
36-763 HLM (F13) hw5

BJ Kim (bjkim@cmu.edu)

Question 1

1. The three main experimental factors.

1-(a)

Examine the influence of the three main experimental factors (Instrument, Harmony & Voice) on Classical
ratings, using conventional linear models and/or analysis of variance models. Comment briefly on your
findings, providing suitable brief evidence for each result. Hint: To determine whether Harmony is important,
for example, one might compare the fit of a model with Harmony in it, to one without Harmony. To determine
how particular kinds of harmony affect ratings, one might begin by looking at fixed effects estimates in a
suitable model. Etc.

ratings<-read.csv("ratings.csv")

str(ratings)

attach(ratings)

m1<-lm(Classical ~ Instrument + Voice)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5367 0.1038 43.724 < 2e-16 ***

Instrumentpiano 1.3730 0.1141 12.035 < 2e-16 ***

Instrumentstring 3.1334 0.1134 27.631 < 2e-16 ***

Voicepar3rd -0.4134 0.1138 -3.633 0.000286 ***

Voicepar5th -0.3690 0.1137 -3.244 0.001193 **

m2<-lm(Classical ~ Instrument + Harmony + Voice)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.34016 0.12987 33.420 < 2e-16 ***

Instrumentpiano 1.37359 0.11298 12.158 < 2e-16 ***

Instrumentstring 3.13312 0.11230 27.899 < 2e-16 ***

HarmonyI-V-IV -0.03108 0.13008 -0.239 0.811168

HarmonyI-V-VI 0.76909 0.13008 5.913 3.83e-09 ***

HarmonyIV-I-V 0.05007 0.12997 0.385 0.700092

Voicepar3rd -0.41247 0.11271 -3.660 0.000258 ***

Voicepar5th -0.37058 0.11264 -3.290 0.001016 **

---

anova(m1, m2)

Model 1: Classical ~ Instrument + Voice

Model 2: Classical ~ Instrument + Harmony + Voice

Res.Df RSS Df Sum of Sq F Pr(>F)

1 2488 13381

2 2485 13108 3 273.65 17.293 4.107e-11 ***

is.factor(Subject)

m3<-lm(Classical ~ Instrument + Harmony + Voice + Subject)
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.06324 0.33091 12.279 < 2e-16 ***

Instrumentpiano 1.37737 0.09319 14.780 < 2e-16 ***

Instrumentstring 3.13154 0.09257 33.828 < 2e-16 ***

HarmonyI-V-IV -0.03262 0.10718 -0.304 0.760924

HarmonyI-V-VI 0.77106 0.10718 7.194 8.36e-13 ***

HarmonyIV-I-V 0.04988 0.10709 0.466 0.641432

Voicepar3rd -0.41523 0.09287 -4.471 8.14e-06 ***

Voicepar5th -0.37464 0.09281 -4.037 5.59e-05 ***

Subject16 0.36111 0.44603 0.810 0.418241

Subject17 -1.13889 0.44603 -2.553 0.010728 *

....

Subject94 -0.47222 0.44603 -1.059 0.289829

Subject98 -0.47222 0.44603 -1.059 0.289829

---

anova(m2, m3)

Model 1: Classical ~ Instrument + Harmony + Voice

Model 2: Classical ~ Instrument + Harmony + Voice + Subject

Res.Df RSS Df Sum of Sq F Pr(>F)

1 2485 13107.5

2 2416 8651.5 69 4455.9 18.034 < 2.2e-16 ***

---

anova(m1, m2, m3)

Analysis of Variance Table

Model 1: Classical ~ Instrument + Voice

Model 2: Classical ~ Instrument + Harmony + Voice

Model 3: Classical ~ Instrument + Harmony + Voice + Subject

Res.Df RSS Df Sum of Sq F Pr(>F)

1 2488 13381.1

2 2485 13107.5 3 273.6 25.473 3.202e-16 ***

3 2416 8651.5 69 4455.9 18.034 < 2.2e-16 ***

As shown above, model 2 including Harmony variable is significantly different from model 1. And one of the
Harmony dummy is significant in model 2. Thus model 2 is better than model 1. And we can interpret model
2 as that using piano and strings as well as a particular harmony (I-V-VI) have positive association with
classical ratings, while Voice has negative association. When we add Subject for controlling for individual
fixed effect, all the statistically significant coefficients have similar effect size with same direction. In anova(),
we also found that model 3 is better than model 2. Overall, we saw that Harmony variable needs to be included
in the model.

1-(b)

Since we have approximately 36 ratings from each participant, we can fit a random intercept for each
participant if we wish. Such a model is called a “repeated measures” model.

1-(b)-i

Carefully write this model in mathematical terms as a hierarchical linear model.
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ratingsi = α0j[i] + α1Harmonyi + α2Instrumenti + α3V oicei + εi, εi ∼ N(0, σ2)

α0j = β0 + ηj , ηj ∼ N(0, τ2)

Thus

ratingsi = β0 + α1Harmonyi + α2Instrumenti + α3V oicei + ηj[i] + εi, εi ∼ N(0, σ2)

ηj ∼ N(0, τ2)

1-(b)-ii

Use at least two different methods to test whether the random intercept is needed in the model. Is the
random effect needed? Justify your answer with evidence from your tests. 1

library(ggplot2); theme_set(theme_bw())

library(arm)

library(lme4)

attach(ratings)

# comparing the models

# pooled regression graph

plot(Classical ~ 1,ylab="Classical ratings")

abline(lm(Classical ~ 1), col="red")

# unpooled, means only, with Instrument as X variable

ggplot(ratings,aes(x=Instrument,y=Classical)) +

geom_point(pch=1,color="blue") +

geom_smooth(method="lm", formula = Classical ~ 1, se=F, size=0.5,

fullrange=T, color="black") +

#scale_x_continuous(labels=NULL) +

facet_wrap( ~ Subject,as.table=F)

# unpooled, means only, with Instrument as X variable

ggplot(ratings,aes(x=Instrument,y=Classical)) +

geom_point(pch=1,color="blue") +

geom_smooth(method="lm", formula = Classical ~ 1, se=F, size=0.5,

fullrange=T, color="black") +

#scale_x_continuous(labels=NULL) +

facet_wrap( ~ Subject,as.table=F)

# comparing the models

summary(newm1<-lm(Classical ~ 1))

is.factor(Subject)

[1] TRUE

summary(newm2<-lm(Classical ~ Subject))

anova(newm1, newm2)

103-, 04-.r from lecture materials
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Model 1: Classical ~ 1

Model 2: Classical ~ Subject

Res.Df RSS Df Sum of Sq F Pr(>F)

1 2492 17595

2 2423 13132 69 4462.1 11.931 < 2.2e-16 ***

is.factor(Subject)

contrasts(Subject) <- contr.sum(70)

lm.unpooled.contrast.from.grand.mean <- lm(Classical ~ Subject)

summary(newm1)$coef

summary(lm.unpooled.contrast.from.grand.mean)$coef

anova(newm1,lm.unpooled.contrast.from.grand.mean)

Analysis of Variance Table
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Model 1: Classical ~ 1

Model 2: Classical ~ Subject

Res.Df RSS Df Sum of Sq F Pr(>F)

1 2492 17595

2 2423 13132 69 4462.1 11.931 < 2.2e-16 ***

hist(coef(lm.unpooled.contrast.from.grand.mean)[-1],

main="Unpooled Contrasts from Grand Mean")

############################################################

# How many Subjects have Classical means significantly different from

# the grand mean?

# forces Subject coefficients to sum to zero, so their

# values show how different each county mean is from the

# grand mean...

lm.unpooled.contrast.from.grand.mean <- lm(Classical ~ Subject)

summary(lm.unpooled.contrast.from.grand.mean)

length(unique(Subject))

[1] 70

sum(coef(summary(lm.unpooled.contrast.from.grand.mean))[,4]<0.05)

[1] 43

43/70

[1] 0.6142857

# hierarchical structure

aj.coefs <- NULL

for (Subj in sort(unique(Subject))) {

aj.coefs <- c(aj.coefs,coef(lm(Classical ~ 1,subset=(Subject==Subj))))

}

hist(aj.coefs)

1-(b)-iii

Re-examine the influence of the three main experimental factors (Instrument, Harmony & Voice) on Classical
ratings, using the repeated-measures model with the random intercept for participants.

lmer.intercept.only <- lmer( Classical ~ 1 + ( 1 | Subject ) )

summary(lmer.intercept.only)

Linear mixed model fit by REML [’lmerMod’]

Formula: Classical ~ 1 + (1 | Subject)

REML criterion at convergence: 11462.08
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Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 1.654 1.286

Residual 5.420 2.328

Number of obs: 2493, groups: Subject, 70

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.7872 0.1607 36.02

fixef(lmer.intercept.only)

(Intercept)

5.787247

ranef(lmer.intercept.only)

lmer1<-lmer(Classical ~ Instrument + Harmony + Voice + (1 | Subject))

display(lmer1)

lmer(formula = Classical ~ Instrument + Harmony + Voice + (1 |

Subject))

coef.est coef.se

(Intercept) 4.34 0.19

Instrumentpiano 1.38 0.09

Instrumentstring 3.13 0.09

HarmonyI-V-IV -0.03 0.11

HarmonyI-V-VI 0.77 0.11

HarmonyIV-I-V 0.05 0.11

Voicepar3rd -0.42 0.09

Voicepar5th -0.37 0.09

Error terms:

Groups Name Std.Dev.
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Subject (Intercept) 1.30

Residual 1.89

---

number of obs: 2493, groups: Subject, 70

AIC = 10491.5, DIC = 10426.2

deviance = 10448.9

1-(c)

The random intercept in a repeated measures model can account for “personal biases” in ratings: perhaps
person A is more inclined to rate everything as classical, and person B is more inclined to rate everything
as popular. This can be accounted for by the random intercept. Alternatively, perhaps personal biases vary
with the type of instrument, type of harmony, and/or type of voice leading. For example, perhaps people
vary in the degree to which they are inclined to call music played by a string quartet “classical”. This
suggests, e.g., a random effect of the form (1 | Subject:Instrument): a random draw is made from a
single normal distribution, for each person/instrument combination. One could argue for a similar random
effect for each person/harmony combination, and for each person/voice leading combination.

1-(c)-i

Determine whether a model with all three new random effect terms (but not the original single random
intercept) is better or worse than each of the models in problems 1a and 1b. Provide suitable evidence to
justify your answer.

lmer1<-lmer(Classical ~ Instrument + Harmony + Voice + (1 | Subject))

lmer2<-lmer(Classical ~ Instrument + Harmony + Voice + (Instrument + Harmony + Voice |

Subject))

lmer3<-lmer(Classical ~ Instrument + Harmony + Voice + (1 | Subject:Instrument))

lmer4<-lmer(Classical ~ Instrument + Harmony + Voice + (1 | Subject:Harmony))

lmer5<-lmer(Classical ~ Instrument + Harmony + Voice + (1 | Subject:Voice))

anova(lmer1, lmer2, lmer3, lmer4, lmer5)

Data:

Models:

lmer1: Classical ~ Instrument + Harmony + Voice + (1 | Subject)

lmer3: Classical ~ Instrument + Harmony + Voice + (1 | Subject:Instrument)

lmer4: Classical ~ Instrument + Harmony + Voice + (1 | Subject:Harmony)

lmer5: Classical ~ Instrument + Harmony + Voice + (1 | Subject:Voice)

lmer2: Classical ~ Instrument + Harmony + Voice + (Instrument + Harmony + Voice | Subject

)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

lmer1 10 10468.9 10527 -5224.4 10448.9

lmer3 10 10153.3 10212 -5066.6 10133.3 315.61 0 <2e-16 ***

lmer4 10 10613.4 10672 -5296.7 10593.4 0.00 0 1

lmer5 10 10691.7 10750 -5335.8 10671.7 0.00 0 1

lmer2 45 9971.1 10233 -4940.6 9881.1 790.57 35 <2e-16 ***

---

cbind(

AIC=sapply(list(lmer1=lmer1, lmer2=lmer2, lmer3=lmer3, lmer4=lmer4, lmer5=lmer5, lmer2b

=lmer2b, m3),AIC)

,
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DIC=sapply(list(lmer1=lmer1, lmer2=lmer2, lmer3=lmer3, lmer4=lmer4, lmer5=lmer5, lmer2b

=lmer2b, m3), invisible(function(x) display(x)$DIC))

,

BIC=sapply(list(lmer1=lmer1, lmer2=lmer2, lmer3=lmer3, lmer4=lmer4, lmer5=lmer5, lmer2b

=lmer2b, m3),BIC)

)

AIC DIC BIC

lmer1 10491.51 10426.21 10549.73

lmer2 10062.51 9789.693 10324.46

lmer3 10173.45 10113.06 10231.66

lmer4 10632.19 10574.56 10690.4

lmer5 10711.53 10651.81 10769.74

lmer2b 10034.59 9817.616 10296.54

10332.74 NULL 10786.8

As shown AIC and BIC in the ANOVA test above, lmer2 using random effects is better than lmer1 from
Question 1 (b) and other three models (lmer 3, 4, 5). (Although BIC for lmer3 is lowest, considering deviance
and DIC, I would choose lmer2 as the best model among those.)

However lmer2 contains random effect of intercept. So we need to remove it.

lmer2a <- lmer(Classical ~ Instrument + Harmony + Voice + (Instrument + Harmony + Voice -

1 | Subject))

lmer2b <- lmer(Classical ~ Instrument + Harmony + Voice + (0 + Instrument + Harmony +

Voice | Subject))

display(lmer2a)

display(lmer2b)

lmer(formula = Classical ~ Instrument + Harmony + Voice + (0 +

Instrument + Harmony + Voice | Subject))

coef.est coef.se

(Intercept) 4.34 0.28

Instrumentpiano 1.37 0.19

Instrumentstring 3.13 0.28

HarmonyI-V-IV -0.03 0.10

HarmonyI-V-VI 0.77 0.18

HarmonyIV-I-V 0.05 0.11

Voicepar3rd -0.41 0.11

Voicepar5th -0.37 0.10

Error terms:

Groups Name Std.Dev. Corr

Subject Instrumentguitar 2.23

Instrumentpiano 1.91 0.77

Instrumentstring 1.77 0.40 0.55

HarmonyI-V-IV 0.47 0.51 0.28 0.47

HarmonyI-V-VI 1.29 0.32 0.10 -0.21 0.18

HarmonyIV-I-V 0.55 -0.02 0.00 0.48 0.28 -0.08

Voicepar3rd 0.69 -0.20 0.02 0.22 -0.17 -0.37 0.76

Voicepar5th 0.55 -0.16 0.03 0.08 -0.40 -0.19 0.61 0.92

Residual 1.52

---

number of obs: 2493, groups: Subject, 70

AIC = 10034.6, DIC = 9817.6
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deviance = 9881.1

anova(lmer1,lmer2,lmer3,lmer4,lmer5,lmer2a)

Data:

Models:

lmer1: Classical ~ Instrument + Harmony + Voice + (1 | Subject)

lmer3: Classical ~ Instrument + Harmony + Voice + (1 | Subject:Instrument)

lmer4: Classical ~ Instrument + Harmony + Voice + (1 | Subject:Harmony)

lmer5: Classical ~ Instrument + Harmony + Voice + (1 | Subject:Voice)

lmer2: Classical ~ Instrument + Harmony + Voice + (Instrument + Harmony +

lmer2: Voice | Subject)

lmer2a: Classical ~ Instrument + Harmony + Voice + (Instrument + Harmony +

lmer2a: Voice - 1 | Subject)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

lmer1 10 10468.9 10527 -5224.4 10448.9

lmer3 10 10153.3 10212 -5066.6 10133.3 315.61 0 <2e-16 ***

lmer4 10 10613.4 10672 -5296.7 10593.4 0.00 0 1

lmer5 10 10691.7 10750 -5335.8 10671.7 0.00 0 1

lmer2 45 9971.1 10233 -4940.6 9881.1 790.57 35 <2e-16 ***

lmer2a 45 9971.1 10233 -4940.6 9881.1 0.00 0 1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

lmer2a and lmer2b provides the same results in ANOVA. However, variance components are different be-
tween lmer2 and lmer2a / lmer2b because lmer2a / lmer2b removed random intercept effect. Thus we
will use lmer2b (which is the same as lmer2a) hereafter.

In addition, we compare lme2b with my final linear model from the question 1-(a), m3.

# Comparing lme() model with lm() model

# my lm() model is m3; my lmer() model based on the results above is lmer2

# Compare lmer2b with m3

LRT.observed <- as.numeric(2*(logLik(lmer2b) - logLik(m3)))

nsim <- 9

LRT.sim <- numeric(nsim)

for (i in 1:nsim) {

y <- unlist(simulate(m3))

nullmod <- lm(Classical ~ Instrument + Harmony + Voice + Subject)

altmod <- lmer(Classical ~ Instrument + Harmony + Voice + (0 + Instrument + Harmony +

Voice | Subject))

LRT.sim[i] <- as.numeric(2*(logLik(altmod) - logLik(nullmod)))

}

mean(LRT.sim > LRT.observed) #pvalue

1-(c)-ii

Re-examine the influence of the three main experimental factors (Instrument, Harmony & Voice) on Classical
ratings, using the model with all three new random effect terms in it. Comment briefly on your findings,
providing suitable brief evidence for each result. In addition, comment on the sizes of the three estimated
variance components, with respect to each other and with respect to the estimated residual variance.

display(lmer2b)

lmer(formula = Classical ~ Instrument + Harmony + Voice + (0 +
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Instrument + Harmony + Voice | Subject))

coef.est coef.se

(Intercept) 4.34 0.28

Instrumentpiano 1.37 0.19

Instrumentstring 3.13 0.28

HarmonyI-V-IV -0.03 0.10

HarmonyI-V-VI 0.77 0.18

HarmonyIV-I-V 0.05 0.11

Voicepar3rd -0.41 0.11

Voicepar5th -0.37 0.10

Error terms:

Groups Name Std.Dev. Corr

Subject Instrumentguitar 2.23

Instrumentpiano 1.91 0.77

Instrumentstring 1.77 0.40 0.55

HarmonyI-V-IV 0.47 0.51 0.28 0.47

HarmonyI-V-VI 1.29 0.32 0.10 -0.21 0.18

HarmonyIV-I-V 0.55 -0.02 0.00 0.48 0.28 -0.08

Voicepar3rd 0.69 -0.20 0.02 0.22 -0.17 -0.37 0.76

Voicepar5th 0.55 -0.16 0.03 0.08 -0.40 -0.19 0.61 0.92

Residual 1.52

---

number of obs: 2493, groups: Subject, 70

AIC = 10034.6, DIC = 9817.6

deviance = 9881.1

As shown above, in this lmer2b model, the coefficients are similar to previous lm() model. All the
Instrument and Voice variables are significant, and one of the Harmony variable is significant. Two in-
significant Harmony variables are shown to be highly correlated in terms of their error terms. Also we
can see that all three Instrument variables (piano and string) have larger standard deviation than residual
standard deviation, and Harmony (I-V-VI) has also large standard deviation.

1-(c)-iii

Carefully write this model in mathematical terms as a hierarchical linear model. Because they are design
variables in the experiment, the three experimental factors, Instrument, Harmony, and Voice, should be
included in all models for the remainder of this homework, regardless of what you found about their influence
or lack of influence on ratings.

ratingsi = α0 + α1j[i]Instrumenti + α2j[i]Harmonyi + α3j[i]V oicei + εi, εi ∼ N(0, σ2)

α1j[i] = β1 + η1j , η1j ∼ N(0, τ21 )

α2j[i] = β2 + η2j , η2j ∼ N(0, τ22 )

α3j[i] = β3 + η3j , η3j ∼ N(0, τ23 )
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Thus

ratingsi =α0 + β1Instrumenti + β2Harmonyi + β3V oicei + η1Instrumenti + η2Harmonyi + η3V oicei + εi

, εi ∼ N(0, σ2)

η1j ∼ N(0, τ21 )

η2j ∼ N(0, τ22 )

η3j ∼ N(0, τ23 )

Since the three experiment variables (Instrument, Harmony, Voice) are factors, we can rewrite equation
above as follow:

Let Instrumentpiano = I1, Instrumentstring = I2, HarmonyI − V − IV = H1, HarmonyI − V − V I = H2,
HarmonyIV − I − V = H3, V oicepar3rd = V1, V oicepar5th = V2, then

ratingsi = α0 + α1j[i]Instrumenti + α2j[i]Harmonyi + α3j[i]V oicei + εi

= α0 + α1j[i]I1i + α2j[i]I2i + α3j[i]H1i + α4j[i]H2i + α5j[i]H3i + α6j[i]V1i + α7j[i]V2i + εi

α1j[i] = β1 + η1j , η1j ∼ N(0, τ21 )

α2j[i] = β2 + η2j , η2j ∼ N(0, τ22 )

α3j[i] = β3 + η3j , η3j ∼ N(0, τ23 )

α4j[i] = β4 + η4j , η4j ∼ N(0, τ24 )

α5j[i] = β5 + η5j , η5j ∼ N(0, τ25 )

α6j[i] = β6 + η6j , η6j ∼ N(0, τ26 )

α7j[i] = β7 + η7j , η7j ∼ N(0, τ27 )

so that we can match η̂1 – η̂7 to the random effects shown in lmer2b results above. The R code will be as
follows:

# R code:

lmer2b <- lmer(Classical ~ Instrument + Harmony + Voice + (0 + Instrument + Harmony +

Voice | Subject))

Question 2

Individual covariates. For this problem, begin with your best model from problem 1.

2-(a)

Determine which individual covariates should be added to the model as fixed effects. Show a suitable
summary of your work, and list the final set of variables that you would include in the model. Hint: Some
covariates that are actually factor variables are coded as numeric. Be careful to treat them as factors!

# Model selection!

names(ratings)

"OMSI" Score on a test of musical knowledge
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"X16.minus.17" Auxiliary measure of listeners ability to distinguish classical vs popular

music

"X1stInstr" ow proficient are you at your first musical instrument (0-5, 0=not at all)

"Selfdeclare" Are you a musician? (1-6, 1=not at all)

tmp<-lm(Classical~Instrument + Harmony + Voice + OMSI + X16.minus.17 + X1stInstr +

Selfdeclare)

summary(tmp)

# OMSI, X16.minus.17, and Selfdeclare variables look like having association with

experiment variables and response variable (Classical).

lmer.covariate.1a <- update(lmer2b, . ~ . + OMSI)

lmer.covariate.1b <- update(lmer2b, . ~ . + X16.minus.17)

lmer.covariate.1c <- update(lmer2b, . ~ . + Selfdeclare)

lmer.covariate.1d <- update(lmer2b, . ~ . + OMSI + X16.minus.17 + Selfdeclare)

anova(lmer2b,lmer.covariate.1a, lmer.covariate.1b, lmer.covariate.1c, lmer.covariate.1d)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

lmer2b 45 9971.1 10233 -4940.6 9881.1

lmer.covariate.1a 46 9972.9 10241 -4940.4 9880.9 0.2336 1 0.6288

lmer.covariate.1b 46 9969.8 10238 -4938.9 9877.8 3.0585 0 <2e-16 ***

lmer.covariate.1c 46 9973.1 10241 -4940.5 9881.1 0.0000 0 1.0000

lmer.covariate.1d 48 9975.5 10255 -4939.8 9879.5 1.5587 2 0.4587

# AIC and BIC shows weak preference of new models (only for lmer.covariate.1b) with

additional covariates.

# Try with other covariates

tmp2<-lm(Classical~Instrument + Harmony + Voice + factor(CollegeMusic) + factor(APTheory)

)

summary(tmp2)

tmp3<-lm(Classical~Instrument + Harmony + Voice + factor(APTheory) + X1stInstr + NoClass)

summary(tmp3)

lmer.covariate.2a <- update(lmer2b, . ~ . + factor(APTheory))

lmer.covariate.2b <- update(lmer2b, . ~ . + X1stInstr)

lmer.covariate.2c <- update(lmer2b, . ~ . + NoClass)

lmer.covariate.2d <- update(lmer2b, . ~ . + factor(APTheory) + X1stInstr + NoClass)

anova(lmer2b,lmer.covariate.1b, lmer.covariate.2a, lmer.covariate.2b, lmer.covariate.2c,

lmer.covariate.2d)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

lmer2b 45 9971.1 10233.1 -4940.6 9881.1

lmer.covariate.1b 46 9969.8 10237.6 -4938.9 9877.8 3.2921 1 0.06961 .

lmer.covariate.2a 46 9172.7 9436.6 -4540.4 9080.7 797.0726 0 < 2e-16 ***

lmer.covariate.2b 46 3996.3 4222.1 -1952.1 3904.3 5176.4428 0 < 2e-16 ***

lmer.covariate.2c 46 8863.0 9125.4 -4385.5 8771.0 0.0000 0 1.00000

lmer.covariate.2d 48 3569.8 3799.9 -1736.9 3473.8 5297.2223 2 < 2e-16 ***

---
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# AIC prefer lmer.covariate.2d a lot.

formula(lmer.covariate.2d)

Classical ~ Instrument + Harmony + Voice + (0 + Instrument + Harmony + Voice | Subject) +

factor(APTheory) + X1stInstr + NoClass

lmer.ranef.0<-lmer(Classical ~ Instrument + Harmony + Voice + factor(APTheory) +

X1stInstr + NoClass + (0 + Instrument + Harmony + Voice | Subject))

lmer.ranef.1 <- lmer(Classical ~ Instrument + Harmony + Voice + factor(APTheory) +

X1stInstr + NoClass + (0 + Instrument + Harmony + Voice + factor(APTheory) | Subject)

)

lmer.ranef.2 <- lmer(Classical ~ Instrument + Harmony + Voice + factor(APTheory) +

X1stInstr + NoClass + (0 + Instrument + Harmony + Voice + X1stInstr | Subject))

lmer.ranef.3 <- lmer(Classical ~ Instrument + Harmony + Voice + factor(APTheory) +

X1stInstr + NoClass + (0 + Instrument + Harmony + Voice + NoClass | Subject))

anova(lmer.ranef.0, lmer.ranef.1, lmer.ranef.2, lmer.ranef.3)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

lmer.ranef.0 48 3569.8 3799.9 -1736.9 3473.8

lmer.ranef.1 57 3581.7 3854.9 -1733.9 3467.7 6.0502 9 0.7349

lmer.ranef.2 57 3577.7 3850.9 -1731.8 3463.7 4.0121 0 <2e-16 ***

lmer.ranef.3 57 3580.1 3853.3 -1733.0 3466.1 0.0000 0 1.0000

---

# AIC prefers lmer.ranef.0

formula(lmer.ranef.0)

Classical ~ Instrument + Harmony + Voice + factor(APTheory) +

X1stInstr + NoClass + (0 + Instrument + Harmony + Voice |

Subject)

2-(b)

Once the fixed effects are settled, go back and check to see whether there should be any change in the random
effects. Provide suitable evidence to justify your answer.

# As shown in Question 2-(a), lmer.ranef.1~3 were compared to lmer.ranef.0 model. And AIC

prefer lmer.ranef.0, which has no random effects for additional covariates.

2-(c)

Briefly interpret the effect of each variable kept in the final model, on Classical ratings.

summary(lmer.ranef.0)

Linear mixed model fit by REML [’lmerMod’]

Formula: Classical ~ Instrument + Harmony + Voice + factor(APTheory) + X1stInstr +

NoClass + (0 + Instrument + Harmony + Voice | Subject)

REML criterion at convergence: 3514.515

Random effects:

Groups Name Variance Std.Dev. Corr
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Subject Instrumentguitar 1.1821 1.0872

Instrumentpiano 2.2885 1.5128 0.73

Instrumentstring 4.8691 2.2066 0.33 0.67

HarmonyI-V-IV 0.1921 0.4383 0.25 -0.30 0.11

HarmonyI-V-VI 1.9360 1.3914 -0.18 -0.29 -0.35 -0.01

HarmonyIV-I-V 0.5412 0.7357 0.18 -0.07 0.32 0.68 -0.01

Voicepar3rd 0.3667 0.6055 -0.10 0.07 0.08 -0.18 -0.28 0.32

Voicepar5th 0.8405 0.9168 0.23 0.48 0.28 -0.34 0.05 0.30 0.78

Residual 2.2482 1.4994

Number of obs: 892, groups: Subject, 25

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.72638 0.56667 6.576

Instrumentpiano 1.89656 0.24168 7.847

Instrumentstring 3.59833 0.44004 8.177

HarmonyI-V-IV 0.12874 0.16691 0.771

HarmonyI-V-VI 1.01150 0.31246 3.237

HarmonyIV-I-V 0.03325 0.20452 0.163

Voicepar3rd -0.50448 0.17270 -2.921

Voicepar5th -0.40667 0.22081 -1.842

factor(APTheory)1 1.46045 0.51471 2.837

X1stInstr 0.02702 0.13612 0.199

NoClass -0.09016 0.35412 -0.255

Correlation of Fixed Effects:

(Intr) Instrmntp Instrmnts HI-V-I HI-V-V HIV-I- Vcpr3r Vcpr5t f(APT) X1stIn

Instrumntpn -0.051

Instrmntstr -0.093 0.612

HrmnyI-V-IV -0.057 -0.314 -0.005

HrmnyI-V-VI -0.118 -0.185 -0.238 0.186

HrmnyIV-I-V -0.036 -0.180 0.166 0.551 0.151

Voicepar3rd -0.104 0.121 0.088 -0.066 -0.175 0.165

Voicepar5th 0.013 0.328 0.137 -0.151 0.039 0.177 0.656

fctr(APTh)1 -0.242 0.003 0.000 0.000 0.000 0.000 0.000 -0.002

X1stInstr -0.736 0.001 0.000 0.000 0.000 0.000 0.000 0.000 -0.110

NoClass -0.572 -0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.249 0.169

Although the effect size has slightly changed, the original experimental variables has simlar effects on Classical
ratings with the same direction and significance. In addition to these variables, taking AP music class has
positive effect on Classical ratings, and its effect size is relatively large. But as shown above, the random
effect of AP music class was insignificant and excluded from the model.

Question 3

Musicians vs. Non-musicians. One of the secondary hypotheses of the researchers is that people who
self- identify as musicians may be influenced by things that do not influence non-musicians. Dichotomize
“Self- declare” (“are you a musician?”) so that about half the participants are categorized as self-declared
musicians, and half not. Examine and report on any interactions between the dichotomized musician variable
and other predictors in the model. Provide suitable evidence for, and comment on, your results.

14



Question 4

Classical vs. Popular. Please re-examine the data in terms of the “Popular” ratings, instead of the “Classical”
ratings, using similar hierarchical linear models. Provide brief answers to the following questions:

4-(a)

Comment on the influence of Instrument, Harmony & Voice on Popular ratings, providing suitable brief
evidence for each result.

4-(b)

Question 2c, for Popular ratings.

4-(c)

Question 3, for Popular ratings.

Question 5

Brief write up. Write a one page professional-quality summary of your findings for Classical and Popular
ratings, suitable for Dr. Jimenez. Be sure to address:

• The influence of the three main experimental factors (Instrument, Harmony & Voice);
• A brief discussion of variance componentsis this a standard repeated measures model, or did we need

to include other variance components?
• A discussion of other individual covariates in the model. You may refer to your earlier work (e.g. “As

I showed in my answer to part 1b, blah-blah-blah..”). Don’t be sloppy about the statistical findings, but try
to highlight things that will be of substantive interest to Dr. Jimenez. Make your summary very readable
and clear.
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