
36-463/663: Multilevel & Hierarchical Models
Spring 2022

HW06 – Due Tue Mar 29, 11:59pm

• Please turn the homework in, as a single pdf, online in GradeScope using the link provided on the Assignment
page on canvas.cmu.edu. Upload one file per person.

• There are 2 main exercises, each with “parts”. . .

• These are not “interesting” exercises by themselves. Instead they are more like “finger exercises” to practice
writing, debugging, and examining the output of, stan() programs.

– Feel free to borrow ideas liberally from lecture notes, pdfs and R files shared in class, and/or from resources
you find on the www, etc.

Exercises
1. Chicks. The ChickWeight data frame is included with R, and you can access it with data(ChickWeight). It

has 578 rows and 4 columns from an experiment on the effect of diet on early growth of chicks. The variables
(Columns) are:

• weight: a numeric vector giving the body weight of the chick (gm).

• Time: a numeric vector giving the number of days since birth when the measurement was made.

• Chick: an ordered factor with levels 18 < . . . < 48 giving a unique identifier for the chick. The ordering of
the levels groups chicks on the same diet together and orders them according to their final weight (lightest
to heaviest) within diet.

• Diet: a factor with levels 1, ..., 4 indicating which experimental diet the chick received.

For most of this exercise we will be working with the model

log(weighti) = α0 j[i] + α1 j[i] · Timei + εi

α0 j = β0 + η0 j

α1 j = β1 + η1 j

εi
iid
∼ N(0, σ2)

η0 j
iid
∼ N(0, τ2

0)

η1 j
iid
∼ N(0, τ2

1) ,

where i is the observation number and j is the Chick number1. You will have to convert Chick from a factor
variable to a numerical variable, to work with stan().

(a) In the same folder as this assignment sheet there is a file chicks.stan with most of the program already
written, but the model section left blank. Fill in the blank model section2 and get the program to run using

1Also note that in this model we are just lettng ρη0 ,η1 = 0, to make the stan() coding less complicated.
2You should not have to change any of the code already in the file; just add to it. However if it is easier for you to change some of the code in

the file, that is fine too.

1

library(rstan), taking at least 500 MCMC steps per chain3, and accepting the other stan() defaults,
so that you end up with at least 1000 “good” MCMC samples from the four Markov chains produced. Turn
in:

• The completed stan program chicks.stan.
• A printout of the fitted stan object but including only the lines for β0, β1, τ0, τ1, and σ.

(You are free to use lmer() to estimate the corresponding multi-level model, to make sure you are on the
right track, but please don’t turn in any lmer() code or output for this part of the exercise.)

(b) Use shinystan or bayesplot to generate and turn in the following plots, neatly organized:

• For β0: (i) Histogram of the MCMC draws; (ii) Autocorrelation plot for at least one of the four Markov
chains; (iii) trace plot of all four Markov chains on the same graph, with different colors to indicate
the different Markov chains.
• For β1: the same three things.
• For τ0: the same three things.
• For τ1: the same three things.
• For σ: the same three things.

(c) Set y <- log(ChickWeight$weight), and use shinystan or bayesplot to produce graphical poste-
rior predictive checks (ppc’s) for

• T(y) = mean(y)
• T(y) = sd(y)
• At least one other test statistic T(y) that produces an interesting result.

(d) Now fit the corresponding lmer() model (the parameter estimates should be almost identical to your
estimates from the stan() model). Turn in

• The plot of the conditional residuals for the lmer() model. If the model fits well, these should be
approximately normally distributied.
• The plot of the “uniformized” conditional residuals4 for the lmer()model, using library(DHARMa).

If the model fits, these should be approximately uniformly distributed.

Write a sentence or two identifying and commenting on any suggested improvements to the model, or any
other useful information, that you can see in these plots.

2. Toenails. The toenail data frame comes from the faraway library, and you can access it by

install.packages("faraway")

library(faraway)

data(toenail)

There are 1908 observations from a study comparing two oral treatments for toenail infection. Patients were
evaluated for the degree of separation of the nail. Patients were randomized into two treatments and were fol-
lowed over seven visits—four in the first year and yearly thereafter. The patients have not been treated prior to
the first visit so this should be regarded as the baseline. The variables (columns) are:

• ID: ID of patient

• outcome: 0=none or mild seperation, 1=moderate or severe

3If you need to take more steps to get convergence to the stationary distribution, that is fine.
4We could build these by hand from the stan() model, but DHARMa is faster and less prone to user errors.

2

• treatment: the treatment A=0 or B=1

• month: time of the visit (not exactly monthly intervals hence not round numbers)

• visit: the number of the visit

For most of this exercise we will be working with the model

outcomei ∼ Bernoulli(pi)
logit(pi) = α0 j[i] + α1 j[i] ·monthi + β2 · treatment j[i] + εi

α0 j = β0 + η0 j

α1 j = β1 + η1 j

η0 j
iid
∼ N(0, τ2

0)

η1 j
iid
∼ N(0, τ2

1)

where i is the observation number and j is the patient ID number5. Note that there are some skips in the ID
number sequence in the data set; it would be simplest for working with stan() to convert these ID numbers to
successive integers with no skips. (Note that σ is missing from this model—why?)

(a) In the same folder as this assignment sheet there is a file toenails.stan with the parameters and
transformed parameters sections left blank. Fill in the blank sections6 and get the program to run using
library(rstan), taking at least 500 MCMC steps per chain7, and accepting the other stan() defaults,
so that you end up with at least 1000 “good” MCMC samples from the four Markov chains produced. Turn
in:

• The completed stan program toenails.stan.
• A printout of the fitted stan object but including only the lines for β0, β1, β2, τ0, and τ1.

Some notes:

• You are free to use glmer() to estimate the corresponding multi-level model, to make sure you are
on the right track, but please don’t turn in any glmer() code or output for this part of the exercise.
Note that, even if you have done everything right the magnitudes of the glmer() estimates may not
agree very well with the magnitudes of the stan() estimates; see part (d) below also.
• You will struggle to get a “great” run from stan() on this model. If you can get a run where most

or all of the difficulties are in yrep, that will be good enough: the various convergence and stability
diagnostics like Rhat don’t really apply to yrep since it is simulated from the posterior predictive
distribution; moreover the discreteness of yrep makes ne f f less meaningful.

(b) Use shinystan or bayesplot to generate and turn in the following plots, neatly organized:

• For β0: (i) Histogram of the MCMC draws; (ii) Autocorrelation plot for at least one of the four Markov
chains; (iii) trace plot of all four Markov chains on the same graph, with different colors to indicate
the different Markov chains.
• For β1: the same three things.
• For β2: the same three things.
• For τ0: the same three things.

5Also note that in this model we are just lettng ρη0 ,η1 = 0, to make the stan() coding less complicated.
6You should not have to change any of the code already in the file; just add to it. However if it is easier for you to change some of the code in

the file, that is fine too.
7If you need to take more steps to get convergence to the stationary distribution, that is fine.

3

• For τ1: the same three things.

(c) Set y <- toenail$outcome, and use shinystan or bayesplot to produce graphical posterior predic-
tive checks (ppc’s) for

• T(y) = mean(y)
• T(y) = sd(y)
• At least one other test statistic T(y) that produces an interesting result.

(d) Now fit the corresponding glmer() model (the parameter estimates should be almost identical to your
estimates from the stan() model). When I did this, I thought that fixed effect estimates from glmer()
were much less plausible than the fixed effect estimates from stan(), which made me trust the stan()
results more. Do you agree? Why or why not?

(e) Turn in

• The plot of the conditional residuals for the glmer() model. If the model fits well, these should be
approximately normally distributied.
• The plot of the “uniformized” conditional residuals8 for the lmer()model, using library(DHARMa).

If the model fits, these should be approximately uniformly distributed.

Write a sentence or two identifying and commenting on any suggested improvements to the model, or any
other useful information, that you can see in these plots (or if you think some or all of the plots are useless,
explain that as well).

8We could build these by hand from the stan()model, and we probably should since the stan() results seem more plausible than the glmer()
results, but DHARMa is faster and less prone to user errors; it will be fine for the purpose of just getting used to using and interpreting DHARMa stuff.

4

