36-763 Hierarchical Linear Model HW05

Tong Li
1. (a)

I use an individual fixed effect model as the baseline model, and see how do
‘Instrument’, ‘Harmony’ and ‘Voice’ improve the model fit.

First we fit the model including only individual indicators (factor variable
‘Subject’).

> fit.1a.baseline<-lm(Classical~Subject)

> summary(fit.1a.baseline)

Residual standard error: 2.328 on 2423 degrees of freedom
(27 observations deleted due to missingness)

Multiple R-squared: ©.2536, Adjusted R-squared: 0.2324

F-statistic: 11.93 on 69 and 2423 DF, p-value: < 2.2e-16

The result shows that the R-square is 0.2536, meaning that the individual
indicators can explain about 25% of the variation in the classical ratings.

Then we include the factor variable ‘Instrument’ into the model.

> fit.1a.instru<-Im(Classical~Subject+Instrument)
> summary(fit.1la.instru)

Subjectys -0.4rLLL VU.45481 -1.038 U.L99L58
Subject98 -0.47222 0.45481 -1.038 0.299238

Instrumentpiano 1.37636 0.09502 14.485 < 2e-16 ***
Instrumentstring 3.13148 0.0943% 33.175 < 2e-16 ***

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.5 “.” 0.1 * ’ 1

Residual standard error: 1.93 on 2421 degrees of freedom
(27 observations deleted due to missingness)

Multiple R-squared: ©.4877, Adjusted R-squared: 0.4727

F-statistic: 32.46 on 71 and 2421 DF, p-value: < 2.2e-16

It can be seen from the results that R-square is hugely increased from 0.2536 to
0.4877, meaning that ‘Instrument’ has brought considerable explanatory power
to the model. Additionally, both instrument indicators are significant at 0.001
level. This means, with other factors equal, a stimuli of piano is associated with
an average of 1.37 more points in classical rating compared to a stimuli of guitar;
a stimuli of string is associated with an average of 3.13 more points in classical
rating compared to that of guitar. Overall, the results indicate that ‘Instrument’
has significant influence on Classical ratings.

Similarly, we include the factor variable ‘Harmony’ into the model, to examine its
influence on classical ratings.



> fit.1a.harmony<-lm(Classical~Subject+Harmony)

> summary(fit.1a.harmony)

TUY T LT LN AL ViUVS U JIUTUUS

Subject98 -0.47222 0.54327 -0.869 0.384809
HarmonyI-V-IV -0.02967 0.13055 -0.227 0.820224
HarmonyI-V-VI 0.77417 ©.13055 5.930 3.46e-09 ***
HarmonyIV-I-V 0.05334 0.13044 ©0.409 0.682642

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘1

Residual standard error: 2.305 on 2420 degrees of freedom
(27 observations deleted due to missingness)

Multiple R-squared: 0.2693, Adjusted R-squared: 0.2476

F-statistic: 12.39 on 72 and 2420 DF, p-value: < 2.2e-16

It can be seen from the result that ‘Harmony’ doesn’t improve the model fit
significantly. R-square only increases from 0.2536 to 0.2693. As to the
coefficients of ‘Harmony’ indicators, only one of them (I-V-VI) is statistically
significant. An [-V-VI stimuli is associated with a 0.77 more points in classical
rating with everything else being equal. This is in line with the researchers’ guess
that [-V-VI might be frequently rated as classical due to people’s familiarity with
Pachelbel’s Canon in D.

Finally we include ‘Voice’ into the model and examine how does it improve the
model.

> fit.1a.voice<-Im(Classical~Subject+Voice)

> summary(fit.1a.voice)

Supjecty4  -V.4rLLL VU.54(1> -U.5b3 U.355194
Subject98 -0.47222 0.54715 -0.863 0.3881%4
Voicepar3rd -0.41346 0.11392 -3.629 0.000200 ***
VoiceparSth -0.37279 0.11385 -3.274 0.001074 **

Signif. codes: @ “***’ 9.001 ‘**’ 90.01 ‘*’ 0.05 ‘.” 0.1 * ’ 1

Residual standard error: 2.321 on 2421 degrees of freedom
(27 observations deleted due to missingness)

Multiple R-squared: ©.2585, Adjusted R-squared: ©.2368

F-statistic: 11.89 on 71 and 2421 DF, p-value: < 2.2e-16

Again, adding ‘Voice’ into the model doesn’t improve the model fit. However, the
coefficients of the two voice indicators are both significant. Stimuli of par3rd and
par5th are both associated with a less classical rating compared to that of the
contrary motion. This is in line with the researchers’ expectation that contrary
motion would be frequently rated as classical.

1. (b)



i. The model is as follows. Note that we denote participants as j, and each
observation as i. We won'’t include any individual covariates in the intercept for
now.

Classical = aj;) + By * Instrument + f, x Harmony + B3 * Voice

+ &,5~N(0,02)
aj = ay+n;,1;~N(0,7%)

ii. We use two methods to test whether the random effect is needed. The first
method is to compare the DIC of the model with and without random effect. The
second method is to check with simulation.

Method 1: Compare DIC

First we fit the original model without random effect in WinBUGS and get its DIC.
The model takes the following form, where ‘Subject’ is a factor variable.

Classical~Subject + Instrument + Harmony + Voice

#### we first construct variables to store the numeric value of Subject and Instrument
Subject.num<-as.numeric(Subject)
Instrument.num<-as.numeric(Instrument)
Harmony.num<-as.numeric(Harmony)
Voice.num<-as.numeric(Voice)

#### calculate the nand ]
n<-nrow(rating.data) #2520
J<-length(unique(Subject))  #70
#### write the rube model
rube.lm.fixef<-"model {

for (iin 1:n) {
Classical[i]~dnorm(muli],sig2inv)
muli]<-bO[Subject.num|[i]]+b1[Instrument.num i]] + bZ[Harmony.num|[i]]+ b3[Voice.num[i]]
}

for (jin 1:]) {

b0[j]~dnorm(0,0.0001)

}

for (kin 1:3) {

b1[k]~ dnorm(0,0.0001)

}

for (pin 1:4) {

b2[p]~ dnorm(0,0.0001)

}

for (qin 1:3) {

b3[q]~ dnorm(0,0.0001)



}

sig2inv<-pow(sig,-2)

sig~dunif(0,100)

3

data.list<-list(Classical=rating.data$Classical, Subject.num=Subject.num,
Instrument.num=Instrument.num, Harmony.num=Harmony.num, Voice.num=Voice.num, n=n,
J=])

rube.lm.fixef.inits<-function() {

list(bO=rnorm(]), bl=rnorm(3), b2=rnorm(4), b3=rnorm(3), sig=runif(1,0,10))
}

rube(rube.lm.fixef, data.list, rube.lm.fixef.inits)
rube.lm.fixef.fit<-rube(rube.lm.fixef, data.list, rube.lm.fixef.inits,
parameters.to.save=c("b0","b1","b2","b3","sig"), n.chains=3)

rube.lm.fixef.fit

bo9] -7.42e-01 11.9364 -23.69 -8.73 -4.63e-01 7.98 21.84 1 1000
bo[10] -3.17e-01 11.9473 -23.27 -8.33 -5.51e-02 8.53 21.55 1 1000
b1[1] 7.54e-02 46.3741 -88.00 -30.62 -8.30e-01 31.15 97.26 1 700
b1[2] 1.45e+00 46.3738 -86.69 -29.18 6.28e-01 32.62 98.72 1 690
b1[3] 3.21e+00 46.3751 -85.00 -27.47 2.28e+00 34.29 100.51 1 700
b2[1] 2.26e+00 42.9553 -87.08 -25.94 1.22e+00 31.10 84.45 1 1000
b2[2] 2.23e+00 42.9547 -87.03 -25.93 1.24e+00 30.98 84.39 1 1000
b2[3] 3.03e+00 42.9558 -86.19 -25.17 1.95e+00 31.79 85.10 1 1000
b2[4] 2.31e+00 42.9567 -86.99 -25.93 1.26e+00 31.15 84.52 1 1000
b3[1] 2.22e+00 47.2818 -90.53 -30.85 2.47e+00 34.20 92.79 1 710
b3[2] 1.80e+00 47.2819 -90.82 -31.22 1.95e+00 33.79 92.39 1 710
b3[3] 1.84e+00 47.2800 -90.84 -31.22 2.02e+00 33.77 92.38 1 710
deviance 1.03e+04 12.5069 10233.70 10247.39 1.03e+04 10263.90 10282.14 1 1000
sig 1.8%e+00 0.0271 1.84 1.88 1.89%e+00 1.91 1.95 1 1000
DIC = 10334.14

As shown in the above result screenshot, the DIC of this fixed effect model is
10334.14.

Next, we fit the random effect version of the model and get the DIC.

#### write the rube model
rube.lmer.ranef<-"model {

for (iin 1:n) {
Classical[i]~dnorm(muli],sig2inv)
mu([i]<-a0[Subject.num[i]]+b1[Instrument.num|[i]] + b2Z[Harmony.num|[i]]+ b3[Voice.num[i]]
}

for (jin 1:]) {
a0[j]~dnorm(b0,tau2inv)

}

b0~dnorm(0,0.0001)

for (kin 1:3) {

b1[k]~ dnorm(0,0.0001)

}

for (pin 1:4) {

b2[p]~ dnorm(0,0.0001)



}

for (qin 1:3) {
b3[q]~ dnorm(0,0.0001)

}

tauZinv<-pow(tau,-2)
tau~dunif(0,100)
sig2inv<-pow(sig,-2)
sig~dunif(0,100)

p

data.list<-list(Classical=rating.data$Classical, Subject.num=Subject.num,

Instrument.num=Instrument.num, Harmony.num=Harmony.num, Voice.num=Voice.num, n=n,

J=))

rube.lmer.ranef.inits<-function() {
list(bO=rnorm(1), b1=rnorm(3), b2=rnorm(4), b3=rnorm(3), a0=rnorm(J), sig=runif(1,0,10),
tau=runif(1,0,10))

}

rube(rube.lmer.ranef, data.list, rube.Imer.ranef.inits)

rube.lmer.ranef.fit<-rube(rube.lmer.ranef, data.list, rube.Imer.ranef.inits,

parameters.to.save=c("b0","b1","b2","b3","

rube.lmer.ranef.fit
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of this fixed effect model is

The difference of the DIC between the fixed effect model and random effect
model is 2.29. By the rule of thumb, the difference is marginally interesting,
which means that a random effect model may perform better.

Method 2: Simulation

To check whether a participant random effect is needed, we fit the original fixed
effect model where subjects are included as factor variables, and simulate new
data based on the fitted model. We examine the spread in the simulated data and
compare it with the observed data. If the simulated data is more spread out, then
we probably need a random effect model.

####First we get the estimated parameter values
attach(rube.Im.fixef.fit$sims.list)



b0.hat<-apply(b0,2,mean)
b1.hat<-apply(b1,2,mean)
b2.hat<-apply(b2,2,mean)
b3.hat<-apply(b3,2,mean)
sig.hat<-mean(sig)
detach()

#### write the rube model

rube.lm.fixef.new<-"model {

for (iin 1:n) {

Classical[i]~dnorm(muli],sig2inv)
mu([i]<-bO[Subject.num[i]]+b1[Instrument.num[i]] + b2[Harmony.num[i]]+ b3[Voice.num[i]]
}

for (jin 1:]) {

bO[j]~dnorm(0,0.0001)

}

for (kin 1:3) {

b1[k]~ dnorm(0,0.0001)

}

for (pin 1:4) {

b2[p]~ dnorm(0,0.0001)

}

for (qin 1:3) {

b3[q]~ dnorm(0,0.0001)

}

sig2inv<-pow(sig,-2)

sig~dunif(0,100)

for (iin 1:n) {

newClassical[i]~dnorm(mu[i],sig2inv)

}

3

data.list<-list(Classical=rating.data$Classical, Subject.num=Subject.num,
Instrument.num=Instrument.num, Harmony.num=Harmony.num, Voice.num=Voice.num, n=n,
J=])

rube.lm.fixef.new.inits<-function() {

list(b0=b0.hat, bl1=b1.hat, b2=b2.hat, b3=b3.hat, sig=sig.hat)

}

rube(rube.lm.fixef.new, data.list, rube.Im.fixef.new.inits)
rube.lm.fixef.new.fit<-rube(rube.Im.fixef.new, data.list, rube.Im.fixef.new.inits,

parameters.to.save=c("newClassical"), n.iter=400,n.chains=1)
newClassical<-rube.lm.fixef.new.fit$sims.list$newClassical
(n.sims <- rube.lm.fixef.new.fit$n.keep)

Next we visualize the variability in ‘Classical’ ratings between participants.



Simulated data is in green, and observed data is in red.

boxes <- function(i,col=2:3,ylim=c(0,10)) {

tmp <- c(t(cbind(Classical,newClassical[i,])))
boxplot(split(tmp,rep(Subject.num,rep(2,n))),col=col,ylim=ylim)
}

par(mfrow=c(2,2))

samp <- sample(1:n.sims,4)

for (i in samp) boxes(i)

8 10
1

o ol 1 i o ! S 1101 I o1 |
TTITTTTT T I T T T T T T I T T T T I T T T v T T A TToT T T T I T T I T T T T T T T e T T T T T T T T T T T T T T o T TrT T,

1 5 9 13 18 23 28 33 38 43 48 53 58 63 68 1 5 9 13 18 23 28 33 38 43 48 53 58 63 68

e

P oy

' 1 ' 1
o - it PR i ' A ! L Y I H
TITTTTTTITTTTTI T I T T I T T I T TTTTTTT TTTTTTTTTT T HH”IIIHTHIIIH”IIIIHHIIHI”IHhHHIHUIIIH

1 5 9 13 18 23 28 33 38 43 48 53 58 63 68 1 5 9 13 18 23 28 33 38 43 48 53 58 63 68

It can be seen that the green boxes are a little more spread out than red ones.
This means that this fitted model tends to spread data out than what is
happening in reality. Therefore we can shrink the data by making the participant
rating intercept as a random effect.

iii. We first estimate the ‘repeated-measures model’ with only the random
intercept for participants, and then add the three main experimental factors.

First, we estimate the ‘repeated-measures model’ with only the random intercept
for participants.

#### write the rube model
rube.lmer.ranef<-"model {
for (iin 1:n) {

Classical[i]~dnorm(muli],sig2inv)
mu[i]<-a0[Subject.num[i]]

H

for (jin 1:]) {
a0[j]~dnorm(b0,tau2inv)

}
b0O~dnorm(0,0.0001)



tauZinv<-pow(tau,-2)

tau~dunif(0,100)

sig2inv<-pow(sig,-2)

sig~dunif(0,100)

3

data.list<-list(Classical=rating.data$Classical, Subject.num=Subject.num, n=n, ]=])
rube.lmer.ranef.inits<-function() {

list(bO=rnorm(1), a0=rnorm(J), sig=runif(1,0,10), tau=runif(1,0,10))

H

rube(rube.lmer.ranef, data.list, rube.Imer.ranef.inits)
rube.lmer.ranef.fit<-rube(rube.lmer.ranef, data.list, rube.lmer.ranef.inits,

parameters.to.save=c("b0","a0","tau","sig"), n.chains=3)

rube.lmer.ranef.fit

av|y] 5.3 0.3b%0 4.0l 5.0/ 5.3¢ 5.5/ 0.0¥ L.00 (L0
ad[10] 6.06 ©.4549 5.18 5.75 6.06 6.36 6.97 1.00 1000
b@ 5.79 0.1588 5.48 5.68 5.79 5.89 6.10 1.00 1000
deviance 11289.10 11.9789 11268.61 11280.45 11288.82 11296.97 11313.26 1.00 1000
sig 2.33 0.0326 2.27 2.31 2.33 2.35 2.39 1.00 660
tau 1.30 0.1222 1.10 1.22 1.29 1.38 1.56 1.00 1000
DIC = 11360.97

Then we add ‘Instrument’ to the model

#### write the rube model
rube.lmer.ranef<-"model {

for (iin 1:n) {

Classical[i]~dnorm(mu[i],sig2inv)
mu[i]<-a0[Subject.num[i]]+b1[Instrument.num[i]]
b

for (jin 1:]) {

a0[j]~dnorm(b0,tau2inv)

}

b0O~dnorm(0,0.0001)

for (kin 1:3) {

b1[k]~ dnorm(0,0.0001)

b

tau2inv<-pow(tau,-2)

tau~dunif(0,100)

sig2inv<-pow(sig,-2)

sig~dunif(0,100)

3

data.list<-list(Classical=rating.data$Classical, Subject.num=Subject.num,
Instrument.num=Instrument.num, n=n, J=J)
rube.lmer.ranef.inits<-function() {
list(bO=rnorm(1), bl=rnorm(3), a0=rnorm(J), sig=runif(1,0,10), tau=runif(1,0,10))



}

rube(rube.lmer.ranef, data.list, rube.lmer.ranef.inits)
rube.lmer.ranef.fit<-rube(rube.lmer.ranef, data.list, rube.Imer.ranef.inits,
parameters.to.save=c("b0","b1","a0","tau","sig"), n.chains=3)

rube.lmer.ranef.fit

av|1v] -8.97 10.00lb -£.00e+0L  -L1/.4> -5.8b 0. Y04 (.51 >.¢9 3
b@ -8.89 9.9939 -2.58e+01 -17.32 -8.86 1.009 7.48 5.34 3
b1[1] 13.16 9.9929 -3.27e+00 3.20 13.19 21.512 30.06 5.35 3
b1[2] 14.54 9.9920 -1.83e+00 4.62 14.53 22.941 31.42 5.35 3
b1[3] 16.29 9.9957 -2.66e-02 6.37 16.26 24.655 33.19 5.35 3
deviance 10352.35 12.1559 1.03e+04 10344.00 10351.71 10360.163 10377.15 1.00 1000
sig 1.93 0.0287 1.88e+00 1.91 1.93 1.949 1.98 1.00 1000
tau 1.33 0.1266 1.11e+00 1.24 1.32 1.408 1.59 1.00 1000
DIC = 10426.3

The DIC increases from 11360.67 to 10426.3, and the variance of residual is
reduced from 2.33 to 1.93, indicating that adding ‘Instrument’ hugely improve
the model fit. ‘Instrument’ helps a lot to explain the variation in data. This means
that ‘Instrument’ is an important factor that influences people’s classical rating.
As shown in the result, a guitar usually leads to about 1.38 points (b1[2]-b1[1])
less in terms of Classical rating than a piano; a piano usually leads to about 1.75
points less than a string. The result is in line with that of problem (a).

We then add ‘Harmony’ into the model, and estimate it using rube.

#### write the rube model
rube.lmer.ranef<-"model {
for (iin 1:n) {
Classical[i]~dnorm(muf[i], sig2inv)
mu[i]<-a0[Subject.num[i]]+b1[Instrument.num[i]] +
b2[Harmony.num[i]]

}

for (jin 1:]) {
a0[j]~dnorm(b0,tau2inv)

}

b0O~dnorm(0,0.0001)

for (kin 1:3) {

b1[k]~ dnorm(0,0.0001)

}

for (pin 1:4) {

b2[p]~ dnorm(0,0.0001)

}

tauZinv<-pow(tau,-2)
tau~dunif(0,100)
sig2inv<-pow(sig,-2)
sig~dunif(0,100)



3
data.list<-list(Classical=rating.data$Classical, Subject.num=Subject.num,
Instrument.num=Instrument.num, Harmony.num=Harmony.num, n=n, J=J)
rube.lmer.ranef.inits<-function() {

list(bO=rnorm(1), bl1=rnorm(3), b2=rnorm(4), a0=rnorm(]J), sig=runif(1,0,10), tau=runif(1,0,10))
}

rube(rube.lmer.ranef, data.list, rube.lmer.ranef.inits)

rube.lmer.ranef.fit<-rube(rube.lmer.ranef, data.list, rube.lmer.ranef.inits,

parameters.to.save=c("b0","b1","b2","a0","tau","sig"), n.chains=3)

rube.lmer.ranef.fit

.7%-01 4.2988 -7.60 -2.52 -9.75e-02 3.59 7.79 3.03 4

——e—-a

b@ 2

b1[1] -9.09e-01 39.2282 -75.87 -27.10 -1.74e+00 25.84 76.19 1.01 160
b1[2] 4.62e-01 39.2273 -74.45 -25.80 -3.93e-01 27.24 77.61 1.01 160
b1[3] 2.22e+00 39.2265 -72.68 -24.00 1.42e+00 29.03 79.36 1.01 160
b2[1] 4.71e+00 38.9991 -71.65 -22.72 5.91e+00 30.66 79.69 1.00 1000
b2[2] 4.68e+00 39.0016 -71.68 -22.67 5.88e+00 30.55 79.68 1.00 1000
b2[3] 5.48e+00 39.0036 -70.97 -21.85 6.66e+00 31.29 80.60 1.00 1000
b2[4] 4.76e+00 39.0024 -71.54 -22.56 5.99e+00 30.70 79.78 1.00 1000
deviance 1.03e+04 12.8709 10254.49 10269.65 1.03e+04 10286.48 10304.25 1.00 880
sig 1.90e+00 ©0.0269 1.85 1.88 1.90e+00 1.92 1.96 1.01 270
tau 1.33e+00 0.1172 1.11 1.25 1.32e+00 1.49 1.59 1.00 1000

DIC = 10361.23

It is shown that adding ‘Harmony’ decrease the model DIC from 10426.3 to
10361.23, indicating that ‘Harmony’ has influence on classical ratings. From the
coefficient estimates, we see that b2[1], b2[2] and b2[4] are all close to each
other; only b2[3] has an about 0.7 increment compared to the others. In the
model, b2[3] is the coefficient for I-V-VI. This means that a stimuli of I-V-VI is
more likely to get a higher classical rating.

Finally, we add ‘Voice’ to the model, which is the model we fit in (b. ii). The DIC
value is 10331.85, smaller than 10361.23. This means that ‘Voice’ also have
influence on classical ratings.

1. (c)

i. We estimate the model including all the three random effects as well as the
three design factors (please refer to iii.) using WinBUGS

(An equivalent approach would be to estimate using
Imer(Classical~(1|Subject:Instrument)+(1|Subject:Harmony)+(1|Subject:Voice)
+Instrument+Harmony+Voice))

#### write the rube model

rube.lmer.ranef<-"model {

for (iin 1:n) {

Classical[i]~dnorm(muli], sig2inv)
mu[i]<-a_instr[Subject.num|i],Instrument.num[i]]+a_har[Subject.num[i],Harmony.num|[i]]+a_voi

ce[Subject.num[i],Voice.num[i]]+b1[Instrument.num[i]]+b2[Harmony.num[i]]+b3[Voice.num[i]]



}

for (jin 1:]) {

for (kin 1:3) {

a_instr[j,k]~dnorm(al,taulinv)

1}

for (jin 1:]) {

for (pin 1:4) {

a_har[j,p]~dnorm(a2,tau2inv)

1}

for (jin 1:]) {

for (qin 1:3) {

a_voice[j,q]~dnorm(a3,tau3inv)

1}

for (kin 1:3) {

b1[k]~dnorm(0,0.0001)

}

for (pin 1:4) {

b2[p]~dnorm(0,0.0001)

}

for(qin 1:3) {

b3[q]~dnorm(0,0.0001)

}

al~dnorm(0,0.0001)

taulinv<-pow(taul,-2)

taul~dunif(0,100)

a2~dnorm(0,0.0001)

tauZinv<-pow(tau2,-2)

tau2~dunif(0,100)

a3~dnorm(0,0.0001)

tau3inv<-pow(tau3,-2)

tau3~dunif(0,100)

sig2inv<-pow(sig,-2)

sig~dunif(0,100)

3

data.list<-list(Classical=rating.data$Classical, Subject.num=Subject.num,
Instrument.num=Instrument.num, Harmony.num=Harmony.num,Voice.num=Voice.num, n=n,
J=])

rube.lmer.ranef.inits<-function() {

list(al=rnorm(1), a2=rnorm(1), a3=rnorm(1), bl=rnorm(3), b2=rnorm(4), b3=rnorm(3),
a_instr=matrix(rnorm(70*3),70,3), a_har=matrix(rnorm(70*4),70,4),
a_voice=matrix(rnorm(70%*3),70,3), sig=runif(1,0,10),
taul=runif(1,0,10),tau2=runif(1,0,10),tau3=runif(1,0,10))
}

rube(rube.lmer.ranef, data.list, rube.lmer.ranef.inits)



rube.lmer.ranef.fit<-rube(rube.lmer.ranef, data.list, rube.lmer.ranef.inits,
parameters.to.save=c("al","a2","a3","b1","b2","b3","a_instr","a_har","a_voice","taul","tau2","tau3

,"sig"), n.chains=3)

rube.lmer.ranef.fit

The results are as follows

> rube.lmer.ranef.fit
Rube Results:
Run by jags at 2013-12-09 08:13 and taking 31.28 secs
mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

al 2.519 4.1785 -5.0930 -0.5531 3.3611 5.70e+00 8.598 4.28 3
a2 -2.142 3.1407 -7.7498 -4.8652 -0.9660 4.65e-01 1.459 4.57 3
a3 -1.123 1.6320 -3.7051 -3.2551 -0.1245 1.6%e-02 0.549 15.09 3
a_har[1,1] -2.637 3.1922 -8.5718 -5.5796 -1.5353 -4.52e-02 1.179 4.27 3
a_har[2,1] -1.997 3.1757 -7.8065 -4.8825 -0.8306 6.41e-01 1.939 4.10 3
n harlfR 11 -2 77 R 1ARS -R AR -5 1RAQ -1 1264 R MAe-M 1 804 4 78 B
a_volicels,<] -1.1¥7 1.b4%bb =3./(18 =3.£430L -¥.1191 (.1l5e-v<s V.bsd 11.588 3
a_voice[9,2] -1.129 1.6396 -3.7736 -3.2456 -0.1431 3.34e-02 0.543 11.99 3
a_voice[10,2] -1.127 1.6385 -3.7842 -3.2481 -0.1277 4.79%-02 0.516 12.68 3
b1[1] -0.616 45.6707 -91.1778 -29.8545 -0.0351 2.88e+01 87.360 1.01 190
b1[2] 0.749 45.6783 -89.6007 -28.3796 1.6072 3.03e+01 88.291 1.01 190
b1[3] 2.514 45.6726 -87.6349 -26.7729 3.4443 3.1%+01 90.239 1.01 190
b2[1] 2.811 42.4675 -77.3348 -26.7522 4.4214 3.16e+01 83.646 1.00 900
b2[2] 2.783 42.4754 -77.3040 -26.9497 4.3628 3.14e+01 83.552 1.00 910
b2[3] 3.584 42.4684 -76.6218 -26.1735 5.1138 3.24e+01 84.373 1.00 900
b2[4] 2.866 42.4656 -77.3098 -26.8562 4.5847 3.17e+01 83.657 1.00 900
b3[1] 2.893 44,5869 -84.1858 -26.3592 1.3201 3.26e+01 88.246 1.00 450
b3[2] 2.486 44.5852 -84.6660 -26.6804 0.9138 3.22e+01 87.900 1.00 450
b3[3] 2.522 44.5855 -84.5627 -26.6419 0.9185 3.23e+01 87.775 1.00 450
deviance 9301.195 33.8017 9237.8302 9278.2429 9300.8064 9.32e+03 9368.969 1.01 360
sig 1.562 0.0237 1.5163 1.5455 1.5630 1.58e+00 1.610 1.00 1000
taul 1.494 0.0911 1.3232 1.4289 1.4932 1.55e+00 1.683 1.01 190
tau2 0.669 0.0565 0.5627 0.6277 0.6661 7.07e-01 0.783 1.01 240
tau3 0.143 0.0653 0.0457 0.0957 0.1289 1.86e-01 0.29 1.09 36

DIC = 9870.439

From the above result table, we can see that the model DIC is 9870.439, much
smaller than that of any model in 1(a) and 1(b). Additionally, the residual
variance sig=1.562, much smaller than any of that in previous models. This
means that this model with all three random effect terms fit better than any of
the previous models.

ii. In this model, we still see that ‘Instrument’ should have the biggest impact on
‘Classical ratings’, because the personal bias distribution regarding ‘Instrument’
is the most spread out one (taul is biggest, even as big as the residual variance).
Besides the personal bias being accounted for in the model, we see that guitar is
negatively associated with classical rating (b1[1]=-0.616), and the other two
instruments are both positively associated ---- piano is associated with an
average of 0.749 points and string with 2.514 points. Compare this result to what
we have in the conventional regression in (a), we have got very similar results:
treating guitar as a baseline, piano is associated with about 1.37 points more,
and string is associated with about 3.1 points more. We can reach the same



conclusion for ‘Harmony’ and ‘Voice’ by examining their coefficients.

The three estimated variance components are taul=1.494, tau2=0.669 and
tau3=0.143. We can see that the ‘personal bias’ regarding ‘Instrument’ varies the
most, followed by that regarding ‘Harmony’ and then ‘Voice’. The estimated
residual variance is 1.562, only a little bigger than the variance of ‘Instrument
personal bias’ distribution.

iii. Write this model in mathematical terms

Classical = a[j.inseri[i] T Xpjinar)i] T Ajvoiceyri] + BiInstrument + B, Harmony

+ BsVoice + €;,5~N(0,02%)

Ajumstr)[i] = %+ Njanser) Mjnser; ~N (0, 71%)
Aj:nari] = X2 + Mjmar) Mjaar)~N (0, 72%)

Ajvoicel[i] = 3 + Njvoice] Njvoice]~N (0, T3%)

2.(a)

To simplify the exploratory process, we use Imer() instead of WinBUGS to fit the
model. We add the listed individual variable one by one into the model in 1(c)
and see whether the coefficient of the variable is significant. By the rule of thumb,
we will keep the variables whose t-value is larger than 2.

It turns out that only one variable has a t-value larger than 2, that is
X16.minus.17. As shown in the below result screenshot, the coefficient of
X16.minus.17 is estimated to be -0.09786, with a standard error 0.03804, and
the t-value is -2.572.

> summary(lmer(Classical~(1|Subject:Instrument)+(1|Subject:Harmony)+(1|Subject:Voice)+Instrument+Harmony+Voice+X16.minus.17))

Linear mixed model fit by REML ['lmerMod']

Formula: Classical ~ (1 | Subject:Instrument) + (1 | Subject:Harmony) + (1 | Subject:Voice) + Instrument + Harmony + Voice + X16.minus.17
REML criterion at convergence: 10049.67

Random effects:

Groups Name Variance Std.Dev.
Subject:Harmony (Intercept) 0.4424 0.6651
Subject:Voice (Intercept) 0.0281 0.1676
Subject:Instrument (Intercept) 2.1327 1.4604
Residual 2.4377 1.5613

Number of obs: 2493, groups: Subject:Harmony, 280; Subject:Voice, 210; Subject:Instrument, 210

Fixed effects:

Estimate Std. Error t value
(Intercept) 4.50915 0.2219 20.315
Instrumentpiano  1.36415 0.25871 5.273
Instrumentstring 3.12910 0.25842 12.108
HarmonyI-V-IV -0.03069 0.14311 -0.214
HarmonyI-V-VI 0.77042 0.14309 5.384
HarmonyIV-I-V 0.05598 0.14304 0.391

Voicepar3rd -0.40724 0.08175 -4.982
VoiceparSth -0.37105 0.08168 -4.543
X16.minus.17 -0.09786 0.03804 -2.572

We estimate the same model again in WinBUGS, and the results are the same.
Here b4 is the coefficient of X16.minus.17.



b3[3] 2.32e-01 47.7782 -92.3908 -3.24e+01 ©0.9128 32.2857 93.0410 1.00 920

b4 -9.69e-02 0.0376 -0.1702 -1.23e-01 -0.0964 -0.0717 -0.0219 1.00 1000
deviance 9.30e+03 35.1339 9232.4973 9.27e+03 9298.9046 9320.0685 9367.6891 1.02 130
sig 1.56e+00 0.0257 1.5136 1.55e+00 1.5621 1.5797 1.6149 1.01 330
taul 1.47e+00 0.0872 1.3005 1.41e+00 1.4647 1.5195 1.6448 1.00 1000
tau2 6.70e-01 0.0572 0.5530 6.31e-01 0.6706 0.7042 0.7840 1.00 700
tau3 1.71e-01 0.0622 0.0668 1.28e-01 0.1627 0.2135 0.3029 1.10 29

DIC = 9906.859

By the rule of thumb, the coefficient is significant, indicating that X16.minus.17 is
negatively associated with classical ratings. All the other individual variables are
not statistically significant. Therefore, the final model takes the following form

Classical~(1|Subject:Instrument)+(1|Subject:Harmony)+(1|Subject:Voice)+Instr
ument+Harmony+Voice+X16.minus.17

2. (b)

We compare the random effects of the two models (with and without
X16.minus.17). Overall, the random effects don’t vary much. It worth to note that
the random effects regarding ‘Instrument’ has the relatively biggest change after
we add the individual covariate X16.minus.17 into the model. Its variance is
reduced from 2.198 to 2.133. This indicates that X16.minus.17 actually captures
some of the variation reflected in people’s personal judgments regarding
instruments.

> sum;nar‘y(lmer‘(ClassicaI~(1ISubject:Instrument)+(1\$ubject:Har‘mony)+(1| Subject:Voice)+Instrument+Harmony+Voice+X16.minus.17))

Linear mixed model fit by REML ['lmerMod']
Formula: Classical ~ (1 | Subject:Instrument) + (1 | Subject:Harmony) + (1 | Subject:Voice) + Instrument + Harmony + Voice + X16.minus.17

REML criterion at convergence: 10049.67

Random effects:

Groups Name Variance Std.Dev.
Subject :Harmony (Intercept) 0.4424 0.6651
Subject:Voice (Intercept) 0.0281 0.1676
Subject:Instrument (Intercept) 2.1327 1.4604
Residual 2.4377 1.5613

Number of obs: 2493, groups: Subject:Harmony, 280; Subject:Voice, 210; Subject:Instrument, 210

> summary(lmer(Classical~(1|Subject:Instrument)+(1lSubject:Harmony)+(1|Subject:Voice)+Instrument+Harmony+Voice))

Linear mixed model fit by REML ['lmerMod']

Formula: Classical ~ (1 | Subject:Instrument) + (1 | Subject:Harmony) + (1 | Subject:Voice) + Instrument + Harmony + Voice
REML criterion at convergence: 10051.51

Random effects:

Groups Name Variance Std.Dev.
Subject:Harmony (Intercept) 0.44307 0.6656
Subject:Voice (Intercept) 0.02809 0.1676
Subject:Instrument (Intercept) 2.19850 1.4827
Residual 2.43753 1.5613

Number of obs: 2493, groups: Subject:Harmony, 280; Subject:Voice, 210; Subject:Instrument, 210

2.(c)

People have intrinsic personal biases when rate music and such biases vary with
the type of instruments, harmony and voice leading. Among them, the biases
regarding instrument vary the most (variance of (1|Subject:Instrument) is
2.1327), followed by that regarding harmony (0.4424) and biases regarding
voice has the least spread out distribution, with only a 0.0281 variance. This
means that instrument type is the most important factor that leads to the
variation in classical ratings.

As can be seen from the coefficients of ‘instrument’ indicators, music played by



string on average earns the highest classical ratings, which is about 1.8 points
more than that played by Piano and about 3.12 points more than that played by
guitar. As to the type of harmony, we see that harmony type I-V-VI leads to the
highest classical ratings among all the harmony types. On average, the difference
between I-V-VI and other types is about 0.77 points. There exists a statistically
significant difference between the voice type Contrary Motion and Parallel 3rd,
5th, A stimuli music of Contrary Motion tends to be rated 0.4 points higher in
classical rating than the other two voice types do.

3.

We recode ‘Selfdeclare’ to a new variable ‘Musician’. We group the cases
‘Selfdeclare=1,2’ to ‘Musician=0’, and the rest are ‘Musician=1’, so that we have
about half people musicians and half non-musicians.

>Musician<-ifelse((Selfdeclare==1|Selfdeclare==2),0,1)

Now we interact the ‘Musician’ indicator with the three design factors
‘Instrument’, ‘Harmony’ and ‘Voice’, and examine how does this change the
model estimates.

First we interact ‘Musician’ with ‘Instrument’.

REML criterion at convergence: 10047.24

Random effects:

Groups Name Variance Std.Dev.
Subject:Harmony (Intercept) 0.44257 0.6653
Subject:Voice (Intercept) 0.02817 ©.1678
Subject:Instrument (Intercept) 2.13612 1.4615
Residual 2.43767 1.5613

Number of obs: 2493, groups: Subject:Harmony, 280; Subject:Voice, 210; Subject:Instrument, 210

Fixed effects:
Estimate Std. Error t value

(Intercept) 4.27486 0.26604 16.069
Musician 0.60908 0.38585 1.579
Instrumentpiano 1.61512 0.33410 4.834
Instrumentstring 3.41217 0.33394 10.218
HarmonyI-V-IV -0.03079 0.14313 -0.215
HarmonyI-V-VI 0.77038 0.14311 5.383
HarmonyIV-I-V 0.05590 0.14306 ©.391
Voicepar3rd -0.40732 0.08176 -4.982
VoiceparSth -0.37107 0.08169 -4.542
X16.minus.17 -0.10344 0.03890 -2.659

Musician:Instrumentpiano -0.62679 0.52859 -1.186
Musician:Instrumentstring -0.70681 0.52783 -1.339

Although the two interaction estimates ‘Musician:Instrumentpiano’ and
‘Musician:Instrumentstring’ are not statistically significant at 0.05 level, their
t-value are both larger than 1 and their signs are both negative. This indicates to
some extent that musicians tend to be more conservative than non-musicians in
terms of rating music played by piano and string music as classical. In others
words, factor ‘instrument’ is less influential for musicians than for
non-musicians.

Then we interact ‘Musician’ with ‘Harmony’



Random effects:

Groups Name Variance Std.Dev.
Subject :Harmony (Intercept) ©.35861 ©.5988
Subject:Voice (Intercept) 0.02759 0.1661
Subject:Instrument (Intercept) 2.19218 1.4806
Residual 2.43761 1.5613

Number of obs: 2493, groups: Subject:Harmony, 280; Subject:Voice, 210; Subject:Instrument, 210

Fixed effects:
Estimate Std. Error t value

(Intercept) 4.58641 0.24483 18.733
Instrumentpiano 1.36452 0.26198 5.209
Instrumentstring 3.12918 0.26169 11.958
Musician -0.17062 0.28994 -0.588
HarmonyI-V-IV -0.04954 0.17353 -0.285
HarmonyI-V-VI 0.28283 0.17349 1.630
HarmonyIV-I-V 0.02559 0.17344 0.148
Voicepar3rd -0.40700 0.08165 -4.984
VoiceparSth -0.37023 0.08159 -4.538
X16.minus.17 -0.10338 0.03885 -2.661

Musician:HarmonyI-V-IV 0.04741 0.27457 0.173
Musician:HarmonyI-V-VI 1.21991 0.27455 4.443
Musician:HarmonyIV-I-V 0.07529 0.27441  0.274

It can be seen from the above results that, after adding the interaction terms,
‘Harmonyl-V-VI’ is no longer significant, but the interaction term
‘Musician:Harmonyl-V-VI' is very significant and is positive. This means that
musicians and non-musicians do treat Harmony I-V-VI differently. Musicians
tend to give music of I-V-VI type a high classical rating while non-musicians
don’t.

Finally, we interact ‘Musician’ with ‘Voice’. The interaction terms are not
significant. There is no obvious evidence that musicians and non-musicians treat
‘Voice’ differently.

Random effects:

Groups Name Variance Std.Dev.
Subject:Harmony (Intercept) 0.44281 0.6654
Subject:Voice (Intercept) 0.03078 ©.1754
Subject:Instrument (Intercept) 2.13586 1.4615
Residual 2.43750 1.5613

Number of obs: 2493, groups: Subject:Harmony, 28@; Subject:Voice, 21@; Subject:Instrument, 210

Fixed effects:
Estimate Std. Error t value

(Intercept) 4.43291 0.23964 18.499
Instrumentpiano 1.36463 0.2588% 5.271
Instrumentstring 3.12923 0.25860 12.101
HarmonyI-V-IV -0.03053 0.14315 -0.213
HarmonyI-V-VI 0.77039 0.14313 5.382
HarmonyIV-I-V 0.05615 0.14308 0.392
Musician 0.21448 0.25588 ©0.838
Voicepar3rd -0.39867 0.10604 -3.759
VoiceparSth -0.32058 0.10594 -3.026
X16.minus.17 -0.10344 0.03892 -2.658

Musician:Voicepar3rd -0.02176 0.16788 -0.130
Musician:VoiceparSth -0.12690 0.16777 -0.756

4. (a)

We fit the similar hierarchical linear model on ‘Popular Ratings’ in WinBUGS. We
first estimate a model with only the three random effects, and then include the
three design factors one by one, to see how they improve the model fit.



The DIC of the three random effects model is DIC=10036.85. Adding ‘Instrument’,
the model DIC=9953.106; adding ‘Harmony’, the model DIC=9968.583; adding
‘Voice’, the model DIC=9984.148. This indicates that ‘Instrument’ has the biggest
influence among the three desing factors on the variability of popular rating.

4. (b)

> summary(lmer(Popular~(1|Subject:Instrument)+(1lSubject:Harmony)+
(11Subject:Voice)+Instrument+Harmony+Voice+X16.minus.17))

Linear mixed model fit by REML ['lmerMod']

Formula: Popular ~ (1 | Subject:Instrument) + (1 | Subject:Harmony) + (1 | Subject:Voice) + Instrument +
Harmony + Voice + X16.minus.17

how did you arrive at this

REML criterion at convergence: 10073.56
model?

Random effects:

Groups Name Variance Std.Dev.
Subject:Harmony (Intercept) 0.41100 0.6411
Subject:Voice (Intercept) 0.03206 ©0.1790
Subject:Instrument (Intercept) 1.96194 1.4007
Residual 2.49060 1.5782

Number of obs: 2493, groups: Subject:Harmony, 280; Subject:Voice, 210; Subject:Instrument, 210

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.44644 0.21520 29.956
Instrumentpiano -0.94923 0.24936 -3.807
Instrumentstring -2.60650 0.24906 -10.465
HarmonyI-V-IV -0.02517 0.14054 -0.179
HarmonyI-V-VI -0.27138 0.14053 -1.931
HarmonyIV-I-V -0.18528 0.14047 -1.319
Voicepar3rd 0.16402 0.08320 1.971
VoiceparSth 0.16224 0.08314 1.951
X16.minus.17 0.07772 0.03672 2.117

Similar with the case of ‘classical rating’, instrument type is the most important
factor that leads to the variation in people’s intrinsic bias regarding whether a
music is popular. The fixed effects are mostly opposite with that in the ‘classical
rating’ case. As can be seen from the coefficients of ‘instrument’ indicators, music
played by string on average earns the lowest popular ratings, which is about 1.7
points less than that played by piano and about 2.6 points less than that played
by guitar. As to the type of harmony, we see that harmony type [-V-VI leads to
the lowest popular ratings among all the harmony types. On average, the
difference between I-V-VI and other types is about 0.27 points. There exists a
difference between the voice type Contrary Motion and Parallel 3rd, 5th, A stimuli
music of Contrary Motion tends to be rated 0.16 points lower in popular rating
than the other two voice types do.

4. (c)

Now we interact the ‘Musician’ indicator with the three design factors
‘Instrument’, ‘Harmony’ and ‘Voice’, and examine how does this change the
model estimates.

First, we show the result of the original model

>summary(Ilmer(Popular~(1|Subject:Instrument)+(1|Subject:Harmony)+(1|Subject:Voice)+Instr

ument+Harmony+Voice+X16.minus.17))



REML criterion at convergence: 10073.56

Random effects:

Groups Name Variance Std.Dev.
Subject:Harmony (Intercept) 0.41100 0.6411
Subject:Voice (Intercept) 0.03206 ©0.1790
Subject:Instrument (Intercept) 1.96194 1.4007
Residual 2.49060 1.5782

Number of obs: 2493, groups: Subject:Harmony, 280; Subject:Voice, 210; Subject:Instrument, 210

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.44644 0.21520 29.956
Instrumentpiano -0.94923 0.24936 -3.807
Instrumentstring -2.60650 0.24906 -10.465
HarmonyI-V-IV -0.02517 0.14054 -0.179
HarmonyI-V-VI -0.27138 0.14053 -1.931
HarmonyIV-I-V -0.18528 0.14047 -1.319
Voicepar3rd 0.16402 0.08320 1.971
VoiceparSth 0.16224 0.08314 1.951
X16.minus.17 0.07772 0.03672 2.117

Then we interact ‘Musician’ with ‘Instrument’.

Random effects:

Groups Name Variance Std.Dev.
Subject:Harmony (Intercept) 0.41045 0.6407
Subject:Voice (Intercept) 0.0318% 0.1786
Subject:Instrument (Intercept) 1.92586 1.3878
Residual 2.49073 1.5782

Number of obs: 2493, groups: Subject:Harmony, 280; Subject:Voice, 210; Subject:Instrument, 210

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.42952 0.25558 25.156
Musician 0.11264 0.36882 0.305
Instrumentpiano -1.12248 0.31910 -3.518
Instrumentstring -2.87966 0.31893 -9.029
HarmonyI-V-IV -0.02523 0.14049 -0.180
HarmonyI-V-VI -9.27139 0.14047 -1.932
HarmonyIV-I-V -0.18531 0.14042 -1.320
Voicepar3rd 0.16399 0.08318 1.972
VoiceparSth 0.16212 0.08311 1.951
X16.minus.17 0.06135 0.03725 1.647

Musician:Instrumentpiano ©.43532 0.50489 0.862
Musician:Instrumentstring ©.68324 0.50409 1.355

The two coefficients of instrument indicators are still significant, and none of the
interaction terms are significant. Therefore we believe there’s no obvious
evidence that musicians and non-musicians treat instrument differently.

Next, we interact ‘Musician’ with ‘Harmony’



Random effects:
Groups
Subject:Harmony
Subject:Voice

Name

Variance Std.Dev.
(Intercept) 0.37632 0.6134
(Intercept) 0.03186 ©0.1785

Subject:Instrument (Intercept) 1.94636 1.3951

Residual

2.49023 1.5780

Number of obs: 2493, groups: Subject:Harmony, 280; Subject:Voice, 210; Subject:Instrument, 210

Fixed effects:

(Intercept)
Instrumentpiano
Instrumentstring
Musician
HarmonyI-V-IV
HarmonyI-V-VI
HarmonyIV-I-V
Voicepar3rd
VoiceparSth
X16.minus.17

Estimate Std. Error t value

6.23688
-0.94820
-2.60606

0.59486
-0.11064

0.01209
-0.20880

0.16371

0.16156

0.06126

Musician:HarmonyI-V-IV 0.21346
Musician:HarmonyI-V-VI -0.70942
Musician:HarmonyIV-I-V 0.05827

0.23703 26.313
0.24847 -3.816
0.24816 -10.502
0.28370 2.097
0.17674 -0.626
0.17671 0.068
0.17665 -1.182
0.08316  1.969
0.08310 1.944
0.03721 1.646
0.27965 0.763
0.27963 -2.537
0.27949 0.208

We see that, after adding the interaction term, ‘Harmonyl-V-VI’ is no longer
significant, while the interaction term ‘Musician:HarmonylI-V-VI’ is significant
and negative. This means that musicians and non-musicians treat Harmony
[-V-VI differently when rate whether a music is popular or not. Musicians tend to
give music of I-V-VI type a low popular rating while non-musicians don’t.

Finally we interact ‘Musician’ with ‘Voice’. Still none of the interaction terms is
significant, so we believe musicians and non-musicians are similar in terms of
the influence of ‘Voice’ on ‘popular ratings’.

Random effects:
Groups

Subject :Harmony
Subject:Voice

Name

Variance Std.Dev.
(Intercept) 0.41090 0.6410
(Intercept) 0.03395 0.1842

Subject:Instrument (Intercept) 1.92271 1.3866

Residual
Number of obs: 2493,

Fixed effects:

(Intercept)
Instrumentpiano
Instrumentstring
HarmonyI-V-IV
HarmonyI-V-VI
HarmonyIV-I-V
Musician

Voicepar3rd
VoiceparSth
X16.minus.17
Musician:Voicepar3rd
Musician:VoiceparSth

5.

2.49061 1.5782

groups: Subject:Harmony, 280; Subject:Voice, 210; Subject:Instrument, 210

Estimate Std.

6.28827
-0.94842
-2.60618
-0.02554
-0.27151
-0.18562

0.46580

0.183%4

0.11869

0.06133
-0.05019

0.10886

(SRS IS IS IS IS IS S N

Error t value

.23080 27.246
.24710 -3.838
.24680 -10.560
.14053 -0.182
14052 -1.932
.14046 -1.322
24704  1.886
.10775  1.707
10765 1.103
.03724  1.647
.17058 -0.294
.17046  0.639

what about also interacting
musician with x16.minus.17?

Overall, among the three experimental factors, we find that the ‘Instrument’ is



the most important factor that influences people’s judgment on whether a music
piece is classical or popular, followed next by ‘Harmony’. ‘Voice’ has the least
influence. People who declare themselves as musicians take into account
‘Instrument’ and ‘Harmony’ differently compared with those who declare
themselves as non-musicians.

In our analysis, instead of a standard repeated measures model, we use a model
with three random effects that captures people’s intrinsic bias regarding to
different types of the three factors. In both ‘classical rating’ and ‘popular rating’,
the random effect of ‘instrument’ turns out to have the largest variance (about
1.5), followed by that of ‘harmony’ (about 0.2) and ‘voice’ (about 0.03). This
indicates that the personal bias distribution regarding ‘instrument type’ is the
most spread out one. Therefore we believe that instrument type is the most
important factor that leads to the variation in people’s intrinsic bias regarding
whether a piece of music is classical or popular.

Besides the personal bias reflected in random effects, we gain more insights in
interpreting the fixed effect coefficient estimates. Music played by guitar tends to
be rated as the least classical music; in contrast, music played by piano and
string tends to be associated with respectively 1.4 and 3.2 more points in
classical rating compared to that played by guitar. As to ‘harmony’, only I-V-VI is
shown to be a significant type that impact people’s judgement. An I-V-VI stimuli
is associated with a 0.77 more points in classical rating with everything else
being equal. This is in line with the researchers’ guess that I-V-VI might be
frequently rated as classical due to people’s familiarity with Pachelbel’s Canon in
D. For ‘voice’, we find that stimuli of par3rd and par5th are both associated with
a less classical rating compared to that of the contrary motion. This is in line with
the researchers’ expectation that contrary motion would be frequently rated as
classical. As to the ‘popular rating’ case, the fixed effects are mostly opposite with
that in the ‘classical rating’ case. Music played by guitar is rated high ‘popular
rating’ and string is rated least. I-V-VI is also rated significantly lower than other
‘harmony’ types. Voice types don’t have significant influence on ‘popular ratings’.

We further examine the difference between self-declared musicians and
non-musicians in considering the three experimental factors. The results show
that musicians rely their judgement less on instruments than non-musicians do.
In others words, factor ‘instrument’ is less influential for musicians than for
non-musicians. Additionally, musicians tend to be more likely to identify I-V-VI
music as classical music, while non-musicians don’t have this tendency.
Musicians and non-musicians don’t exhibit significant difference in treating
‘voice’ type.

Finally we find that the more capable the listener is to distinguish classical vs
popular music, the more likely he will give high classical rating.

4: 16
5:20
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