214
## ConsNotes4 -1.664757 0.787044 -2.115
## ConsNotes5 -1.055028 0.436830 -2.415
## KnowRob1 -1.098519 0.513497 -2.139
## KnowRob5 0.939866 0.441813 2.127
## APTheory1 1.608133 0.427625 3.761
## PianoPlay1 0.149390 0.364482 0.410
## PianoPlay4 -0.092718 0.657903 -0.141
## PianoPlay5 1.351829 0.661774 2.043
## GuitarPlay1 -0.384715 0.600056 -0.641
## GuitarPlay2 2.629477 1.132828 2.321
## GuitarPlay4 2.589625 0.712311 3.636
## GuitarPlay5 -1.006492 0.728812 -1.381
## convergence code: 0
## boundary (singular) fit: see ?isSingular

vif(lmer.reduced.1)

## GVIF Df GVIF^(1/(2*Df))
## Instrument 1.371310 2 1.082141
## Harmony 1.371328 3 1.054040
## Voice 1.000030 2 1.000008
## Selfdeclare 49.771155 5 1.478079
## ConsNotes 6.541822 4 1.264627
## KnowRob 3.703573 2 1.387252
## APTheory 2.609583 1 1.615420
## PianoPlay 13.604876 3 1.545073
## GuitarPlay 28.217106 4 1.518148

From the VIF values, we now know that our predictors don’t su�er as much from concerning collinearity.
Additionally, APTheory’s and Selfdeclare’s relation in determining how classical a stimulus sounds seem more
reasonable now compared to before (they’re both positive).

We want to ensure that our residuals are relatively homoscedastic and centered around 0, so we plot our
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residuals below (conditioned on subject).
rchol = r.chol(lmer.reduced.1)

sub = (classical$Subject)
index <- sub
for (j in unique(sub)) {

len <- sum(sub==j)
index[sub==j] <- 1:len

}

new.data <- data.frame(index,rchol,sub)
names(new.data) <- c("index","rchol","sub")
ggplot(new.data,aes(x=index,y=rchol)) +

facet_wrap( ~ sub, as.table=F) +
geom_point(pch=1,color="Blue") +
geom_hline(yintercept=0) +
labs(title="Residuals vs. Index of LMER Model, Facetted by Subject",

x = "Index", y = "Cholesky Residuals")
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Residuals vs. Index of LMER Model, Facetted by Subject

From the residual plots above, we can see that our marginal residuals are fairly reasonably spread, indicating
homoscedasticity, and for the most part, by group, the residuals are roughly centered around 0. As a result,
we think that our fixed e�ects are roughly reasonable.
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b.

Now that we have a series of fixed e�ects that we find reasonable in predicting classical stimuli, we want to
re-test the random e�ects we’ve obtained. Since we found with backward stepping that both our intercept,
instrument, and harmony are all significant random intercepts conditioned on subject, we can begin by adding
other random e�ects and compare their significance with ANOVA tests. We do this with our other variables
below:
# testing for significance of random intercept

lmer.random.final1 = lmer(Classical ~ Instrument + Harmony + Voice + Selfdeclare +
ConsNotes + KnowRob + APTheory + PianoPlay + GuitarPlay +

(1 + Instrument + Harmony + Voice | Subject) ,
data=classical,

REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
# voice as a random effect isn�t signifciant at alpha=0.05 level based on AIC returned from ANOVA call

anova(lmer.reduced.1, lmer.random.final1)

## Data: classical
## Models:
## lmer.reduced.1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.reduced.1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.reduced.1: Harmony | Subject)
## lmer.random.final1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.final1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.final1: Harmony + Voice | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.reduced.1 49 6204.8 6466.5 -3053.4 6106.8
## lmer.random.final1 64 6211.1 6552.8 -3041.5 6083.1 23.759 15
## Pr(>Chisq)
## lmer.reduced.1
## lmer.random.final1 0.0693 .
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

lmer.random.final1 = lmer(Classical ~ Instrument + Harmony + Voice + Selfdeclare +
ConsNotes + KnowRob + APTheory + PianoPlay + GuitarPlay +

(1 + Instrument + Harmony + Selfdeclare | Subject) ,
data=classical,

REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
# Selfdeclare as a random effect isn�t signifciant at alpha=0.05

# level based on AIC returned from ANOVA call

anova(lmer.reduced.1, lmer.random.final1)

## Data: classical
## Models:
## lmer.reduced.1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.reduced.1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.reduced.1: Harmony | Subject)
## lmer.random.final1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.final1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.final1: Harmony + Selfdeclare | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.reduced.1 49 6204.8 6466.5 -3053.4 6106.8
## lmer.random.final1 94 6246.9 6748.8 -3029.5 6058.9 47.903 45
## Pr(>Chisq)
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## lmer.reduced.1
## lmer.random.final1 0.3558

lmer.random.final1 = lmer(Classical ~ Instrument + Harmony + Voice + Selfdeclare +
ConsNotes + KnowRob + APTheory + PianoPlay + GuitarPlay +

(1 + Instrument + Harmony | Subject) ,
data=classical,

REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
# OMSI as a random effect isn�t signifciant at alpha=0.05

# level based on AIC returned from ANOVA call

anova(lmer.reduced.1, lmer.random.final1)

## Data: classical
## Models:
## lmer.reduced.1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.reduced.1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.reduced.1: Harmony | Subject)
## lmer.random.final1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.final1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.final1: Harmony | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.reduced.1 49 6204.8 6466.5 -3053.4 6106.8
## lmer.random.final1 49 6204.8 6466.5 -3053.4 6106.8 0 0
## Pr(>Chisq)
## lmer.reduced.1
## lmer.random.final1 1

lmer.random.final1 = lmer(Classical ~ Instrument + Harmony + Voice + Selfdeclare +
ConsNotes + KnowRob + APTheory + PianoPlay + GuitarPlay +

(1 + Instrument + Harmony + ConsNotes | Subject) ,
data=classical,

REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
# ConsNotes as a random effect isn�t signifciant at alpha=0.05

# level based on AIC returned from ANOVA call

anova(lmer.reduced.1, lmer.random.final1)

## Data: classical
## Models:
## lmer.reduced.1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.reduced.1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.reduced.1: Harmony | Subject)
## lmer.random.final1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.final1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.final1: Harmony + ConsNotes | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.reduced.1 49 6204.8 6466.5 -3053.4 6106.8
## lmer.random.final1 83 6240.2 6683.4 -3037.1 6074.2 32.601 34
## Pr(>Chisq)
## lmer.reduced.1
## lmer.random.final1 0.5362

lmer.random.final1 = lmer(Classical ~ Instrument + Harmony + Voice + Selfdeclare +
ConsNotes + KnowRob + APTheory + PianoPlay + GuitarPlay +

(1 + Instrument + Harmony + KnowRob | Subject) ,
data=classical,

REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
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# KnowRob as a random effect isn�t signifciant at alpha=0.05

# level based on AIC returned from ANOVA call

anova(lmer.reduced.1, lmer.random.final1)

## Data: classical
## Models:
## lmer.reduced.1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.reduced.1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.reduced.1: Harmony | Subject)
## lmer.random.final1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.final1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.final1: Harmony + KnowRob | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.reduced.1 49 6204.8 6466.5 -3053.4 6106.8
## lmer.random.final1 64 6211.8 6553.5 -3041.9 6083.8 23.015 15
## Pr(>Chisq)
## lmer.reduced.1
## lmer.random.final1 0.08383 .
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

lmer.random.final1 = lmer(Classical ~ Instrument + Harmony + Voice + Selfdeclare +
ConsNotes + KnowRob + APTheory + PianoPlay + GuitarPlay +

(1 + Instrument + Harmony + APTheory | Subject) ,
data=classical,

REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
# APTheory as a random effect IS signifciant at alpha=0.05

# level based on AIC returned from ANOVA call

anova(lmer.reduced.1, lmer.random.final1)

## Data: classical
## Models:
## lmer.reduced.1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.reduced.1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.reduced.1: Harmony | Subject)
## lmer.random.final1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.final1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.final1: Harmony + APTheory | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.reduced.1 49 6204.8 6466.5 -3053.4 6106.8
## lmer.random.final1 56 6202.0 6501.0 -3045.0 6090.0 16.79 7
## Pr(>Chisq)
## lmer.reduced.1
## lmer.random.final1 0.01881 *
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

lmer.random.final2 = lmer(Classical ~ Instrument + Harmony + Voice + Selfdeclare +
ConsNotes + KnowRob + APTheory + PianoPlay + GuitarPlay +

(1 + Instrument + Harmony + APTheory + PianoPlay | Subject) ,
data=classical,

REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
# PianoPlay as a random effect isn�t signifciant at alpha=0.05

# level based on AIC returned from ANOVA call

anova(lmer.random.final1, lmer.random.final2)
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## Data: classical
## Models:
## lmer.random.final1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.final1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.final1: Harmony + APTheory | Subject)
## lmer.random.final2: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.final2: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.final2: Harmony + APTheory + PianoPlay | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.random.final1 56 6202.0 6501.0 -3045.0 6090.0
## lmer.random.final2 83 6242.6 6685.8 -3038.3 6076.6 13.432 27
## Pr(>Chisq)
## lmer.random.final1
## lmer.random.final2 0.9862

lmer.random.final2 = lmer(Classical ~ Instrument + Harmony + Voice + Selfdeclare +
ConsNotes + KnowRob + APTheory + PianoPlay + GuitarPlay +

(1 + Instrument + Harmony + APTheory + GuitarPlay | Subject) ,
data=classical,

REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
# GuitarPlay as a random effect isn�t signifciant at alpha=0.05

# level based on AIC returned from ANOVA call

anova(lmer.random.final1, lmer.random.final2)

## Data: classical
## Models:
## lmer.random.final1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.final1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.final1: Harmony + APTheory | Subject)
## lmer.random.final2: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.final2: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.final2: Harmony + APTheory + GuitarPlay | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.random.final1 56 6202 6501.0 -3045.0 6090
## lmer.random.final2 94 6267 6768.9 -3039.5 6079 11.021 38
## Pr(>Chisq)
## lmer.random.final1
## lmer.random.final2 1

By testing for random e�ects of every single predictor that had fixed e�ects in our model, we concluded
that adding the random e�ect of having taken AP Music theory would significantly improve our model.
Thus our final model ends up predicting classical stimulus from the fixed e�ects of Instrument, Harmony,
Voice, Selfdeclare, ConsNotes, KnowRob, APTheory, PianoPlay, GuitarPlay, as well as a random intercept,
instrument, harmony, and APTheory.

To ensure that our final model is actually reasonable, we want to ensure that our residuals are homoskedastic
and centered arond 0. We plot our residuals below:
rchol = r.chol(lmer.random.final1)

sub = (classical$Subject)
index <- sub
for (j in unique(sub)) {

len <- sum(sub==j)
index[sub==j] <- 1:len

}
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new.data <- data.frame(index,rchol,sub)
names(new.data) <- c("index","rchol","sub")
ggplot(new.data,aes(x=index,y=rchol)) +

facet_wrap( ~ sub, as.table=F) +
geom_point(pch=1,color="Blue") +
geom_hline(yintercept=0) +
labs(title="Residuals vs. Index of Best LMER Model Predicting Classical Scores",

x = "Index", y = "Cholesky Residuals")

15 17 19 20 22 23 26

29 30 31 32 37 38 40

42 44.1 44.2 45 46 47 48

49 52 53 55 56 57 59

60 61 63 64 66 71 74

78 80 81 82 83 93 94

98

110111213141516171819220212223242526272829330313233343536456789 110111213141516171819220212223242526272829330313233343536456789 110111213141516171819220212223242526272829330313233343536456789 110111213141516171819220212223242526272829330313233343536456789 110111213141516171819220212223242526272829330313233343536456789 110111213141516171819220212223242526272829330313233343536456789 110111213141516171819220212223242526272829330313233343536456789

−5.0−2.50.02.5

−5.0−2.50.02.5

−5.0−2.50.02.5

−5.0−2.50.02.5

−5.0−2.50.02.5

−5.0−2.50.02.5

−5.0−2.50.02.5

Index

C
ho

le
sk

y 
R

es
id

ua
ls

Residuals vs. Index of Best LMER Model Predicting Classical Scores

Because our residuals look fairly homoscedastic and centered around 0, we conclude that this model seems
like a reasonable linear model to predict classical scores.

We also want to determine if the interaction between harmonic motion and knowledge of the Pachelbel rants
are significant. To do this, we fit an additional term Harmony:KnowRob to check if our coe�cients change
and our model is significantly improved:
summary(lmer.random.final1)

## Linear mixed model fit by maximum likelihood [�lmerMod�]
## Formula:
## Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## Harmony + APTheory | Subject)
## Data: classical
## Control: lmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6202 6501 -3045 6090 1484
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##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.5865 -0.5581 -0.0021 0.5478 3.4443
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 0.5002 0.7073
## Instrumentpiano 1.9450 1.3946 -0.19
## Instrumentstring 3.6943 1.9220 -0.40 0.62
## HarmonyI-V-IV 0.1644 0.4055 0.76 -0.53 -0.64
## HarmonyI-V-VI 1.7957 1.3400 0.39 -0.39 -0.58 0.47
## HarmonyIV-I-V 0.1928 0.4391 0.79 -0.19 -0.21 0.32 0.42
## APTheory1 0.9236 0.9610 -0.80 -0.15 -0.14 -0.41 -0.35
## Residual 2.4662 1.5704
##
##
##
##
##
##
##
## -0.76
##
## Number of obs: 1540, groups: Subject, 43
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 4.230526 0.518799 8.154
## Instrumentpiano 1.654997 0.234331 7.063
## Instrumentstring 3.588412 0.309003 11.613
## HarmonyI-V-IV 0.002776 0.128996 0.022
## HarmonyI-V-VI 0.854767 0.233632 3.659
## HarmonyIV-I-V 0.059098 0.131390 0.450
## Voicepar3rd -0.401780 0.098071 -4.097
## Voicepar5th -0.301895 0.098022 -3.080
## Selfdeclare2 -0.602610 0.612188 -0.984
## Selfdeclare3 -0.142438 0.740308 -0.192
## Selfdeclare4 -1.810163 0.807291 -2.242
## Selfdeclare5 -0.587108 1.115901 -0.526
## Selfdeclare6 -2.397679 1.243374 -1.928
## ConsNotes1 0.415736 0.510826 0.814
## ConsNotes3 -0.229078 0.435597 -0.526
## ConsNotes4 -1.837439 0.918250 -2.001
## ConsNotes5 -1.075049 0.445526 -2.413
## KnowRob1 -0.875440 0.546873 -1.601
## KnowRob5 1.055736 0.329116 3.208
## APTheory1 1.549572 0.325020 4.768
## PianoPlay1 0.276967 0.400083 0.692
## PianoPlay4 0.821597 0.370271 2.219
## PianoPlay5 1.857079 0.595823 3.117
## GuitarPlay1 -0.112749 0.625741 -0.180
## GuitarPlay2 1.843633 1.137145 1.621
## GuitarPlay4 1.760648 0.624227 2.821
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## GuitarPlay5 -1.069359 0.604894 -1.768
## convergence code: 0
## boundary (singular) fit: see ?isSingular

lmer.random.pach = update(lmer.random.final1, . ~ . + Harmony:KnowRob)
anova(lmer.random.final1, lmer.random.pach)

## Data: classical
## Models:
## lmer.random.final1: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.final1: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.final1: Harmony + APTheory | Subject)
## lmer.random.pach: Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## lmer.random.pach: KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## lmer.random.pach: Harmony + APTheory | Subject) + Harmony:KnowRob
## Df AIC BIC logLik deviance Chisq Chi Df
## lmer.random.final1 56 6202.0 6501.0 -3045.0 6090.0
## lmer.random.pach 62 6206.6 6537.7 -3041.3 6082.6 7.3951 6
## Pr(>Chisq)
## lmer.random.final1
## lmer.random.pach 0.2858

summary(lmer.random.pach)

## Linear mixed model fit by maximum likelihood [�lmerMod�]
## Formula:
## Classical ~ Instrument + Harmony + Voice + Selfdeclare + ConsNotes +
## KnowRob + APTheory + PianoPlay + GuitarPlay + (1 + Instrument +
## Harmony + APTheory | Subject) + Harmony:KnowRob
## Data: classical
## Control: lmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6206.6 6537.7 -3041.3 6082.6 1478
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.5503 -0.5682 0.0036 0.5474 3.4682
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 0.5127 0.7160
## Instrumentpiano 1.9496 1.3963 -0.19
## Instrumentstring 3.6977 1.9229 -0.39 0.62
## HarmonyI-V-IV 0.1830 0.4278 0.75 -0.55 -0.70
## HarmonyI-V-VI 1.4175 1.1906 0.35 -0.40 -0.54 0.55
## HarmonyIV-I-V 0.1952 0.4418 0.77 -0.24 -0.24 0.36 0.45
## APTheory1 0.8914 0.9441 -0.81 -0.14 -0.13 -0.42 -0.35
## Residual 2.4650 1.5700
##
##
##
##
##
##
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##
## -0.75
##
## Number of obs: 1540, groups: Subject, 43
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 4.212540 0.521838 8.072
## Instrumentpiano 1.654520 0.234550 7.054
## Instrumentstring 3.588499 0.309124 11.609
## HarmonyI-V-IV 0.050663 0.148607 0.341
## HarmonyI-V-VI 0.609217 0.240791 2.530
## HarmonyIV-I-V 0.051726 0.151303 0.342
## Voicepar3rd -0.401893 0.098047 -4.099
## Voicepar5th -0.301955 0.097998 -3.081
## Selfdeclare2 -0.574167 0.615262 -0.933
## Selfdeclare3 -0.105745 0.744490 -0.142
## Selfdeclare4 -1.781638 0.811223 -2.196
## Selfdeclare5 -0.474227 1.122541 -0.422
## Selfdeclare6 -2.291766 1.249158 -1.835
## ConsNotes1 0.417565 0.513275 0.814
## ConsNotes3 -0.193326 0.439711 -0.440
## ConsNotes4 -1.844614 0.922877 -1.999
## ConsNotes5 -1.055480 0.449909 -2.346
## KnowRob1 -0.957032 0.561219 -1.705
## KnowRob5 0.943722 0.382209 2.469
## APTheory1 1.579179 0.326975 4.830
## PianoPlay1 0.284364 0.402120 0.707
## PianoPlay4 0.811965 0.371188 2.187
## PianoPlay5 1.864246 0.599035 3.112
## GuitarPlay1 -0.141073 0.628756 -0.224
## GuitarPlay2 1.828259 1.143957 1.598
## GuitarPlay4 1.705528 0.627431 2.718
## GuitarPlay5 -1.164038 0.607500 -1.916
## HarmonyI-V-IV:KnowRob1 -0.008145 0.426774 -0.019
## HarmonyI-V-VI:KnowRob1 0.575636 0.668374 0.861
## HarmonyIV-I-V:KnowRob1 0.163369 0.453226 0.360
## HarmonyI-V-IV:KnowRob5 -0.296418 0.336075 -0.882
## HarmonyI-V-VI:KnowRob5 1.181331 0.514701 2.295
## HarmonyIV-I-V:KnowRob5 -0.049177 0.348302 -0.141
## convergence code: 0
## boundary (singular) fit: see ?isSingular

sum.f1 = summary(lmer.random.final1)
sum.f2 = summary(lmer.random.pach)
knitr::kable(sum.f1$coefficients)
knitr::kable(sum.f2$coefficients)

To determine the actual e�ect of voice leading in our model, we need to remove the intercept and re-add
voice as a predictor. We do this below:
lmer.random.final.no.intercept = lmer(Classical ~ Voice - 1 + Instrument + Harmony + Selfdeclare +

ConsNotes + KnowRob + APTheory + PianoPlay + GuitarPlay +
(1 + Instrument + Harmony + APTheory | Subject) ,

data=classical,
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REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

summary(lmer.random.final.no.intercept)

## Linear mixed model fit by maximum likelihood [�lmerMod�]
## Formula: Classical ~ Voice - 1 + Instrument + Harmony + Selfdeclare +
## ConsNotes + KnowRob + APTheory + PianoPlay + GuitarPlay +
## (1 + Instrument + Harmony + APTheory | Subject)
## Data: classical
## Control: lmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6202 6501 -3045 6090 1484
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.5865 -0.5581 -0.0021 0.5478 3.4443
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 0.5002 0.7073
## Instrumentpiano 1.9450 1.3946 -0.19
## Instrumentstring 3.6943 1.9220 -0.40 0.62
## HarmonyI-V-IV 0.1644 0.4055 0.76 -0.53 -0.64
## HarmonyI-V-VI 1.7957 1.3400 0.39 -0.39 -0.58 0.47
## HarmonyIV-I-V 0.1928 0.4391 0.79 -0.19 -0.21 0.32 0.42
## APTheory1 0.9236 0.9610 -0.80 -0.15 -0.14 -0.41 -0.35
## Residual 2.4662 1.5704
##
##
##
##
##
##
##
## -0.76
##
## Number of obs: 1540, groups: Subject, 43
##
## Fixed effects:
## Estimate Std. Error t value
## Voicecontrary 4.230523 0.518799 8.154
## Voicepar3rd 3.828744 0.518811 7.380
## Voicepar5th 3.928628 0.518814 7.572
## Instrumentpiano 1.654997 0.234331 7.063
## Instrumentstring 3.588412 0.309003 11.613
## HarmonyI-V-IV 0.002776 0.128996 0.022
## HarmonyI-V-VI 0.854767 0.233632 3.659
## HarmonyIV-I-V 0.059098 0.131390 0.450
## Selfdeclare2 -0.602608 0.612188 -0.984
## Selfdeclare3 -0.142434 0.740309 -0.192
## Selfdeclare4 -1.810160 0.807291 -2.242
## Selfdeclare5 -0.587097 1.115902 -0.526
## Selfdeclare6 -2.397674 1.243374 -1.928
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## ConsNotes1 0.415735 0.510826 0.814
## ConsNotes3 -0.229078 0.435597 -0.526
## ConsNotes4 -1.837439 0.918251 -2.001
## ConsNotes5 -1.075049 0.445526 -2.413
## KnowRob1 -0.875441 0.546873 -1.601
## KnowRob5 1.055741 0.329116 3.208
## APTheory1 1.549574 0.325020 4.768
## PianoPlay1 0.276968 0.400083 0.692
## PianoPlay4 0.821597 0.370271 2.219
## PianoPlay5 1.857078 0.595823 3.117
## GuitarPlay1 -0.112749 0.625741 -0.180
## GuitarPlay2 1.843635 1.137145 1.621
## GuitarPlay4 1.760644 0.624227 2.821
## GuitarPlay5 -1.069363 0.604894 -1.768
## convergence code: 0
## boundary (singular) fit: see ?isSingular
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4. Musicians vs. Non-Musicians

To determine whether musicians actually identify classical music di�erently, we can fit our best classical model,
which already takes into account one’s self-declaration of being a musician, and add an interaction between
these variables and Selfdeclare. Then by backward stepping with a criterion like AIC, we can determine
which fixed and random e�ects are influenced by musicians vs. non-musicians.

One naive split is whether one self-declared themselves as a musician or not. If we split based on whether
self-declared store is at least a 3/6, then we get that 713 rows have been evaluated by musicians, and 827
rows have been evaluated by non-musicians.
classical = classical %>% mutate(musicians = ifelse(as.numeric(Selfdeclare) >= 3,1,0))

Now, let’s test adding instrument, harmony, and voice, along with their interaction with musician dichotomiza-
tion, as fixed and random e�ects in our model to determine our best model:

Finding signigficant fixed e�ects with backward stepping of AIC:
lm.full.4.1 = lm(Classical ~ (Instrument + Harmony + Voice) * musicians, data=classical)

lm.reduced.4.1 = stepAIC(lm.full.4.1, trace=FALSE)
summary(lm.reduced.4.1)

##
## Call:
## lm(formula = Classical ~ Instrument + Harmony + Voice + musicians +
## Instrument:musicians + Harmony:musicians, data = classical)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.2531 -1.6399 -0.0787 1.6103 6.3514
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.678340 0.208063 17.679 < 2e-16 ***
## Instrumentpiano 1.960340 0.191634 10.230 < 2e-16 ***
## Instrumentstring 4.143311 0.191634 21.621 < 2e-16 ***
## HarmonyI-V-IV 0.009662 0.221078 0.044 0.965147
## HarmonyI-V-VI 0.267856 0.221347 1.210 0.226421
## HarmonyIV-I-V 0.004831 0.221078 0.022 0.982569
## Voicepar3rd -0.406302 0.140435 -2.893 0.003868 **
## Voicepar5th -0.297586 0.140367 -2.120 0.034162 *
## musicians 0.409510 0.281051 1.457 0.145303
## Instrumentpiano:musicians -0.651688 0.281981 -2.311 0.020960 *
## Instrumentstring:musicians -1.193311 0.280853 -4.249 2.28e-05 ***
## HarmonyI-V-IV:musicians -0.018777 0.325142 -0.058 0.953956
## HarmonyI-V-VI:musicians 1.244997 0.325077 3.830 0.000133 ***
## HarmonyIV-I-V:musicians 0.111880 0.324649 0.345 0.730428
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 2.249 on 1526 degrees of freedom
## Multiple R-squared: 0.3283, Adjusted R-squared: 0.3226
## F-statistic: 57.37 on 13 and 1526 DF, p-value: < 2.2e-16

lmer.full.4.1 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians + Harmony:musicians +
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(1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

lmer.full.4.2 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians + Harmony:musicians +

(1 | musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that the intercept is not significant when it comes to

# adding random effect based on differences in AIC values

anova(lmer.full.4.1, lmer.full.4.2, REML=FALSE)

## Data: classical
## Models:
## lmer.full.4.1: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + (1 + Harmony + Instrument | Subject)
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (1 | musicians) + (1 + Harmony + Instrument |
## lmer.full.4.2: Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 36 6207.5 6399.8 -3067.8 6135.5
## lmer.full.4.2 37 6208.6 6406.2 -3067.3 6134.6 0.9505 1 0.3296

lmer.full.4.2 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians + Harmony:musicians +

(0 + Instrument | musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that instrument is not significant when it comes to

# adding random effect based on differences in AIC values

anova(lmer.full.4.2, lmer.full.4.1, REML=FALSE)

## Data: classical
## Models:
## lmer.full.4.1: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + (1 + Harmony + Instrument | Subject)
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (0 + Instrument | musicians) + (1 + Harmony +
## lmer.full.4.2: Instrument | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 36 6207.5 6399.8 -3067.8 6135.5
## lmer.full.4.2 42 6218.6 6442.9 -3067.3 6134.6 0.9505 6 0.9874

lmer.full.4.2 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians + Harmony:musicians +

(0 + Harmony | musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that harmony is significant when it comes to adding

# random effect based on differences in AIC values

anova(lmer.full.4.2, lmer.full.4.1, REML=FALSE)

## Data: classical
## Models:
## lmer.full.4.1: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + (1 + Harmony + Instrument | Subject)
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (0 + Harmony | musicians) + (1 + Harmony +
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## lmer.full.4.2: Instrument | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 36 6207.5 6399.8 -3067.8 6135.5
## lmer.full.4.2 46 6226.6 6472.2 -3067.3 6134.6 0.9505 10 0.9999

lmer.full.4.2 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians + Harmony:musicians +

(0 + Voice | musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that voice is not significant when it comes to adding random

# effect based on differences in AIC values

anova(lmer.full.4.2, lmer.full.4.1, REML=FALSE)

## Data: classical
## Models:
## lmer.full.4.1: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + (1 + Harmony + Instrument | Subject)
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (0 + Voice | musicians) + (1 + Harmony +
## lmer.full.4.2: Instrument | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 36 6207.5 6399.8 -3067.8 6135.5
## lmer.full.4.2 42 6219.5 6443.8 -3067.8 6135.5 0 6 1
music1 = lmer.full.4.1

With this first distinction of whether one is a musician, we can see that the interaction terms between
musicians/instrument and musicians/harmony were significant random e�ects, and there were no significant
random e�ects on classical stimulus rating.

Let’s decide a second distinction of whether one is a musician by whether one concentrated on the notes
with a rating of at least 3/5 and whether one concentrated on the instruments with a rating of at more than
4/5. This yields 864 musicians and 676 non-musicians. We perform the same analysis as above with this new
classification of musician:
classical = classical %>% mutate(musicians =

ifelse(as.numeric(classical$ConsNotes) >= 3 &
as.numeric(classical$ConsInstr) > 4 ,1,0))

lm.full.4.1 = lm(Classical ~ (Instrument + Harmony + Voice) * musicians, data=classical)

lm.reduced.4.1 = stepAIC(lm.full.4.1, trace=FALSE)
summary(lm.reduced.4.1)

##
## Call:
## lm(formula = Classical ~ Instrument + Harmony + Voice + musicians,
## data = classical)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.1262 -1.5344 -0.0643 1.6488 6.3597
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 3.991243 0.176100 22.665 < 2e-16 ***
## Instrumentpiano 1.656264 0.142032 11.661 < 2e-16 ***
## Instrumentstring 3.586555 0.141544 25.339 < 2e-16 ***
## HarmonyI-V-IV 0.002311 0.163787 0.014 0.98875
## HarmonyI-V-VI 0.846430 0.163788 5.168 2.68e-07 ***
## HarmonyIV-I-V 0.056711 0.163574 0.347 0.72887
## Voicepar3rd -0.407668 0.141889 -2.873 0.00412 **
## Voicepar5th -0.298024 0.141821 -2.101 0.03577 *
## musicians -0.215514 0.116690 -1.847 0.06495 .
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 2.272 on 1531 degrees of freedom
## Multiple R-squared: 0.312, Adjusted R-squared: 0.3085
## F-statistic: 86.81 on 8 and 1531 DF, p-value: < 2.2e-16

lmer.full.4.1 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians +

(1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

lmer.full.4.2 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians +

(1 | musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that the rahdom intercept is not significant when it comes to adding random effect

anova(lmer.full.4.1, lmer.full.4.2)

## Data: classical
## Models:
## lmer.full.4.1: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.1: (1 + Harmony + Instrument | Subject)
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: (1 | musicians) + (1 + Harmony + Instrument | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 33 6211.6 6387.8 -3072.8 6145.6
## lmer.full.4.2 34 6214.3 6395.9 -3073.2 6146.3 0 1 1

lmer.full.4.2 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians +

(0 + Instrument | musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that instrument is not significant when it comes to adding random effect

anova(lmer.full.4.2, lmer.full.4.1)

## Data: classical
## Models:
## lmer.full.4.1: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.1: (1 + Harmony + Instrument | Subject)
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: (0 + Instrument | musicians) + (1 + Harmony + Instrument |
## lmer.full.4.2: Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 33 6211.6 6387.8 -3072.8 6145.6
## lmer.full.4.2 39 6224.3 6432.6 -3073.2 6146.3 0 6 1
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lmer.full.4.2 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians +

(0 + Harmony| musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that harmony is not significant when it comes to adding random effect

anova(lmer.full.4.2, lmer.full.4.1)

## Data: classical
## Models:
## lmer.full.4.1: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.1: (1 + Harmony + Instrument | Subject)
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: (0 + Harmony | musicians) + (1 + Harmony + Instrument | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 33 6211.6 6387.8 -3072.8 6145.6
## lmer.full.4.2 43 6231.5 6461.1 -3072.7 6145.5 0.1062 10 1

lmer.full.4.2 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians +

(0 + Voice| musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that harmony is not significant when it comes to adding random effect

anova(lmer.full.4.2, lmer.full.4.1)

## Data: classical
## Models:
## lmer.full.4.1: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.1: (1 + Harmony + Instrument | Subject)
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: (0 + Voice | musicians) + (1 + Harmony + Instrument | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 33 6211.6 6387.8 -3072.8 6145.6
## lmer.full.4.2 39 6223.5 6431.7 -3072.7 6145.5 0.1062 6 1
music2 = lmer.full.4.1

We find that with this classification of musician, instrument was the only fixed e�ect that depended on
musicians, and no random e�ects were statistically significant.

If we try a third dichotomization, where someone rated their piano playing or guitar playing at at least 2/5, we
get that 784 rows of our dataset were evaluated by musicians, and 756 were evaluated by non-musicians. We
can continue to test random e�ects of our model to see if any variables have random e�ects that significantly
impact classical stimulus rating.
classical = classical %>% mutate(musicians =

ifelse(as.numeric(classical$GuitarPlay) >= 2 |
as.numeric(classical$PianoPlay) >= 2 ,
1,0))

lm.full.4.1 = lm(Classical ~ (Instrument + Harmony + Voice) * musicians, data=classical)

lm.reduced.4.1 = stepAIC(lm.full.4.1, trace=FALSE)
summary(lm.reduced.4.1)

##
## Call:
## lm(formula = Classical ~ Instrument + Harmony + Voice + musicians +
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## Harmony:musicians, data = classical)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.6758 -1.6270 0.0244 1.5946 6.2772
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5411 0.1991 17.790 < 2e-16 ***
## Instrumentpiano 1.6582 0.1401 11.840 < 2e-16 ***
## Instrumentstring 3.5855 0.1396 25.689 < 2e-16 ***
## HarmonyI-V-IV 0.1640 0.2305 0.712 0.47684
## HarmonyI-V-VI 0.4815 0.2305 2.089 0.03689 *
## HarmonyIV-I-V 0.1481 0.2305 0.643 0.52051
## Voicepar3rd -0.4085 0.1399 -2.920 0.00355 **
## Voicepar5th -0.2998 0.1398 -2.144 0.03221 *
## musicians 0.6468 0.2282 2.835 0.00464 **
## HarmonyI-V-IV:musicians -0.3164 0.3231 -0.979 0.32753
## HarmonyI-V-VI:musicians 0.7207 0.3231 2.231 0.02584 *
## HarmonyIV-I-V:musicians -0.1792 0.3227 -0.555 0.57880
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 2.241 on 1528 degrees of freedom
## Multiple R-squared: 0.3324, Adjusted R-squared: 0.3276
## F-statistic: 69.16 on 11 and 1528 DF, p-value: < 2.2e-16

lmer.full.4.1 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians + Harmony:musicians +

(1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

lmer.full.4.2 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians + Harmony:musicians +

(1 | musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that intercept is significant when it comes to adding

# random effect based on differences in AIC values

anova(lmer.full.4.2, lm.full.4.1, REML=FALSE)

## Data: classical
## Models:
## lm.full.4.1: Classical ~ (Instrument + Harmony + Voice) * musicians
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (1 | musicians) + (1 + Harmony + Instrument |
## lmer.full.4.2: Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lm.full.4.1 17 6874.1 6964.9 -3420.1 6840.1
## lmer.full.4.2 37 6207.0 6404.6 -3066.5 6133.0 707.12 20 < 2.2e-16
##
## lm.full.4.1
## lmer.full.4.2 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
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lmer.full.4.3 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians + Harmony:musicians +

(1 + Instrument | musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that instrument is not significant when it comes to adding

# random effect based on differences in AIC values

anova(lmer.full.4.2, lmer.full.4.3, REML=FALSE)

## Data: classical
## Models:
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (1 | musicians) + (1 + Harmony + Instrument |
## lmer.full.4.2: Subject)
## lmer.full.4.3: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.3: Harmony:musicians + (1 + Instrument | musicians) + (1 + Harmony +
## lmer.full.4.3: Instrument | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.2 37 6207.0 6404.6 -3066.5 6133.0
## lmer.full.4.3 42 6216.6 6440.8 -3066.3 6132.6 0.4236 5 0.9947

lmer.full.4.3 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians + Harmony:musicians +

(1 + Harmony | musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that harmony is not significant when it comes to adding random

# effect based on differences in AIC values

anova(lmer.full.4.2, lmer.full.4.3, REML=FALSE)

## Data: classical
## Models:
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (1 | musicians) + (1 + Harmony + Instrument |
## lmer.full.4.2: Subject)
## lmer.full.4.3: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.3: Harmony:musicians + (1 + Harmony | musicians) + (1 + Harmony +
## lmer.full.4.3: Instrument | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.2 37 6207.0 6404.6 -3066.5 6133.0
## lmer.full.4.3 46 6224.6 6470.2 -3066.3 6132.6 0.4228 9 1

lmer.full.4.3 = lmer(Classical ~ Instrument + Harmony + Voice + musicians +
Instrument:musicians + Harmony:musicians +

(1 + Voice | musicians) + (1 + Harmony + Instrument | Subject), data=classical,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that voice is not significant when it comes to adding random

# effect based on differences in AIC values

anova(lmer.full.4.2, lmer.full.4.3, REML=FALSE)

## Data: classical
## Models:
## lmer.full.4.2: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (1 | musicians) + (1 + Harmony + Instrument |
## lmer.full.4.2: Subject)
## lmer.full.4.3: Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## lmer.full.4.3: Harmony:musicians + (1 + Voice | musicians) + (1 + Harmony +
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## lmer.full.4.3: Instrument | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.2 37 6207.0 6404.6 -3066.5 6133.0
## lmer.full.4.3 42 6216.6 6440.8 -3066.3 6132.6 0.4232 5 0.9947
music3 = lmer.full.4.2

Here, we can see that this dichotomization yields instrument and harmony that have significant interactions
with musician, and the intercept is the only statistically significant random e�ect.

Below are summaries of our final models based on our three dichotomizations of musician:
m1 = summary(music1)
m2 = summary(music2)
m3 = summary(music3)
# full summary of dichotomization 1

m1

## Linear mixed model fit by maximum likelihood [�lmerMod�]
## Formula:
## Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## Harmony:musicians + (1 + Harmony + Instrument | Subject)
## Data: classical
## Control: lmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6207.5 6399.8 -3067.8 6135.5 1504
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.4578 -0.5707 0.0046 0.5544 3.5492
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 1.6443 1.2823
## HarmonyI-V-IV 0.1141 0.3378 0.70
## HarmonyI-V-VI 1.3478 1.1610 0.16 0.53
## HarmonyIV-I-V 0.0839 0.2896 0.20 -0.20 0.42
## Instrumentpiano 1.8226 1.3501 -0.27 -0.40 -0.30 0.00
## Instrumentstring 3.3377 1.8269 -0.55 -0.67 -0.51 -0.12 0.59
## Residual 2.4986 1.5807
## Number of obs: 1540, groups: Subject, 43
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.677426 0.304761 12.067
## Instrumentpiano 1.961137 0.312072 6.284
## Instrumentstring 4.144108 0.404058 10.256
## HarmonyI-V-IV 0.009662 0.170594 0.057
## HarmonyI-V-VI 0.266794 0.287767 0.927
## HarmonyIV-I-V 0.004831 0.166699 0.029
## Voicepar3rd -0.401627 0.098712 -4.069
## Voicepar5th -0.301112 0.098663 -3.052
## musicians 0.405117 0.439009 0.923
## Instrumentpiano:musicians -0.660073 0.458102 -1.441
## Instrumentstring:musicians -1.194108 0.592428 -2.016
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## HarmonyI-V-IV:musicians -0.017502 0.250809 -0.070
## HarmonyI-V-VI:musicians 1.261255 0.422183 2.987
## HarmonyIV-I-V:musicians 0.115109 0.244749 0.470
## convergence code: 0
## boundary (singular) fit: see ?isSingular
# full summary of dichotomization 2

m2

## Linear mixed model fit by maximum likelihood [�lmerMod�]
## Formula:
## Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## (1 + Harmony + Instrument | Subject)
## Data: classical
## Control: lmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6211.6 6387.8 -3072.8 6145.6 1507
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.5459 -0.5707 -0.0010 0.5340 3.5074
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 1.6684 1.2917
## HarmonyI-V-IV 0.1091 0.3304 0.71
## HarmonyI-V-VI 1.7451 1.3210 0.23 0.47
## HarmonyIV-I-V 0.1062 0.3260 0.18 -0.12 0.43
## Instrumentpiano 1.9164 1.3843 -0.26 -0.66 -0.40 -0.29
## Instrumentstring 3.6956 1.9224 -0.56 -0.73 -0.59 -0.24 0.62
## Residual 2.4975 1.5803
## Number of obs: 1540, groups: Subject, 43
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 4.012853 0.331830 12.093
## Instrumentpiano 1.632376 0.339289 4.811
## Instrumentstring 3.519062 0.429562 8.192
## HarmonyI-V-IV 0.001884 0.124566 0.015
## HarmonyI-V-VI 0.853968 0.231453 3.690
## HarmonyIV-I-V 0.058673 0.124144 0.473
## Voicepar3rd -0.401682 0.098691 -4.070
## Voicepar5th -0.301505 0.098642 -3.057
## musicians -0.263240 0.432660 -0.608
## Instrumentpiano:musicians 0.038727 0.440352 0.088
## Instrumentstring:musicians 0.124372 0.534162 0.233
##
## Correlation of Fixed Effects:
## (Intr) Instrmntp Instrmnts HI-V-I HI-V-V HIV-I- Vcpr3r Vcpr5t
## Instrumntpn -0.297
## Instrmntstr -0.557 0.564
## HrmnyI-V-IV 0.013 -0.164 -0.202
## HrmnyI-V-VI 0.033 -0.218 -0.350 0.389
## HrmnyIV-I-V -0.114 -0.071 -0.066 0.398 0.375
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## Voicepar3rd -0.149 0.001 0.000 0.000 -0.001 0.001
## Voicepar5th -0.148 0.000 0.000 -0.001 -0.002 -0.001 0.500
## musicians -0.728 0.218 0.408 0.001 0.000 0.000 0.000 0.000
## Instrmntpn: 0.219 -0.726 -0.367 -0.002 -0.001 0.000 -0.001 0.000
## Instrmntst: 0.427 -0.384 -0.694 -0.001 -0.001 0.000 0.000 0.001
## muscns Instrmntp:
## Instrumntpn
## Instrmntstr
## HrmnyI-V-IV
## HrmnyI-V-VI
## HrmnyIV-I-V
## Voicepar3rd
## Voicepar5th
## musicians
## Instrmntpn: -0.301
## Instrmntst: -0.587 0.529
## convergence code: 0
## boundary (singular) fit: see ?isSingular
# full summary of dichotomization 3

m3

## Linear mixed model fit by maximum likelihood [�lmerMod�]
## Formula:
## Classical ~ Instrument + Harmony + Voice + musicians + Instrument:musicians +
## Harmony:musicians + (1 | musicians) + (1 + Harmony + Instrument |
## Subject)
## Data: classical
## Control: lmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6207.0 6404.6 -3066.5 6133.0 1503
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.6116 -0.5662 -0.0001 0.5474 3.5292
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 1.518e+00 1.232e+00
## HarmonyI-V-IV 1.348e-01 3.671e-01 0.75
## HarmonyI-V-VI 1.620e+00 1.273e+00 0.12 0.60
## HarmonyIV-I-V 1.256e-01 3.544e-01 0.22 0.06 0.51
## Instrumentpiano 1.919e+00 1.385e+00 -0.28 -0.43 -0.37 -0.12
## Instrumentstring 3.631e+00 1.905e+00 -0.54 -0.72 -0.58 -0.26
## musicians (Intercept) 1.215e-14 1.102e-07
## Residual 2.489e+00 1.578e+00
##
##
##
##
##
##
## 0.62
##
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##
## Number of obs: 1540, groups: Subject, 43; musicians, 2
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.42500 0.30865 11.097
## Instrumentpiano 1.75794 0.33340 5.273
## Instrumentstring 3.82937 0.43892 8.724
## HarmonyI-V-IV 0.16402 0.18098 0.906
## HarmonyI-V-VI 0.48148 0.32172 1.497
## HarmonyIV-I-V 0.14815 0.17977 0.824
## Voicepar3rd -0.40191 0.09852 -4.079
## Voicepar5th -0.30166 0.09847 -3.063
## musicians 0.86267 0.42422 2.034
## Instrumentpiano:musicians -0.20403 0.46661 -0.437
## Instrumentstring:musicians -0.47114 0.61367 -0.768
## HarmonyI-V-IV:musicians -0.31824 0.25357 -1.255
## HarmonyI-V-VI:musicians 0.72862 0.45011 1.619
## HarmonyIV-I-V:musicians -0.17526 0.25159 -0.697
## convergence code: 0
## boundary (singular) fit: see ?isSingular

knitr::kable(m1$coefficients)
knitr::kable(m2$coefficients)
knitr::kable(m3$coefficients)

As a result, from this small series of tests, we conclude that while in people who self-identify as musicians
may be influenced by things that do not influence non-musicians in some cases, our results are sensitive to
where we choose to dichotomize.
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5. Classical vs. Popular

We want to replicate our findings, but instead create a model that will predict popular music stimulus ratings.

a.

First, we want to test the influence of Instrument, Harmony & Voice on Popular music reatings. To do this,
we can begin by testing fixed e�ects of each variable, and then we can begin to add in possible random e�ects
afterward.

We begin by finding which fixed e�ects should be added to our model. We do this by fitting popular ratings
against all interactions of instrument, harmony, and voice, before reducing the number of predictors with a
step function and AIC as our criterion.
pop.lm.full.1 = lm(Popular ~ Instrument * Harmony * Voice - 1, data=popular)
pop.lm.reduced.1 = stepAIC(pop.lm.full.1, trace=FALSE)

x2 = summary(pop.lm.reduced.1)

knitr::kable(x2$coefficients)

Estimate Std. Error t value Pr(>|t|)
Instrumentguitar 6.866019 0.0990705 69.30436 0
Instrumentpiano 5.689587 0.0996527 57.09415 0
Instrumentstring 3.842054 0.0989745 38.81864 0

From our initial addition of fixed e�ects to a linear model, we find that only instrument is significant in
predicting popular scores from the summary above.

To analyze the fit of our basic model predicting popular song scores from instrument, we plot diagnostic plots
of this basic model below:
par(mfrow=c(2,2))
plot(pop.lm.reduced.1)
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While our data is categorical, we can’t infer too much from our diagnostic plots. However, the residuals
vs. fitted lines show a regression curve that is roughly horizontal and around 0 with few outliers. Additionally,
our normal-QQ plot seems to roughly follow a linear trend and our scale-location plots show a regression line
that is roughly horizontal. We don’t see any points with high Cook’s distance in our model, either.

Next, we would like to determine any random e�ects that might influence popular scores, as conditioned
on subject, to determine whether any of these e�ects may vary across subject. We do this by incrementally
adding random e�ects, and determining via an ANOVA test as to whether they are significant.

Starting with testing the intercept, we will incrementally test random e�ects below:
# test significance of random intercept: we find that this is significant via ANOVA

pop.lmer.1 = lmer(Popular ~ Instrument + (1 | Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

anova(pop.lmer.1, pop.lm.reduced.1)

## Data: popular
## Models:
## pop.lm.reduced.1: Popular ~ Instrument - 1
## pop.lmer.1: Popular ~ Instrument + (1 | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## pop.lm.reduced.1 4 6870.6 6892.0 -3431.3 6862.6
## pop.lmer.1 5 6479.4 6506.1 -3234.7 6469.4 393.2 1 < 2.2e-16
##
## pop.lm.reduced.1
## pop.lmer.1 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
# test significance of instrument as random effect: we find that this

# is significant via difference in AIC
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pop.lmer.2 = lmer(Popular ~ Instrument + (1 + Instrument| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

anova(pop.lmer.1, pop.lmer.2)

## Data: popular
## Models:
## pop.lmer.1: Popular ~ Instrument + (1 | Subject)
## pop.lmer.2: Popular ~ Instrument + (1 + Instrument | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## pop.lmer.1 5 6479.4 6506.1 -3234.7 6469.4
## pop.lmer.2 10 6327.4 6380.8 -3153.7 6307.4 162.05 5 < 2.2e-16 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
# test significance of voice as random effect: we find that this is not

# significant via difference in AIC

pop.lmer.3 = lmer(Popular ~ Instrument + Voice +
(1 + Instrument + Voice | Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

anova(pop.lmer.2, pop.lmer.3)

## Data: popular
## Models:
## pop.lmer.2: Popular ~ Instrument + (1 + Instrument | Subject)
## pop.lmer.3: Popular ~ Instrument + Voice + (1 + Instrument + Voice | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## pop.lmer.2 10 6327.4 6380.8 -3153.7 6307.4
## pop.lmer.3 21 6340.5 6452.6 -3149.2 6298.5 8.8674 11 0.6341

In summary, we find that our best model predicts popular scores from the fixed e�ect of instrument and
voice, as well as the random e�ects of an intercept, instrument, and voice. When only considering instrument,
harmony and voice, we get the following model, seen in the summary below:
summary(pop.lmer.3)

## Linear mixed model fit by maximum likelihood [�lmerMod�]
## Formula: Popular ~ Instrument + Voice + (1 + Instrument + Voice | Subject)
## Data: popular
## Control: lmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6340.5 6452.6 -3149.3 6298.5 1519
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4594 -0.5782 0.0254 0.6070 2.9113
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 1.415490 1.18974
## Instrumentpiano 1.617753 1.27191 -0.21
## Instrumentstring 2.556242 1.59883 -0.35 0.72
## Voicepar3rd 0.036140 0.19010 -0.91 0.22 0.11
## Voicepar5th 0.005832 0.07637 -0.07 -0.26 0.38 -0.13
## Residual 2.984337 1.72752
## Number of obs: 1540, groups: Subject, 43
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##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.7294 0.2064 32.601
## Instrumentpiano -1.1667 0.2221 -5.253
## Instrumentstring -3.0234 0.2665 -11.344
## Voicepar3rd 0.1768 0.1117 1.583
## Voicepar5th 0.2314 0.1084 2.134
##
## Correlation of Fixed Effects:
## (Intr) Instrmntp Instrmnts Vcpr3r
## Instrumntpn -0.284
## Instrmntstr -0.389 0.673
## Voicepar3rd -0.461 0.051 0.026
## Voicepar5th -0.267 -0.024 0.038 0.477
## convergence code: 0
## boundary (singular) fit: see ?isSingular

To test the residuals of this model, we plot Cholesky residuals against fitted values, facetted by subject below:
rchol = r.chol(pop.lmer.3)

sub = (popular$Subject)
index <- sub
for (j in unique(sub)) {

len <- sum(sub==j)
index[sub==j] <- 1:len

}

new.data <- data.frame(index,rchol,sub)
names(new.data) <- c("index","rchol","sub")
ggplot(new.data,aes(x=index,y=rchol)) +

facet_wrap( ~ sub, as.table=F) +
geom_point(pch=1,color="Blue") +
geom_hline(yintercept=0) +
labs(title="Residuals vs. Index of LMER Model, Facetted by Subject",

x = "Index", y = "Cholesky Residuals")
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We can see that our residuals look fairly homoscedastic and centered around 0. This indicates that our model
seems reasonable.
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b.

Next, we’d like to add ohter fixed e�ects on top of instrument. We can do this in an automated manner by
first adding all the other predictors, and then stepping backward with a criterion like AIC. Afterward, we
can reduce the number of predictors if necessary depending on whether there exists multicollinearity in our
model. We do this below:
pop.full.1 = lmer(Popular ~ Subject + Harmony + Instrument + Voice + Selfdeclare +

OMSI + X16.minus.17 + ConsInstr + ConsNotes + Instr.minus.Notes +
PachListen + ClsListen + KnowRob + KnowAxis + X1990s2000s +
X1990s2000s.minus.1960s1970s + CollegeMusic + NoClass +
APTheory + Composing + PianoPlay + GuitarPlay + (1 | Subject),

data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
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# going to delete all extraneous pages associated with trace output I can�t hide

pop.reduced.1 = fitLMER.fnc(pop.full.1, method="AIC",
ran.effects=c("(0 + Instrument | Subject)",

"(0 + Voice | Subject)"),
set.REML.FALSE = TRUE)

# refit model without multicollinear terms (commented out long summary and print

# final model summary below)

pop.reduced.1 = update(pop.reduced.1, . ~ . - Instr.minus.Notes - OMSI - APTheory - X16.minus.17)
vif(pop.reduced.1)

## GVIF Df GVIF^(1/(2*Df))
## Instrument 1.013545e+00 2 1.003369
## Voice 1.013572e+00 2 1.003376
## Selfdeclare 7.287245e+02 5 1.933109
## ConsInstr 5.734550e+05 11 1.827048
## ConsNotes 4.370827e+02 4 2.138309
## PachListen 1.613246e+01 2 2.004127
## ClsListen 6.094326e+02 4 2.229029
## KnowAxis 2.628111e+01 2 2.264180
## X1990s2000s 1.714004e+03 4 2.536597
## Composing 2.547661e+02 4 1.998793

# summary(pop.reduced.1)

From this process, we’ve reduced our fixed e�ects on popular scores to Instrument, Selfdeclare, ConsInstr,
ConsNotes, PachListen, ClsListen, KnowAxis, X1990s2000s, and Composing

We’d like to re-examine some random e�ects to determine whether any may be significant given our new list
of fixed e�ects.

After trying every single variable in our dataset that we haven’t already excluded in Parts 1 and 2, we found
that there weren’t any random e�ects conditioned on subject that were worthwhile to add (given the most
staitstically significant addition of random e�ect was X1990s2000s, with a p-value of 0.6824 when running an
ANOVA test for the addition of a single random e�ect.)

Thus, our final model predicts popular song scores from fixed e�ects of Instrument, Selfdeclare, ConsInstr,
ConsNotes, PachListen, ClsListen, KnowAxis, X1990s2000s, Composing, as well as random e�ects of
instrument and voice. The equation of

Populari = –0j[i] + –1j[i]Instrumenti + –2j[i]V oicei + —3iSelfdeclarei + —4iConsInstri + —5iConsNotesi +
—6iPachListeni + —7iClsListeni + —8iKnowAxisi + —9iX1990s2000si + —10iComposingi + ‘i; ‘i ≥ N(0, ‡2),

where ‡2 = 2.93849

In short, to interpret: - fixed e�ects (—ij ’s): Holding all else constant, if predictor i’s fixed e�ect lies in group
j rather than the base level assumed by our intercept term, then in expectation our popular stimulus score
increases by —ij - random e�ects (÷ij ’s): Holding all else constant, if predictor i’s random e�ect lies in group j
rather than the base level assumed by our intercept term, then in expectation our popular stimulus score
increases by an iid draw from N(0, ·2

j ), where ·2
j is the variance associated with a random e�ect within the

predictor’s group j, conditioned on subject.

The summary of our model can be seen below, where values of random e�ects variances (ie. ·2 terms
associated with random iid draws), as well as fixed e�ect estimates (— terms) can be found below:
pop_final = summary(pop.reduced.1)
pop_final

## Linear mixed model fit by maximum likelihood [�lmerMod�]
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## Formula:
## Popular ~ Instrument + Voice + Selfdeclare + ConsInstr + ConsNotes +
## PachListen + ClsListen + KnowAxis + X1990s2000s + Composing +
## (1 + Instrument + Voice | Subject)
## Data: popular
## Control: lmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 6299.5 6603.8 -3092.7 6185.5 1483
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4614 -0.5786 0.0270 0.6214 2.9639
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 0.26405 0.5139
## Instrumentpiano 1.74078 1.3194 -0.72
## Instrumentstring 2.59926 1.6122 -0.99 0.72
## Voicepar3rd 0.04534 0.2129 -0.31 0.32 0.15
## Voicepar5th 0.03625 0.1904 -0.39 0.16 0.27 0.74
## Residual 2.93715 1.7138
## Number of obs: 1540, groups: Subject, 43
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 7.5673 1.2126 6.241
## Instrumentpiano -1.1662 0.2280 -5.114
## Instrumentstring -3.0240 0.2680 -11.282
## Voicepar3rd 0.1765 0.1118 1.578
## Voicepar5th 0.2310 0.1108 2.084
## Selfdeclare2 -0.3781 0.3575 -1.057
## Selfdeclare3 -1.7419 0.5307 -3.282
## Selfdeclare4 -0.1749 0.3758 -0.465
## Selfdeclare5 0.1057 0.6700 0.158
## Selfdeclare6 -1.9978 1.0264 -1.946
## ConsInstr0.67 -4.9619 1.3644 -3.637
## ConsInstr1 0.4007 1.0178 0.394
## ConsInstr1.67 2.6657 1.5751 1.692
## ConsInstr2.33 1.9002 1.0551 1.801
## ConsInstr2.67 0.1437 1.0663 0.135
## ConsInstr3 -0.1358 1.3152 -0.103
## ConsInstr3.33 4.6356 1.3944 3.324
## ConsInstr3.67 0.3362 1.3057 0.258
## ConsInstr4 -0.3189 1.2672 -0.252
## ConsInstr4.33 1.6829 1.3726 1.226
## ConsInstr5 1.9356 1.4850 1.303
## ConsNotes1 1.1200 0.6246 1.793
## ConsNotes3 -0.3681 0.4229 -0.871
## ConsNotes4 1.9553 0.7968 2.454
## ConsNotes5 0.4181 0.5702 0.733
## PachListen3 -1.7315 0.7873 -2.199
## PachListen5 -2.7274 0.4537 -6.011
## ClsListen1 0.9383 0.4410 2.128
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## ClsListen3 0.5776 0.4530 1.275
## ClsListen4 0.7597 0.8794 0.864
## ClsListen5 -1.3295 0.5665 -2.347
## KnowAxis1 3.4702 0.7814 4.441
## KnowAxis5 0.0833 0.3288 0.253
## X1990s2000s2 1.6436 0.6004 2.738
## X1990s2000s3 1.1602 0.4874 2.380
## X1990s2000s4 1.5063 1.0698 1.408
## X1990s2000s5 0.4708 0.4737 0.994
## Composing1 -0.5520 0.2870 -1.923
## Composing2 0.8179 0.3989 2.050
## Composing3 -0.3188 0.3611 -0.883
## Composing4 -1.5005 0.5130 -2.925
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## convergence code: 0
## boundary (singular) fit: see ?isSingular

# knitr::kable(pop_final$coefficients)
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c.

Finally, we would like to determine if our dichotomization of subjects into musicians vs. non-musicians show
that certain predictors a�ect musicians and don’t a�ect non-musicians in predicting popular stimuli scores.
Additionally, we would like to find out if these predictors that a�ect musicians are sensitive to how we create
our dichotomization, similar to Section 4.

To answer these questions, we can formulate multiple di�erent dichotomizations of musicians.

One first naive split is whether one self-declared themselves as a musician or not. If we split based on whether
self-declared store is at least a 3/6, then we get that 713 rows have been evaluated by musicians, and 827
rows have been evaluated by non-musicians.
popular = popular %>% mutate(musicians = ifelse(as.numeric(Selfdeclare) >= 3,1,0))

Now, let’s test adding instrument, harmony, and voice as fixed and random e�ects in our model to determine
our best model:
lm.full.4.1 = lm(Popular ~ (Instrument + Harmony + Voice) * musicians, data=popular)

lm.reduced.4.1 = stepAIC(lm.full.4.1, trace=FALSE)
summary(lm.reduced.4.1)

##
## Call:
## lm(formula = Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## Harmony:musicians, data = popular)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.0397 -1.6577 0.0798 1.5173 6.4954
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.040e+00 1.900e-01 37.048 < 2e-16 ***
## Instrumentpiano -1.396e+00 1.901e-01 -7.341 3.44e-13 ***
## Instrumentstring -3.535e+00 1.901e-01 -18.594 < 2e-16 ***
## HarmonyI-V-IV 4.460e-15 2.193e-01 0.000 1.0000
## HarmonyI-V-VI 1.337e-01 2.196e-01 0.609 0.5427
## HarmonyIV-I-V -2.174e-01 2.193e-01 -0.991 0.3218
## musicians -9.705e-02 2.788e-01 -0.348 0.7278
## Instrumentpiano:musicians 4.722e-01 2.797e-01 1.688 0.0916 .
## Instrumentstring:musicians 1.098e+00 2.786e-01 3.939 8.55e-05 ***
## HarmonyI-V-IV:musicians -2.238e-02 3.226e-01 -0.069 0.9447
## HarmonyI-V-VI:musicians -8.302e-01 3.225e-01 -2.574 0.0101 *
## HarmonyIV-I-V:musicians -6.752e-02 3.221e-01 -0.210 0.8340
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 2.231 on 1528 degrees of freedom
## Multiple R-squared: 0.2516, Adjusted R-squared: 0.2462
## F-statistic: 46.7 on 11 and 1528 DF, p-value: < 2.2e-16

lmer.full.4.1 = lmer(Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
Harmony:musicians +

+ (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
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lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
Harmony:musicians +

(1 | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that the intercept is not significant when it comes to adding random effect

anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (1 | musicians) + (1 + Voice | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 19 6464.5 6565.9 -3213.2 6426.5
## lmer.full.4.2 20 6466.5 6573.3 -3213.2 6426.5 0 1 1

lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
Harmony:musicians +

(0 + Instrument | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that instrument is somewhat significant when it comes to adding random effect

# p=0.051

anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (0 + Instrument | musicians) + (1 + Voice |
## lmer.full.4.2: Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 19 6464.5 6565.9 -3213.2 6426.5
## lmer.full.4.2 25 6476.5 6610.0 -3213.2 6426.5 0 6 1

lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
Harmony:musicians +

(0 + Voice | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that instrument is not significant when it comes to adding random effect

anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (0 + Voice | musicians) + (1 + Voice |
## lmer.full.4.2: Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 19 6464.5 6565.9 -3213.2 6426.5
## lmer.full.4.2 25 6475.8 6609.3 -3212.9 6425.8 0.656 6 0.9954
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lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
Harmony:musicians +

(0 + Harmony | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that voice is not significant when it comes to adding random effect

anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + (0 + Harmony | musicians) + (1 + Voice |
## lmer.full.4.2: Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 19 6464.5 6565.9 -3213.2 6426.5
## lmer.full.4.2 29 6484.5 6639.3 -3213.2 6426.5 0 10 1
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From this initial dichotomization, we find that our intercept and harmony have significant random e�ects
when conditioned on whether one is a musician.

Let’s decide a second distinction of whether one is a musician by whether one concentrated on the notes
with a rating of at least 3/5 and whether one concentrated on the instruments with a rating of at more than
4/5. This yields 864 musicians and 676 non-musicians. We perform the same analysis as above with this
new classification of musician (in this case, 864 data points are classified by musicians, while 676 rows are
classified by non-musicians):
popular = popular %>% mutate(musicians =

ifelse(as.numeric(ConsNotes) >= 3 &
as.numeric(ConsInstr) > 4 ,1,0))

lm.full.4.1 = lm(Popular ~ (Instrument + Harmony + Voice) * musicians, data=popular)

lm.reduced.4.1 = stepAIC(lm.full.4.1, trace=FALSE)
summary(lm.reduced.4.1)

##
## Call:
## lm(formula = Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## Harmony:musicians, data = popular)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.8847 -1.6765 0.1383 1.4717 6.1713
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.85771 0.21054 32.572 < 2e-16 ***
## Instrumentpiano -1.09504 0.21194 -5.167 2.7e-07 ***
## Instrumentstring -2.71034 0.21029 -12.889 < 2e-16 ***
## HarmonyI-V-IV 0.02694 0.24399 0.110 0.9121
## HarmonyI-V-VI 0.09893 0.24398 0.405 0.6852
## HarmonyIV-I-V -0.32941 0.24326 -1.354 0.1759
## musicians 0.24356 0.28153 0.865 0.3871
## Instrumentpiano:musicians -0.14455 0.28258 -0.512 0.6091
## Instrumentstring:musicians -0.56223 0.28134 -1.998 0.0458 *
## HarmonyI-V-IV:musicians -0.06860 0.32574 -0.211 0.8332
## HarmonyI-V-VI:musicians -0.62439 0.32573 -1.917 0.0554 .
## HarmonyIV-I-V:musicians 0.14423 0.32519 0.444 0.6575
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 2.243 on 1528 degrees of freedom
## Multiple R-squared: 0.2439, Adjusted R-squared: 0.2384
## F-statistic: 44.8 on 11 and 1528 DF, p-value: < 2.2e-16

lmer.full.4.1 = lmer(Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
+ (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
+ (1 | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that the intercept is not significant when it comes to adding random effect
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anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
## lmer.full.4.1: +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
## lmer.full.4.2: +(1 | musicians) + (1 + Voice | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 17 6486 6576.7 -3226 6452
## lmer.full.4.2 18 6488 6584.1 -3226 6452 0 1 1

lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
+ (0 + Instrument | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that instrument is somewhat significant when it comes to adding random effect

# p=0.051

anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
## lmer.full.4.1: +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
## lmer.full.4.2: +(0 + Instrument | musicians) + (1 + Voice | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 17 6486.0 6576.7 -3226.0 6452.0
## lmer.full.4.2 23 6496.1 6618.9 -3225.1 6450.1 1.8338 6 0.9343

lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
+ (0 + Voice | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that voice is not significant when it comes to adding random effect

anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
## lmer.full.4.1: +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
## lmer.full.4.2: +(0 + Voice | musicians) + (1 + Voice | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 17 6486.0 6576.7 -3226.0 6452.0
## lmer.full.4.2 23 6497.2 6620.0 -3225.6 6451.2 0.775 6 0.9927

lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
+ (0 + Harmony | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that harmony is not significant when it comes to adding random effect

anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
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## lmer.full.4.1: +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Harmony:musicians +
## lmer.full.4.2: +(0 + Harmony | musicians) + (1 + Voice | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 17 6486 6576.7 -3226 6452
## lmer.full.4.2 27 6506 6650.1 -3226 6452 0 10 1
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We find that with this classification of musician, none of the random e�ects were statistically significant.

If we try a third dichotomization, where someone rated their piano playing or guitar playing at at least 2/5, we
get that 784 rows of our dataset were evaluated by musicians, and 756 were evaluated by non-musicians. We
can continue to test random e�ects of our model to see if any variables have random e�ects that significantly
impact popular stimulus rating.
popular = popular %>% mutate(musicians =

ifelse(as.numeric(popular$GuitarPlay) >= 2 |
as.numeric(popular$PianoPlay) >= 2 ,
1,0))

lm.full.4.1 = lm(Popular ~ (Instrument + Harmony + Voice) * musicians, data=popular)

lm.reduced.4.1 = stepAIC(lm.full.4.1, trace=FALSE)
summary(lm.reduced.4.1)

##
## Call:
## lm(formula = Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## Harmony:musicians, data = popular)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9577 -1.7235 0.0423 1.4463 6.7637
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.95767 0.19912 34.942 < 2e-16 ***
## Instrumentpiano -0.86905 0.19912 -4.364 1.36e-05 ***
## Instrumentstring -2.81349 0.19912 -14.129 < 2e-16 ***
## HarmonyI-V-IV -0.20635 0.22993 -0.897 0.3696
## HarmonyI-V-VI 0.07407 0.22993 0.322 0.7474
## HarmonyIV-I-V -0.36508 0.22993 -1.588 0.1125
## musicians 0.07075 0.27866 0.254 0.7996
## Instrumentpiano:musicians -0.60570 0.27944 -2.168 0.0303 *
## Instrumentstring:musicians -0.40984 0.27851 -1.472 0.1414
## HarmonyI-V-IV:musicians 0.38126 0.32225 1.183 0.2370
## HarmonyI-V-VI:musicians -0.64288 0.32225 -1.995 0.0462 *
## HarmonyIV-I-V:musicians 0.22802 0.32185 0.708 0.4788
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 2.235 on 1528 degrees of freedom
## Multiple R-squared: 0.249, Adjusted R-squared: 0.2436
## F-statistic: 46.06 on 11 and 1528 DF, p-value: < 2.2e-16

lmer.full.4.1 = lmer(Popular ~ Instrument + Harmony + musicians +
Instrument:musicians + Harmony:musicians +

+ (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians + Instrument:musicians + Harmony:musicians +
+ (1 | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))
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# we find that the intercept is significant when it comes to adding random effect

anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + +(1 | musicians) + (1 + Voice | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 19 6474.7 6576.1 -3218.3 6436.7
## lmer.full.4.2 20 6476.7 6583.5 -3218.3 6436.7 0 1 1

lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians +
Instrument:musicians + Harmony:musicians +

+ (0 + Instrument | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that instrument is somewhat significant when it comes to adding random effect

# p=0.051

anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + +(0 + Instrument | musicians) + (1 +
## lmer.full.4.2: Voice | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 19 6474.7 6576.1 -3218.3 6436.7
## lmer.full.4.2 25 6486.7 6620.2 -3218.3 6436.7 0 6 1

lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians +
Instrument:musicians + Harmony:musicians +

+ (0 + Voice | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that voice is not significant when it comes to adding random effect

anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + +(0 + Voice | musicians) + (1 + Voice |
## lmer.full.4.2: Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 19 6474.7 6576.1 -3218.3 6436.7
## lmer.full.4.2 25 6485.8 6619.3 -3217.9 6435.8 0.8475 6 0.9907

lmer.full.4.2 = lmer(Popular ~ Instrument + Harmony + musicians +
Instrument:musicians + Harmony:musicians +

+ (0 + Harmony | musicians) + (1 + Voice| Subject), data=popular,
REML=FALSE, control=lmerControl(optimizer = �bobyqa�))

# we find that harmony is not significant when it comes to adding random effect
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anova(lmer.full.4.1, lmer.full.4.2)

## Data: popular
## Models:
## lmer.full.4.1: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.1: Harmony:musicians + +(1 + Voice | Subject)
## lmer.full.4.2: Popular ~ Instrument + Harmony + musicians + Instrument:musicians +
## lmer.full.4.2: Harmony:musicians + +(0 + Harmony | musicians) + (1 + Voice |
## lmer.full.4.2: Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## lmer.full.4.1 19 6474.7 6576.1 -3218.3 6436.7
## lmer.full.4.2 29 6494.7 6649.5 -3218.3 6436.7 0 10 1

Here, we can see that this dichotomization of whether one is a musician creates random e�ects in which the
intercept and harmony are statistically significant in contributing to a prediction of popular stimulus rating.

As a result, from this small series of tests, we are inclined to believe that there are in fact random e�ects
conditioned on musician’s status in which musicians are influenced by predictors that non-musicians aren’t
influenced by (ie. harmony, intercept). However, compared to our classical scores model, our dichotomizations
for popular scores seem less sensitive to boundaries in which I dichotomized musicians.
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