Homework 04 Solutions
2022-09-22

36-617: Applied Linear Models
Fall 2022

Solutions

library(arm) ## includes lme4, MASS, Matrix
library(ggplot2); theme_set(theme_bw())
library(gridExtra) ## to arrange ggplots...
library(GGally) ## for ggpairs...

library(leaps) ## regsubsets(), summary(), coef()
library(car) ## subsets(), mmps(), vif(), etc.

Problem 1: Sheather, Ch 6, pp. 216—221, #3.

Continuing the analysis of data in “cars04.csv”... Notes:
e The data set is available as “cars04.csv”.

o There are some errors in the results for fitting the model (6.37) in the textbook, so I suggest you refit
the models for this problem directly from the data in “cars04.csv”.

The variables are:

Y = Suggested Retail Price;

z1 = Engine size;

x9 = Cylinders;

x3 = Horse power;

r4 = Highway mpg;

x5 = Weight;

z¢ = Wheel Base;

xz7 = Hybrid (1=Hybrid; 0=just gasoline-powered)
The first model proposed is

Y = Bo + iz + Boxa + B3xz + Baxy + Bsxs + Pexes + Brrr + € (6.36)

After examining Box-Cox transformation proposals and “rounding” to more interpretable values, the second
model proposed is

log(Y) = Bo + B127?° + B2 log(x2) + B3 log(x3) + Ba(1/x4) + Bsxs + PBe log(we) + Brar + € (6.37)

Since there are some problems with the analysis presented in Sheather, we refit all the models and reproduce
all the outputs (except that I am just going to accept the transformations suggested in (6.37)).



Problem 1(a)

Decide whether (6.36) is a valid model. Give reasons to support your answer.

We start by refitting the model and reproducing the diagnostic plots in Sheather.

cars <- read.csv("cars0.csv")

str(cars)

## 'data.frame': 234 obs. of 13 variables:

## $ Vehicle.Name : chr "Chevrolet Aveo 4dr" "Chevrolet Aveo LS 4dr hatch" "Chevrolet Cavalier
## $ Hybrid :int 0000000000 ...

## $ SuggestedRetailPrice: int 11690 12585 14610 14810 16385 13670 15040 13270 13730 15460 ...
## $ DealerCost : int 10965 11802 13697 13884 15357 12849 14086 12482 12906 14496 ...
## $ EngineSize tnum 1.6 1.6 2.2 2.2 2.222222 ...

## $ Cylinders :int 4444444444 ...

## $ Horsepower : int 103 103 140 140 140 132 132 130 110 130 ...

## $ CityMPG : int 28 28 26 26 26 29 29 26 27 26 ...

## $ HighwayMPG : int 34 34 37 37 37 36 36 33 36 33 ...

## $ Weight : int 2370 2348 2617 2676 2617 2581 2626 2612 2606 2606 ...

## $ WheelBase : int 98 98 104 104 104 105 105 103 103 103 ...

## $ Length : int 167 153 183 183 183 174 174 168 168 168 ...

## ¢$ Width : int 66 66 69 68 69 67 67 67 67 67 ...

names (cars)

## [1] "Vehicle.Name" "Hybrid" "SuggestedRetailPrice"

## [4] "DealerCost" "EngineSize" "Cylinders"

## [7] "Horsepower" "CityMPG" "HighwayMPG"

## [10] "Weight" "WheelBase" "Length"

## [13] "Width"

cars.red <- cars[,c("EngineSize", "Cylinders",

"Horsepower", "HighwayMPG", "Weight", "WheelBase", "Hybrid", "SuggestedRetailPrice")]
dim(cars.red)

## [1] 234 8

names (cars.red)

## [1] "EngineSize" "Cylinders" "Horsepower"
## [4] "HighwayMPG" "Weight" "WheelBase"
## [7] "Hybrid" "SuggestedRetailPrice"

ggpairs(cars.red)
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summary (lm.6.36 <- lm(SuggestedRetailPrice ~ ., cars.red))
##

## Call:

## 1m(formula = SuggestedRetailPrice ~ ., data = cars.red)
##

## Residuals:

## Min 1Q Median 3Q Max

## -17436 -4134 173 3561 46392

##

## Coefficients:

#it Estimate Std. Error t value Pr(>[tl)

## (Intercept) -68965.793 16180.381 -4.262 2.97e-05 **x*
## EngineSize  -6957.457  1600.137 -4.348 2.08e-05 **x*
## Cylinders 3564.755 969.633  3.676 0.000296 **x
## Horsepower 179.702 16.411 10.950 < 2e-16 *xx
## HighwayMPG 637.939 202.724 3.147 0.001873 x*x*
## Weight 11.911 2.658 4.481 1.18e-05 *xx*
## WheelBase 47.607 178.070  0.267 0.789444

## Hybrid 431.759  6092.087  0.071 0.943562

##H ——-
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## Sheather did not include the response variable "SuggestedRetailPrice",
## but I think it is good to include since it can help us guess transformatioms...



## Signif. codes: 0 '**x!'

##

0.001 ‘'*x!

0.01

l*l

o011

## Residual standard error: 7533 on 226 degrees of freedom

## Multiple R-squared:

## F-statistic: 115.7 on 7 and 226 DF,

par( c(2,2))
plot(im.6.36)
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Neither the scatter plot matriz nor the summary () printout can tell us whether the model is valid (the scatter
plot matriz can help us make guesses about transformations and/or collinearity. The summary output can tell
us whether the fitted model will be useful for answering questions our collaborator may have). Validity of the
model depends only on

e Linear relationship between Y and the X'’s
e Normal errors €
o Constant error variance o = Var(e)

We can use the casewise diagnostic plots for this:

Linear relationship between Y and the X’s: The “Residuals vs. Fitted” plot suggests a curved relation-
ship between the residuals € and the fitted values j. This suggests that the relationship between Y and
the X ’s is nonlinear.

Normal errors e: The “Normal Q-Q7 plot of the standardized residuals r; shows quite a bit of right-skew.



This suggests that the errors € are not normally distributed.

Constant error variance o = \/Var(e): The red trend line in the “Scale-Location” is increasing from left
to right, suggesting that the variance Var(e) is not constant across the data.

Since there is evidence of wviolations of all three basic assumptions of the model, we can say
the model is not fully valid.

Note: The model might still be useful in some way, e.g. for prediction. However it does not satisfy the basic
statistical assumptions above, and so any tests or estimates for the B’s, for the §’s for o should be viewed
with some suspicion.

Problem 1(b)

The plot of residuals against fitted values produces a curved pattern. Describe what, if anything can be
learned about model (6.36) from this plot.

The curved pattern in the residuals suggests we should look for transofmrations of X’s or'Y ’s to produce a set
of raw residuals € with less functional dependence on the fitted values .

Problem 1(c)
Identify any bad leverage points for model (6.36).

From the “Residuals vs Leverage” plot we can see:
o Observation #223 seems to be influential, with a Cook’s Distance > 0.5.
e Observation #67 may also be influention, with a Cook’s Distance near 0.5.

o Observation #222 does not have high leverage, but its residual is a hugh outlier—more than 6 SD’s
from the middle of the residual distribution.

o Two more observations, not labelled by R, have relatively high leverage (= 0.35) but pretty small
residuals.

Note: The usual cutoff for “high leverage” is

1
hign =2- 27 = 2. 2 ~0.07
n

so there are actually 5 or more points with leverage hy; > hpign, but the points I've identified above are the
ones that I might devote some worry to in practice.

Problem 1(d)
Decide whether (6.37) is a valid model.

First we refit the model and reproduce the output in Sheather (this is the part that Sheather appaers to have
gotten wrong):

attach(cars.red) ## so I don't have to type "cars.red$" all the time...
tSuggestedRetatlPrice <- log(SuggestedRetailPrice)
tEngineSize <- EngineSize (0.25)
tCylinders <- log(Cylinders)
tHorsepower <- log(Horsepower)
tHighwayMPG <- 1/HighwayMPG
tWheelBase <- log(WheelBase)
cars.t <- data.frame(tEngineSize,
tCylinders, tHorsepower, tHighwayMPG,
Weight, tWheelBase, Hybrid,tSuggestedRetailPrice)



detach()
names (cars.t)

## [1] "tEngineSize"
## [4] "tHighwayMPG"
## [7] "Hybrid"

"tCylinders"
"Weight"
"tSuggestedRetailPrice"

ggpairs(cars.t)
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summary(lm.6.37 <- lm(tSuggestedRetatlPrice ~ ., cars.t))
##

## Call:

## 1lm(formula = tSuggestedRetailPrice ~ ., data = cars.t)
##

## Residuals:

## Min 1Q Median 3Q Max

## -0.42288 -0.10983 -0.00203 0.10279 0.70068

##

## Coefficients:

#i# Estimate Std. Error t value Pr(>[tl)

## (Intercept) 5.703e+00 2.010e+00 2.838 0.00496 x*x*
## tEngineSize -1.575e+00 3.332e-01 -4.727 4.01e-06 **x*
## tCylinders  2.335e-01 1.204e-01 1.940 0.05359 .
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##
##
##
##
##
##
##
##
##
##
##

par(

8.876e-02
4.758e+00
6.367e-05
4.715e-01
1.150e-01

tHorsepower 8.992e-01
tHighwayMPG 8.029e-01
Weight 5.043e-04
tWheelBase -6.385e-02
Hybrid 6.422e-01

Signif. codes: O 'xxx' 0.001 '*x*'

10.130
0.169
7.920

-0.135
5.582

0.01

< 2e-16 ***
0.86614
1.07e-13 *%*x*
0.89240
6.78e-08 **x

l*l

PR O |

Residual standard error: 0.1789 on 226 degrees of freedom

Multiple R-squared:
F-statistic:

c(2,2))

plot(im.6.37)
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Marginal Model Plots
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Now, following the same approach as before, we use the casewise diagnostic plots to check: We can use the
casewise diagnostic plots for this:

Linear relationship between Y and the X’s: The red trend-line in the “Residuals vs Fitted” plot is
nearly flat, suggesting no relationship between é and . This suggests that we have an approzimately linear
relationship between the new Y and the new X ’s in the transformed model.

Normal errors e: Except for two outliers (obs. #222 and #67) the “Normal Q-Q” plot confirms that
the standardized residuals r; are approximately normally distributed, suggesting that the errors € are
normally distributed.

Constant error variance o = \/Var(e): The red trend line in the “Scale-Location” plot is nearly flat,
suggesting that the error variance Var(e) is constant across the data set.

Of course no fit will be perfectly valid, but the evidence from the casewise diagnosic plots suggests that (6.37)
is a much more valid model than (6.36).

Note: We can also see, from the scatterplot matriz and from the marginal model plots, that we seem to have
done a good job with transforms. Especially, in the marginal model plots, the estimates of E[Y|X] from the
nonparametric regressions (blue) and the linear model (red) line up well, so it doesn’t appear that any further
transformations are needed.

Problem 1(e)

To obtain a final model, the analyst wants to simply remove the two insignificant predictors 1/z4 (i.e.,
tHighwayMPG) and log(zs) (i.e., tWheelBase) from (6.37). Perform a partial F-test to see if this is a sensible



strategy.

We will fit the smaller model (without the two variables that the analyst wants to remove) and then compare
that with 1m.6.37:

im.smaller <- update(lm.6.37, . ~ . - tHighwayMPG - tWheelBase)
anova(lm.smaller, 1lm.6.37)

## Analysis of Variance Table

##

## Model 1: tSuggestedRetailPrice ~ tEngineSize + tCylinders + tHorsepower +
#it Weight + Hybrid

## Model 2: tSuggestedRetailPrice ~ tEngineSize + tCylinders + tHorsepower +
#i# tHighwayMPG + Weight + tWheelBase + Hybrid

##  Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 228 7.2358
## 2 226 7.2337 2 0.0021769 0.034 0.9666

With a p-value of 0.97, there reall is no evidence in favor of keeping these two variables in the model, and so
1m.smaller seems like a sufficient model:

summary (lm.smaller)

##

## Call:

## Im(formula = tSuggestedRetailPrice ~ tEngineSize + tCylinders +
## tHorsepower + Weight + Hybrid, data = cars.t)
##

## Residuals:

## Min 1Q Median 3Q Max

## -0.42224 -0.11001 -0.00099 0.10191 0.70205

#i#

## Coefficients:

## Estimate Std. Error t value Pr(>[tl)

## (Intercept) 5.422e+00 3.291e-01 16.474 < 2e-16 **x*

## tEngineSize -1.591e+00 3.157e-01 -5.041 9.45e-07 **x*

## tCylinders  2.375e-01 1.186e-01 2.003 0.0463 *

## tHorsepower 9.049e-01 8.305e-02 10.896 < 2e-16 ***

## Weight 5.029e-04 5.203e-05 9.666 < 2e-16 **xx*

## Hybrid 6.340e-01 1.080e-01 5.870 1.53e-08 *xx

## ——

## Signif. codes: O 'sxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.1781 on 228 degrees of freedom
## Multiple R-squared: 0.862, Adjusted R-squared: 0.859
## F-statistic: 284.9 on 5 and 228 DF, p-value: < 2.2e-16

We probably should go ahead and check casewise diagnostic plots, marginal model plots, etc., to be sure that
we still have a valid model and no more transformations are needed, but I will stop here.

Problem 1(f)

The analyst’s boss has complained about model (6.37) saying that it fails to take account of the manufacturer
of the vehicle (e.g., BMW vs Toyota). Describe how model (6.37) could be expanded in order to estimate the
effect of manufacturer on suggested retail price.

This is slightly tricky to do well. The basic idea (and, really, all you have to say to answer the question) is
that you want to extract the manufacturer name from the variable Vehicle.Name in the orignal data set cars,



and add that to the regressions above, and see what happens. . .
Doing the extraction is a little tricky but here’s a way to proceed, if you are curious:
The Vehicle.Name variable in the original data set is nearly unique for each car in the data set:

dim(cars)

## [1] 234 13
length (unique (cars$Vehicle.Name))
## [1] 232

(There are two cars duplicated in the data set,

tmp <- table(cars$Vehicle.Name)

tmp [tmp>1]

##

#i Infiniti G35 4dr Mercedes-Benz C240 4dr
## 2 2

cars[grep (names (tmp [tmp>1]) [1], cars$Vehicle.Name), ]

## Vehicle.Name Hybrid SuggestedRetailPrice DealerCost EngineSize
## 116 Infiniti G35 4dr 0 28495 26157 3.5
## 161 Infiniti G35 4dr 0 32445 29783 3.5
it Cylinders Horsepower CityMPG HighwayMPG Weight WheelBase Length Width
## 116 6 260 18 26 3336 112 187 69
## 161 6 260 18 26 3677 112 187 69

cars[grep (names (tmp [tmp>1]) [2], cars$Vehicle.Name),]

#i# Vehicle.Name Hybrid SuggestedRetailPrice DealerCost EngineSize
## 169 Mercedes-Benz C240 4dr 0 32280 30071 2.6
## 170 Mercedes-Benz C240 4dr 0 33480 31187 2.6
## Cylinders Horsepower CityMPG HighwayMPG Weight WheelBase Length Width
## 169 6 168 20 25 3360 107 178 68
## 170 6 168 19 25 3360 107 178 68

but this doesn’t change the problem.)

With 232 unique vehicle names for 234 observation in the data set, if we just include vehicle name in a
regression, it will soak up all of the variability explained by the other variables, and we won’t get any useful
information out.

We note that the make (i.e. the manufacturer name) of the car always comes first in the vehicle name, followed
by a space. So we can make a new variable, Make, that just has the manufacturers’ names:

splits <- strsplit(cars$Vehicle.Name," ")
head(splits,10)

## [[1]]

## [1] "Chevrolet" "Aveo" "44r"

##

## [[2]]

## [1] "Chevrolet" "Aveo" "LS" "4dr" "hatch"
##

## [[3]]

## [1] "Chevrolet" "Cavalier" "2dr"
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##

## [[4]]
## [1] "Chevrolet" "Cavalier"
##

## [[5]]

## [1] "Chevrolet" "Cavalier"
##

## [[6]]

## [1] "Dodge" "Neon"
##

## [[7]]

## [1] "Dodge" "Neon"
##

## [[8]]

## [1] "Ford"
##

## [[9]]

## [1] "Ford"
##

## [[10]]

## [1] "Ford"

mfr.name <- sapply(splits, function(z) z[1])
head (mfr.name, 10)

n 4dr n

IILSII Il2drll

IlSEIl l|4drl|

IISXTII ll4drll

lIFocuSll IIZXSII l|2drl| |Ihatchl|

n 4dr n

llFocuSll IILXII

IIFOCusll IISEll l|4drll

## [1] "Chevrolet" "Chevrolet" "Chevrolet" "Chevrolet" "Chevrolet" "Dodge"
## [7] "Dodge" "Ford" "Ford" "Ford"

cars$Make <- mfr.name

length (unique (cars$Make))

## [1] 33

table(cars$Make)

##

#i# Acura Audi BMW Buick Cadillac
## 5 13 13 7 4
## Chevrolet Chrvsler Chrysler Dodge Ford
## 13 1 10 6 10
H# Honda Hyundai Infiniti Jaguar Kia
## 11 10 6 8 7
## Lexus Lincoln Mazda6 Mercedes-Benz Mercury
## 6 7 1 15 6
#it Mini Mitsubishi Nissan Oldsmobile Pontiac
## 2 2 7 2 5
## Saab Saturn Scion Subaru Suzuki
## 6 6 1 6 5
## Toyota Volkswagen Volvo

## 15 9 9

Now we could introduce the Make variable into any of the regressions we fitted above, to see if the car maker
affect prediction of the SuggestedRetailPrice, separately from the other features of the car.
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Problem 2: Sheather, Ch 7, p. 261, #3.

Continuing with analysis of “pgatour2006.csv”... Note:
e The data is available in “pgatour2006.csv”.

The variables are:

Y = PrizeMoney;

x1 = DrivingAccuracy;

r9 = GIR;

x3 = PuttingAverage;

r4 = BirdieConversion;

x5 = SandSaves;

x¢ = Scrambling;

r7 = PuttsPerRound

and the model we are considering is

log(Y') = Bo + 121 + oz + P + Baxy + Bsxs + Pexe + fror + € (7.10)

We want to do variable selection to choose a subset of the predictors to model log(Y).

Problem 2(a)

Identify the optimal model or models based on Ri dj> AIC, AIC¢, BIC from the approach based on all possible
subsets.

Remember that “all subsets” selection divides the possible models into groups according to the number of
predictors, up to the maximum number of predictors (seven, in our case):

o First find the 1-predictor model with the smallest RSS.

e Then find the 2-predictor model with the smallest RSS.

e ... and so forth up to the 7-predictor model with the smallest RSS.
These seven models can then be compared with AIC, BIC, etc.
golf <- read.csv("pgatour2006.csv”)

n . n

golf.red <- golfl[,c("PrizeMoney", "DrivingAccuracy”, "GIR", "PuttingAverage",

"BirdteConversion", "SandSaves", "Scrambling", "PuttsPerRound")]

all.subsets <- regsubsets(log(PrizeMoney) ~ ., golf.red)

We can get some of the results we want from the “subsets()” function:

subsets(all.subsets, "adjr2", FALSE)

12
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## Abbreviation
## DrivingAccuracy D
## GIR G
## PuttingAverage PA
## BirdieConversion B
## SandSaves SS
## Scrambling Sc
## PuttsPerRound PP
subsets(all.subsets, "bic", FALSE)
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## Abbreviation
## DrivingAccuracy D
## GIR G
## PuttingAverage PA
## BirdieConversion B
## SandSaves SS
## Scrambling Sc
## PuttsPerRound PP

But to completely do the problem we need another strategy, since the “subsets()” function does not know AIC
or CAIC (see the “statistic” parameter in Figure 1 below):

help (subsets)
## opens a browser window with the help, but I've included part of the
## contents of the browser window in Figure 1 below.

So, we have to calculate AIC and CAIC (and in the process we’ll also see how to do BIC)
Note that from lecture 08, slide 7, at the bottom, we can write the log-likelihood as

(log-likelihood) = ¢1(n) — ca(n) log(RSS) = —g log(27) — glog(RSS)

which means we can calculate AIC by hand as
AIC = -2(log-liklihood) + 2*(p+2) = [n*log(2pi)] + n*log(RSS) + 2*(p+2)
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R R:Plot Output from regsubsets Fi X = ==

C a N ©@ 127.0.0.1:14401/library/car/html/subsets.html @ A » =
@ Google @ Scholar @ News @ DuckDuckGo @ Wikipedia & Weather @ Map @ Email @ CC @ Contacts »
subsets {car} R Documentation

Plot Output from regsubsets Function in leaps package

Description

The regsubsets function in the leaps package finds optimal subsets of predictors based on some criterion statistic. This function
plots a measure of fit against subset size.

Usage
subsets(object, ...)

## S3 method for class 'regsubsets’

subsets(object,
names=abbreviate(object$xnames, minlength = abbrev),
abbrev=1, min.size=1, max.size=length(names),
legend="interactive",
statistic=c("bic"s "“cp"; Madjr2", "rsg", “rssh);
las=par('las'), cex.subsets=1, ...)

Arguments

object
a regsubsets object produced by the regsubsets function in the leaps package.

T I T TS T3 T W TET SETRT TITIrT

Figure 1: help(subsets)

and since the [nxlog(2pi)] term will cancel when we subtract AIC’s we can ignore it and just write
AIC = n*xlog(RSS) + 2%(p+2)
Similarly,
CAIC = AIC + 2x(p+2)*(p+3)/(n-p-1) = n*log(RSS) + 2*(p+2) + 2% (p+2)*(p+3)/(n-p-1)
and
BIC = n*log(RSS) + log(n)x*(p+2)
We can get the RSS for each model from
tmp <- summary(all.subsets)

names (tmp)

## [1] "WhiCh" llrsq“ |Irssll Iladjr2ll "Cp" Ilbicll IlOutmatll n Obj n

p <- 1:7 ## number of parameters in each subset model
n <- dim(golf.red) [1]

attach (tmp)

results <- data.frame(which,rss,adjr2,bic=n*log(rss)+log(n)*(p+2),aic=n*log(rss)+2*(p+2),
coic=n*log(rss) + 2x(p+2) + 2*(p+2)*(p+1)/(n-p-1))

detach()

Note that different authors will use somewhat different definitions of AIC and BIC. The differences are
usually just in what is done with the constants ¢1(n) and ca(n), so the value of the criterion changes, but the
model that minimizes the criterion does not change.
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We can print the “results” data frame and get the minumum by hand:

results

##  X.Intercept. DrivingAccuracy GIR PuttingAverage
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

## 1 TRUE FALSE TRUE
## 2 TRUE FALSE TRUE
# 3 TRUE FALSE TRUE
# 4 TRUE FALSE TRUE
## 5 TRUE FALSE TRUE
## 6 TRUE TRUE TRUE
## 7 TRUE TRUE TRUE
##  Scrambling PuttsPerRound rss
## 1 FALSE FALSE 139.59511
## 2 FALSE TRUE 95.35465
## 3 TRUE FALSE 85.19106
## 4 TRUE FALSE 83.90549
## 5 TRUE TRUE 82.90524
# 6 TRUE TRUE 82.86756
##H 7 TRUE TRUE 82.86555

adjr2
0.2510765
0.4857746
0.5381917
0.5427792
0.5458520
0.5436566
0.5412404

TRUE

983.
914.
897.
899.
902.
908.
913.

BirdieConversion SandSaves
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE

bic
8286
4027
5903
8881
8157
0047
2780

973.
901.
881.

880
879

881.
883.

aic
9943
2902
1997
.2195
.8689
7798
7750

Or we can write a function to identify the row that minimizes each criteron:

minimize <- function(res,col) {
obj <- res[,col]
k <- (1:length(obj)) [obj==min(obj)]
return(res(k,])

}

maxzimize <- function (res,col) {
obj <- res[,col]
k <- (1:length(obj)) [obj==maz (obj)]
return(res(k,])

}

mazimize (results, "adjr2")

##  X.Intercept. DrivingAccuracy GIR
## 5 TRUE FALSE TRUE
##  Scrambling PuttsPerRound rss
## 5 TRUE TRUE 82.90524

minimize(results, "bic")
##  X.Intercept. DrivingAccuracy GIR
## 3 TRUE FALSE TRUE

##  Scrambling PuttsPerRound rss
# 3 TRUE FALSE 85.19106

minimize (results, "aic")
##  X.Intercept. DrivingAccuracy GIR
## 5 TRUE FALSE TRUE

## Scrambling PuttsPerRound rss
## 5 TRUE TRUE 82.90524

minimize(results, "caic")

##  X.Intercept. DrivingAccuracy GIR

974.
.4146
.4080
.5336
.3110
.3724
884.

901
881
880
880
882

F
F
F

caic
0561

5410

ALSE
ALSE
ALSE
TRUE
TRUE
TRUE
TRUE

PuttingAverage BirdieConversion SandSaves
FALSE

adjr2

bic

TRUE
caic
0.545852 902.8157 879.8689 880.311

aic

TRUE

PuttingAverage BirdieConversion SandSaves
FALSE

adjr2

bic

TRUE

aic

F

caic
0.5381917 897.5903 881.1997 881.408

ALSE

PuttingAverage BirdieConversion SandSaves
FALSE

adjr2

bic

TRUE
caic
0.545852 902.8157 879.8689 880.311

aic

TRUE

PuttingAverage BirdieConversion SandSaves
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## 5 TRUE FALSE TRUE FALSE TRUE TRUE
##  Scrambling PuttsPerRound rss adjr2 bic aic caic
## 5 TRUE TRUE 82.90524 0.545852 902.8157 879.8689 880.311

Reading the “TRUE” and “FALSE” values as when to include or not include a variable in the model, we see
that for “all subsets” selection:

o The optimal Ridj model is
log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling + SandSaves + PuttPerRound

e The optimal BIC model is
log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling

e The optimal AIC model is
log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling + SandSaves + PuttsPerRound

e The optimal CAIC model is
log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling + SandSaves + PuttsPerRound

It’s a bit hard to read the graph that subsets() gives us for dej but clearly the best BIC model we identified
s the same as the one that subsets() gives us for BIC.

Problem 2(b)
Identify the optimal model or models based on AIC and BIC from the approach based on backward selection.

We can specify a version of “backward selection” with the “method” parameter in the regsubsets() function.
Instead of looking at all models at each subset size, this

o First calculates RSS for the largest model, 7 predictors, in our case

e Then takes the 6-predictor model that increases RSS the least from the 7-predictor model
o Then takes the 5-predictor model that increases RSS the least from the 6-predictor model
e ... and so forth down to the 1-predictor model

We can then compare these seven models with AIC, BIC, etc.
backward <- regsubsets(log(PrizeMoney) ~ ., golf.red, "backward")

tmp <- summary(backward)
names (tmp)

## [1] "WhiCh" llrsqll "I'SS" lladjr2ll "Cp" Ilbicll Iloutmatll "Obj"

attach (tmp)
results <- data.frame(which, n*log(rss)+log(n)*(p+2), n*log (rss)+2*(p+2))
detach()

results

##  X.Intercept. DrivingAccuracy GIR PuttingAverage BirdieConversion SandSaves

## 1 TRUE FALSE TRUE FALSE FALSE FALSE
## 2 TRUE FALSE TRUE FALSE TRUE FALSE
## 3 TRUE FALSE TRUE FALSE TRUE FALSE
## 4 TRUE FALSE TRUE FALSE TRUE TRUE
## 5 TRUE FALSE TRUE FALSE TRUE TRUE
## 6 TRUE TRUE TRUE FALSE TRUE TRUE
##H 7 TRUE TRUE TRUE TRUE TRUE TRUE
##  Scrambling PuttsPerRound bic aic

## 1 FALSE FALSE 983.8286 973.9943
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## 2 FALSE FALSE 925.6317 912.5193
## 3 TRUE FALSE 897.5903 881.1997
## 4 TRUE FALSE 899.8881 880.2195
## 5 TRUE TRUE 902.8157 879.8689
## 6 TRUE TRUE 908.0047 881.7798
## 7 TRUE TRUE 913.2780 883.7750

minimize(results, "bic")

##  X.Intercept. DrivingAccuracy GIR PuttingAverage BirdieConversion SandSaves

## 3 TRUE FALSE TRUE FALSE TRUE FALSE
##  Scrambling PuttsPerRound bic aic
## 3 TRUE FALSE 897.5903 881.1997

minimize(results, "aic")

##  X.Intercept. DrivingAccuracy GIR PuttingAverage BirdieConversion SandSaves

## 5 TRUE FALSE TRUE FALSE TRUE TRUE
##  Scrambling PuttsPerRound bic aic
## 5 TRUE TRUE 902.8157 879.8689

We see that for “backward selection”

e The optimal BIC model is
log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling

e The optimal AIC model is
log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling + SandSaves + PuttsPerRound

Problem 2(c)
Identify the optimal model or models based on AIC and BIC from the approach based on forward selection.

We can specify a version of "forward selection” with the "method" parameter in the regsubsets() function.
Instead of looking at all models at each subset size, this

e First finds the I1-predictor model with the smallest RSS

e Then takes the 2-predictor model that decreases RSS the most from the 1-predictor model
o Then takes the 3-predictor model that decreases RSS the most from the 2-predictor model
e ... and so forth up to the 7-predictor model

We can then compare these seven models with AIC, BIC, etc.
forward <- regsubsets(log(PrizeMoney) ~ ., golf.red, "forward")

tmp <- summary(forward)
names (tmp)

## [1] "WhiCh" llrsqll |Irssll lladjr2ll "Cp" Ilbicll Iloutmatll n Obj n

attach (tmp)
results <- data.frame(which, n¥log(rss)+log(n)*(p+2), n*log (rss)+2*(p+2))
detach()

results

##  X.Intercept. DrivingAccuracy GIR PuttingAverage BirdieConversion SandSaves
## 1 TRUE FALSE TRUE FALSE FALSE FALSE
## 2 TRUE FALSE TRUE FALSE FALSE FALSE

18



## 3 TRUE FALSE TRUE FALSE TRUE FALSE
## 4 TRUE FALSE TRUE FALSE TRUE FALSE
## 5 TRUE FALSE TRUE FALSE TRUE TRUE
## 6 TRUE TRUE TRUE FALSE TRUE TRUE
##H 7 TRUE TRUE TRUE TRUE TRUE TRUE
##  Scrambling PuttsPerRound bic aic
## 1 FALSE FALSE 983.8286 973.9943
## 2 FALSE TRUE 914.4027 901.2902
## 3 FALSE TRUE 902.1169 885.7263
## 4 TRUE TRUE 900.1392 880.4705
## 5 TRUE TRUE 902.8157 879.8689
## 6 TRUE TRUE 908.0047 881.7798
# T TRUE TRUE 913.2780 883.7750

minimize(results, "bic")

##  X.Intercept. DrivingAccuracy GIR PuttingAverage BirdieConversion SandSaves

# 4 TRUE FALSE TRUE FALSE TRUE FALSE
##  Scrambling PuttsPerRound bic aic
## 4 TRUE TRUE 900.1392 880.4705

minimize(results, "aic")

##  X.Intercept. DrivingAccuracy GIR PuttingAverage BirdieConversion SandSaves

## 5 TRUE FALSE TRUE FALSE TRUE TRUE
##  Scrambling PuttsPerRound bic aic
## 5 TRUE TRUE 902.8157 879.8689

We see that for “forward selection”

e The optimal BIC model is
log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling + PuttsPerRound

e The optimal AIC model is
log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling + SandSaves + PuttsPerRound

Problem 2(d)

Carefully explain why the models chosen in (a) & (c¢) are not the same while those in (a) and (b) are the
same.

Here are the results that I got from model selection:
Best Models from 2(a) “all subsets”:

e BIC: log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling

e AIC:log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling + SandSaves + PuttsPerRound
Best Models from 2(b)“backward”:

e BIC: log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling

e AIC:log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling + SandSaves + PuttsPerRound
Best Models from 2(c) “forward”:

e BIC: log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling + PuttsPerRound

e AIC:log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling + SandSaves + PuttsPerRound
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We know that the “all subsets” models are the best of all possible models on the seven variables we have to
work with, whereas the “backward” and “forward” models come from heuristics that may or may not find the
best of all possible models on these seven variables.

e The BIC model for "backward" is the same as for "all subsets" because the "backward" selection method
stumbled on the best overall model for BIC (look at line 8 of the “results” data frame in parts (a) and
(b) to verify this).

e The BIC model for "forward" selection is different because the "forward" heuristic didn’t identify
the best overall model for BIC (look at line 3 of the “results” output in part (a), vs line 4 of
the “results” output in part (c) to wverify this. Note also that the “line 3” model in part (c) is
log(PrizeMoney) ~ 1 + GIR + BirdieConversion + PuttsPerRound instead of the BIC-optimal
model 1log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling.

e The AIC models are the same in each case, because both the "forward" and the "backward" heuristics
stumbled on the best overall model for AIC (look at line 5 of the “results” data frame in parts (a), (b)
and (c) to verify this).

Problem 2(e)
Recommend a final model. Give detailed reasons to support your choice.

There are really only two models to consider, from the model selection above. They are:

Im.AIC <- lm(log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling +
SandSaves + PuttsPerRound, golf.red)

Im.BIC <- lm(log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling, golf.red)

Looking at the casewise diagnostic plots,

par( c(1,4))
plot(lm.AIC)

Residuals vs Fitted Normal Q-Q Scale-Location Residuals vs Leverage
< — 35 <
© 1850 2 ot ©
g o - X < g o -
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i) 0] o 0]
g g ey = o
k=] o] Q 9]
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e 3 ] 5 7
° — ° °
c < c
AN 3 g 7S e di
(20 ot ] " o | © Cook's distance
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plot(im.BIC)
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we see that both models seem to satisfy the assumptions of linear regression equally well.

Linearity: There is no real trend in the Residuals vs Fitted plot for either model, so no transforms seem to
be needed for either model.

Normality: The Normal Q-Q plots for both models look about the same.

Constant Variance: Fxcept for “edge effects” the trend lines in both Scale-Location plots are pretty hori-
zontal, supporting the idea of constant variance for both models.

In addition the Residuals vs Leverage plots look about the same for both models.

Now let’s look at summaries and, since the models are nested, a partial F-test to see whether the additional
two variables in 1m.AIC are provide an improvement over 1m.BIC.

summary (lm.AIC)

#

## Call:

## lm(formula = log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling +
it SandSaves + PuttsPerRound, data = golf.red)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.71291 -0.48168 -0.09097 0.44843 2.15763

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.583181  7.158721 -0.081  0.9352

## GIR 0.197022 0.028711 6.862 9.31e-11 **x

## BirdieConversion 0.162752 0.032672 4.981 1.41e-06 ***

## Scrambling 0.049635 0.024738 2.006 0.0462 *

## SandSaves 0.015524 0.009743 1.593 0.1127

## PuttsPerRound -0.349738 0.230995 -1.514  0.1317

#it ——-

## Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

## Residual standard error: 0.6606 on 190 degrees of freedom
## Multiple R-squared: 0.5575, Adjusted R-squared: 0.5459
## F-statistic: 47.88 on 5 and 190 DF, p-value: < 2.2e-16

summary (lm.BIC)

#it
## Call:

21



## 1m(formula = log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling,

#it data = golf.red)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.71081 -0.50717 -0.06683 0.41975 2.04147

##

## Coefficients:

#t Estimate Std. Error t value Pr(>|t])

## (Intercept) -11.08314 1.45712 -7.606 1.23e-12 *x**
## GIR 0.15658 0.01787 8.761 1.01e-15 **x
## BirdieConversion 0.20625 0.02164 9.531 < 2e-16 **x
## Scrambling 0.09178 0.01539 5.965 1.16e-08 *x*x*
## ——-

## Signif. codes: O '**¥x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.6661 on 192 degrees of freedom
## Multiple R-squared: 0.5453, Adjusted R-squared: 0.5382
## F-statistic: 76.75 on 3 and 192 DF, p-value: < 2.2e-16

anova (lm.BIC, lm.AIC)

## Analysis of Variance Table

##

## Model 1: log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling

## Model 2: log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling + SandSaves +
#it PuttsPerRound

##  Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 192 85.191

## 2 190 82.905 2 2.2858 2.6193 0.07548 .

##H -

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Both the t-statistics in summary(lm.AIC) and the partial F-test suggest that neither SandSaves nor
PuttsPerRound is needed.

Conclusion: The smaller model, 1m.BIC, log(PrizeMoney) ~ 1 + GIR + BirdieConversion + Scrambling,
seems to be the preferable model.

Important Note: Because we are repeatedly using the data, for variable selection, and to conduct t-tests
and an F-test, the results of the tests may be misleading because of capitalization on chance. The usual result
of testing “significance’’ after model selection on the same data is that the results are more significant than
they should be.

In this case, we are seeing non-significance for the two variables SandSaves and PuttsPerRound, despite this
tendency toward inflated significance. So these two variables probably really are non-significant predictors.

Problem 2(f)

Interpret the regression coefficients in the final model. Is it necessary to be cautious about taking these results
to literally?

The final model is 1m.BIC.

Since we are considering log(PrizeMoney) we can interpret coefficient estimates in summary(lm.BIC) in
terms of percent change in prize money:
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o An increase of 1 unit in GIR (1 extra percent of the time the player was able to hit the greens in
regulation) is associated with a 100 x 0.15658% =~ 16% increase in PrizeMoney.

)

o An increase of 1 unit in BirdieConversion (1 extra percent of the time the player makes a “birdie’
or better after hitting the green in requlation) is associated with a 100 x 0.20625% = 21% increase in
PrizeMoney.

o An increase of 1 unit in Scrambling (1 extra percent of the time the player misses the green in regulation
but still makes “par”) is associated with a 100 x 0.09178% =~ 9% increase in PrizeMoney.

So it looks like all three of GIR, BirdieConversion and Scrambling are importantly associated with a golfer’s
prize money. We don’t know if increases in BirdieConversion and Scrambling cause a player to earn more
prize money, or if there is a third lurking variable (like natural talent) that influences all three variables,
BirdieConversion, Scrambling and PrizeMoney.

Important Note: All three variables have small SE’s and are highly significant, but just like with testing
after variable selection, calculating SE’s after variable selection usually results in SE’s that are too small, and
so predictors look more significant than they actually are.

In this case, all the p-values are very very small, so we might guess that these variable probably really are
significant predictors.

Problem 3: [Based on Gelman & Hill (2009), p. 51, #35]

The subfolder beauty in the hw04 folder in the “Files” area for our course on canvas contains data from
Hamermesh and Parker (2005) on student evaluations of instructors’ beauty and teaching quality for several
courses at the University of Texas. The teaching evaluations were conducted at the end of the semester, and
the beauty judgments were made later, by six students who had not attended the classes and were not aware
of the course evaluations. Various documents in the folder give background and some variable definitions
(some variables are defined in the “log” file there, others’ definitions you will have to deduce from pdf’s in
the subfolder).

Problem 3(a)

Fit a regression model predicting courseevaluation (average student evaluations) from btystdave (the
average of 6 standardized beauty ratings for each instructor) and female. Then fit the same model with the
interaction between btystdave and female added in.

i Graph each fitted model on a scatter plot of courseevaluation vs btystdave. Indicate clearly in the
graph what the various parameters in the model represent geometrically.

ii Display the four standard diagnostic plots in R and comment on their features, for each model. Comment
on whether the fit seems adequate from the evidence in these plots, for either model. In case there are
problems with the fit, indicate what they are and how you might improve things.

iii Produce summaries of the two fitted models; comment on the coefficient estimates and their standard
errors, and on R?, for each model Use a partial F test to determine whether the interaction should be
kept. Your comments should include not only technical points (“B” in the “ABA~'” metaphor for
applied statistics from the course syllabus), but also what it means for understanding how factors may
influence course evaluations (“A=17).

Part (i):
beauty <- read.csv("ProfEvaltnsBeautyPublic.csv")
## str(beauty) ## too long to include here...

tm.1 <- lm(courseevaluation ~ btystdave + female, beauty)
print (beta.lm.1 <- coef(im.1))
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## (Intercept) btystdave female
##  4.0947104 0.1485876 -0.1978096

Im.2 <= lm(courseevaluation ~ btystdave * female, beauty)
print (beta.lm.2 <- coef(lm.2))

#Hit (Intercept) btystdave female btystdave:female
## 4.1036435 0.2002743 -0.2050501 -0.1126579
par( c(1,2))
plot(courseevaluation ~ btystdave, beauty, "Ilm.1",
c("blue”, "red") [beauty$female+1])
abline(beta.lm.1[1],beta.lm.1[2], "blue")
abline(beta.lm.1[1]+beta.lm.1[3],beta.lm.1[2], "red")
legend(0.5,2.5, 1, c("blue", "red"),
c("male instructor"”,"female instructor"), 0.55)
plot(courseevaluation ~ btystdave, beauty, "lm.2",
c("blue”, "red") [beauty$female+1])
abline(beta.lm.2[1],beta.lm.2[2], "blue")
abline(beta.lm.2[1]+beta.lm.2[3],beta.lm.2[2]+beta.lm.2[4], "red")
legend(0.5,2.5, 1, c("blue", "red"),
c("male instructor"”,"female instructor"), 0.55)
Im.1 Im.2
c c
k=) k=)
© ©
3 3
© ©
> >
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btystdave btystdave

For the additive model (1m.1, the plot on the left), the slope of the line relating courseevaluation to
btystdave is 0.15, for both male and female instructors. The intercept for male instructors is 4.09, and
for female instructors it’s 8.9. In this model, male instructors get about a 0.2 boost in course evaluations,
vs. female instructors.

For the interactive model (1m.2, the plot on the right), the slope of the line relating courseevaluation to
btystdave is 0.2 for male instructors and 0.09 for female instructors. The intercept for male instructors is
4.1 whereas for female instructors it is 8.9. Thus according to this model, evaluations for courses with male
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instructors benefit by about 0.21 to start with, and the slope as a function of btystave is about 0.11 higher
for male instructors, than for female instructors.

Part (ii):
par( c(1,4))
plot(im.1)
Residuals vs Fitted Normal Q-Q Scale-Location Residuals vs Leverage
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plot(lm.2)
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There is very little difference between the two sets of casewise diagnostic plots. In both models, there is no
functional pattern in the raw residual plot, slightly short tails in the residuals in the Normal Q-Q plots,
approximately constant variance in the Scale-Location plots, and very similar, and unconcerning residuals
vs. leverage plots.

So, the fits of both models seem adequate (except perhaps for short tails in the Normal Q-Q plots, which don’t
concern me very much), and I would not do any transformations, etc. to improve either fit.

About the only difference I see is that the dsitribution of fitted values appear to be slightly higher for 1m.2
than 1m.1 (e.g. see the z-axis of the residuals vs fitted plots).

Part (iii):

summary (lm.1)

##

## Call:

## 1m(formula = courseevaluation ~ btystdave + female, data = beauty)
##

## Residuals:

## Min 1Q Median 3Q Max

## -1.87196 -0.36913 0.03493 0.39919 1.03237
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##
##
##
##
##
##
##
##
##
##
##
##

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 4.09471 0.03328 123.03 < 2e-16 *xx*
btystdave 0.14859 0.03195 4.65 4.34e-06 *x*x

female -0.19781 0.05098 -3.88 0.00012 xx*x
Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
Residual standard error: 0.5373 on 460 degrees of freedom

Multiple R-squared: 0.0663, Adjusted R-squared: 0.06224
F-statistic: 16.33 on 2 and 460 DF, p-value: 1.407e-07

summary (lm.2)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = courseevaluation ~ btystdave * female, data = beauty)
Residuals:

Min 1Q Median 3Q Max
-1.83820 -0.37387 0.04551 0.39876 1.06764
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.10364 0.03359 122.158 < 2e-16 **x
btystdave 0.20027 0.04333 4.622 4.95e-06 *x**
female -0.20505 0.05103 -4.018 6.85e-05 *x*x
btystdave:female -0.11266 0.06398 -1.761 0.0789 .
Signif. codes: 0 '*x**x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5361 on 459 degrees of freedom

Multiple R-squared: 0.07256, Adjusted R-squared: 0.0665
F-statistic: 11.97 on 3 and 459 DF, p-value: 1.471e-07

anova(lm.1,1lm.2)

##
##
##
##
##
##
##
##
##

Analysis of Variance Table

Model 1: courseevaluation ~ btystdave + female

Model 2: courseevaluation ~ btystdave * female
Res.Df RSS Df Sum of Sq F Pr(>F)

1 460 132.81

2 459 131.92 1  0.89124 3.101 0.07891

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The most noticable thing about both models is that their R?’s are pitiful: 0.066 for 1m.1 and 0.073 for 1m.2.

So,

even though we have some significant predictors in both models, they are not doing a very good job of

accounting for the variation in courseevaluation.

In both models, btystave and female are highly significant predictors, and in 1m.2, the interaction term
btystdave:female is just barely non-significant (p-value = 0.0789).

Because we are only adding one more variable, the interaction term, the F-test statistic is just the square of
the t-statistic for the interaction in the summary () output, and hence there is no new information: the p-value

26



s again 0.0789. So, we would probably prefer the simpler model 1m.1.

In practical terms, model 1m.1 says that a course with a male instructor starts off with a course evaluation of
about 4.09, but this drops to about 3.9 if the course has a female instructor. The increase in course evaluation
per unit increase in beauty rating is the same for both male and female instructors, about 0.15.

The standard errors for the coefficients are all quite small (but perhaps a bit smaller than they should be
since we used the data twice: once to select a model and once to estimate coefficients), and generally they are
reassuring that the effects quoted in the last paragraph are “real”.

Problem 3(b)

Now let’s look at all of the variables in the data set. Should any of the variables in the data set be transformed
before being used in a regression model? List each variable that is not a dummy variable, and for each of
these,

o Say whether the variable should be transformed (yes or no)
e If yes, indicate what transformation you would make
o Justify these two answers, using both evidence from the data and other considerations

Note: being able to communicate with a client or collaborator matters, so there may be instances where
either (a) a transformation might help, but you decide against it since it would be difficult to explain to
a client/collaborator, or (b) an automatic method like Box-Cox might suggest one power, but you pick a
simpler power “nearby’’ because it is easier to explain to a collaborator/client.

Since we’re not going to consider profnumber, multipleclass and classl through class30 in part (c), I
will eliminate them now before we consider transformations.

I will use Box-Cox to suggest transformations, and then choose more interpretable transformations based on
Boz-Coz.

names (beauty)

## [1] "tenured" "profnumber" "minority"

## [4] "age" "beautyf2upper" "beautyflowerdiv"
## [7] "beautyfupperdiv" "beautym2upper" "beautymlowerdiv"
## [10] "beautymupperdiv"  "btystdave" "btystdf2u"

## [13] "btystdfl" "btystdfu" "btystdm2u"

## [16] "btystdml" "btystdmu" "class1l"

## [19] "class2" "class3" "class4"

## [22] "classb" "class6" "class7"

## [25] "class8" "class9" "class10"

## [28] "class1il" "class12" "class13"

## [31] "class14" "class15" "class16"

## [34] "classi7" "class18" "class19"

## [37] "class20" "class21" "class22"

## [40] "class23" "class24" "class25"

## [43] "class26" "class27" "class28"

## [46] "class29" "class30" "courseevaluation"
## [49] "didevaluation" "female" "formal"

## [62] "fulldept" "lower" "multipleclass"
## [55] "nonenglish" "onecredit" "percentevaluating"
## [58] "profevaluation" "students" "tenuretrack"

## [61] "blkandwhite" "btystdvariance" "btystdavepos"

## [64] "btystdaveneg"

27



prof.loc <- grep("profnumber",names (beauty))

multiclass.loc <- grep("multipleclass"”,names (beauty))
class.locs <- grep('class”,names(beauty))

beauty.red <- beautyl[,-c(prof.loc,multiclass.loc,class.locs)]

From the str() command, our background knowledge of college, and some examination of the papers and
variable glossary in the beauty subdirectory, we find

tenured dummy: instructor tenured? 0=no, 1=yes

minority dummy: instructor minority? 0=no, 1=yes

age continuous: 36 59 51 40 31 62 33 51 33 47 ...

beautyf2upper continuous: 6 254 955656 ...
beautyflowerdiv continuous: 5 4 5276 4 4 35 ...
beautyfupperdiv continuous: 74 2596 46 77 ...
beautym2upper continuous: 6 33266 4 356 ...
beautymlowerdiv continuous: 2223754253 ...
beautymupperdiv continuous: 4 33365 4 336 ...

btystdave continuous: 0.202 -0.826 -0.66 -0.766 1.421 ...
btystdf2u continuous: 0.289 -1.619 -0.188 -0.665 1.721 ...
btystdfl continuous: 0.458 -0.0735 0.458 -1.1365 1.521 ...
btystdfu continuous: 0.8758 -0.577 -1.5456 -0.0927 1.8444 ...
btystdm2u continuous: 0.682 -1.132 -1.132 -1.736 0.682 ...
btystdml continuous: -0.9 -0.9 -0.9 -0.313 2.038 ...

btystdmu continuous: -0.195 -0.655 -0.655 -0.655 0.723 ...
courseevaluation continuous: 4.3 4.5 3.7 4.8 4.4 4.2 4 8.4 4.5 3.9 ...
didevaluation continuous: 24 17 55 40 42 182 33 25 48 16 ...
female dummy: instructor female? 0=no, 1=yes

formal dummy: web pic of instructor wears tie/jacket (dress)? 0=no, 1=yes
fulldept dummy: everyone in dept has a web pic? 0=no, 1=yes
lower dummy: lower division (freshman/sophomre)? 0=no, 1=yes
nonenglish dummy: instructor non-native English speaker? 0=no, 1=yes
onecredit dummy: a one-credit course? 0=no, 1=yes
percentevaluating continuous: 55.8 85 100 87 87.5 ...
profevaluation continuous: 4.7 4.6 4.1 4.5 4.8 4.4 4.4 3.4 4.8 4 ...
students continuous: 43 20 55 46 48 282 41 41 60 19 ...
tenuretrack dummy: is instructor in tenure-track? 0=no, 1=yes
blkandwhite dummy: (don’t know what this is!)

btystdvariance continuous: 2.13 1.39 2.54 1.76 1.69 ...
btystdavepos continuous: 0.202 0 0 0 1.421 ...

btystdaveneg continuous: 0 -0.826 -0.66 -0.766 0 ...

There are a few relationships we can see or guess immediately:

attach(beauty.red)
sum(abs (btystdave - (btystdflu+btystdfl+btystdfu+btystdmu+btystdml+btystdmu)/6))

## [1] 4.693333e-05
sum(abs (btystdave - (btystdavepos+btystdaveneg)))

## [1] 0.0004629
detach()

So,up to rounding error, we see that
e btystdave is in fact (btystdf2u+btystdfl+btystdfu+btystdm2u+btystdml+btystdmu) /6

e btystdave is also btystdavepos+btystdaveneg
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So we will keep btystdave and eliminate the variables that sum up to it. (There is no loss in elimi-
nating btystdavepos and btystdaveneg, since these are just the “positive part” and “negative part” of
btystdave. There is a little loss in eliminating btystdf2u, btystdfl, btystdfu, btystdm2u, btystdml
and btystdmu, but hopefully not too much since we will keep the unstandardized versions.)

btystd.locs <- grep("btystd",names (beauty.red))[-c(1,8)]

## we are keeping btystdave, which comes first in this list,
## and btystdvariance, which is eighth. ..

beauty.red <- beauty.red[,-btystd.locs]

names (beauty.red)

## [1] "tenured" "minority" "age"

## [4] "beautyf2upper" "beautyflowerdiv" "beautyfupperdiv"
## [7] "beautym2upper" "beautymlowerdiv" "beautymupperdiv"
## [10] "btystdave" "courseevaluation" "didevaluation"
## [13] "female" "formal" "fulldept"

## [16] "lower" "nonenglish" "onecredit"

## [19] "percentevaluating" "profevaluation" "students"

## [22] "tenuretrack" "blkandwhite" "btystdvariance"

The variables we want to consider for transformation are all of the non-dummies that are left:

trans.names <- names(beauty.red) [c(3:12,19:21,24)]

powers <- NULL
for (i in trans.names) {
z <- beauty.red[,<]
if (min(z)==0) {
z <- z + 0.01*maz(z)
} else if (min(z)<0) {
z <- z - min(z)*1.01
}
## forces each variable to be strictly positive, for Box-Cox
powers <- c(powers,powerTransform(z)$lambda)
}
names (powers) <- trans.names
powers <- round(powers,2)

powers
## age beautyf2upper beautyflowerdiv  beautyfupperdiv
## 0.74 0.77 0.54 0.87
## beautym2upper  beautymlowerdiv  beautymupperdiv btystdave
#i# 0.82 0.37 0.44 0.61
## courseevaluation didevaluation percentevaluating profevaluation
## 2.20 -0.35 1.94 3.09
## students btystdvariance
## -0.47 0.29
par( c(5,3))
for (4 in trans.names) {
plot(density(beauty.red[,<]), 1, paste("Suggested power =",powers[i]))
}
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I’'m going to round these suggested powers as follows:

bjpowers <- powers

bjpowers["age"] <- 1 ## already fairly symmetric

bjpowers["beautyflupper"]
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bjpowers["beautyflowerdiv"] <- 0.5 ##
bjpowers["beautyfupperdiv"] <- 0.5 ##
bjpowers["beautymupper"]  <- 0.5 ##
bjpowers["beautymlowerdiv"] <- 0.5 ##

bjpowers["beautymupperdiv"] <- 0.5 ##

bjpowers["btystdave"] <- 1 ## some right skew but reasonably bounded between -2 and +2
even though 2.2 is suggested, I'm leaving this
alone, to make the linear regression coefficients

bjpowers["courseevaluation"] <- 1  ##

##

##
bjpowers["didevaluation"] <- -0.5 ##
bjpowers["percentevaluating”"] <- 2 ##
bjpowers["profevaluation"] <- 3 ##
bjpowers["students"] <- -0.5 ##
bjpowers["btystdvariance"] <- 0.5 ##

par(mfrow=c(5,3))
for (i in trans.names) {

plot(density(beauty.red[, <] "bjpowers[i]),main=paste(i,bjpowers[i],sep="""),zlab="")

}

right skewed,
right skewed,
right skewed,
right skewed,
right skewed,

sqrt ()
sqrt ()
sqrt ()
sqrt ()
sqrt ()

more interpretable
I may try a log here too.
close, perhaps more interpretable
I may try 2 later..
I may try a log here too.
0.29 is called for but hard to talk about
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Problem 3(c)

Fit the model that regresses courseevaluation onto all other variables, except for profnumber,
multipleclass, and the 30 class variables (classl through class30). Use the transformations you
recommended in part (b). Make a table indicating

e The t-statistics for each variable
e The VIFs for each variable

in your model.

beauty.trans <- beauty.red
for (4 in trans.names) {
beauty. trans[,i] <- beauty.red[,i] "bjpowers[i]
names (beauty. trans) [grep (i,names (beauty. trans))] <- paste('t", 1, ")
F
names (beauty. trans) [grep ("t.btystdave",names (beauty. trans))] <- "btystdave”
## didn't transform btystdave...
names (beauty. trans) [grep ("t. courseevaluation”,names (beauty. trans))] <- "courseevaluation”
## didn't transform courseevaluation...
names (beauty. trans) [grep ("t.age",names (beauty. trans))] <- "age"
## didn't transform age...
names (beauty. trans)

## [1] "tenured" "minority" "age"

## [4] "t.beautyf2upper" "t .beautyflowerdiv" "t.beautyfupperdiv"
## [7] "t.beautym2upper" "t .beautymlowerdiv" "t .beautymupperdiv"
## [10] "btystdave" "courseevaluation" "t.didevaluation"
## [13] "female" "formal" "fulldept"

## [16] "lower" "nonenglish" "onecredit"

## [19] "t.percentevaluating" "t.profevaluation" "t.students"

## [22] "tenuretrack" "blkandwhite" "t.btystdvariance"
tm.1 <- lm(courseevaluation ~ ., beauty. trans)

tab <- cbind(summary(lm.1)$coef, c(NA,vif(lm.1)))

round (tab, 4)

# Estimate Std. Error t value Pr(>|tl) vif
## (Intercept) 2.8629 0.5349 5.3523 0.0000 NA
## tenured 0.0326 0.0307 1.0598 0.2898 2.7083
## minority -0.0194 0.0324 -0.5994  0.5492 1.4469
## age 0.0014 0.0014 0.9948 0.3204 2.1224
## t.beautyf2upper -0.0285 0.0533 -0.5351 0.5928 7.0688
## t.beautyflowerdiv -0.0282 0.0534 -0.5279 0.5978 7.8156
## t.beautyfupperdiv 0.0131 0.0481 0.2726 0.7853 5.6271
## t.beautym2upper -0.0432 0.0633 -0.6825 0.4953 6.5295
## t.beautymlowerdiv -0.0592 0.0576 -1.0282 0.3044 7.7566
## t.beautymupperdiv -0.0298 0.0499 -0.5967 0.5510 8.0266
## btystdave 0.0996 0.1190 0.8367 0.4032 101.6065
## t.didevaluation -0.7943 0.6439 -1.2335 0.2181 25.6187
## female -0.0331 0.0233 -1.4186 0.1567 1.5344
## formal 0.0152 0.0287 0.5285 0.5974 1.3193
## fulldept -0.0038 0.0364 -0.1055 0.9160 1.4497
## lower 0.0051 0.0236 0.2163 0.8289 1.4452
## nonenglish -0.0592 0.0464 -1.2765 0.2025 1.4141
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## onecredit 0.0655 0.0497 1.3189 0.1879 1.5669
## t.percentevaluating 0.0000 0.0000 -0.3371 0.7362 5.2175
## t.profevaluation 0.0187 0.0004 46.5582 0.0000 1.3235
## t.students 1.2703 0.8063 1.5755 0.1159 31.9203
## tenuretrack -0.0400 0.0340 -1.1783 0.2393 2.2934
## blkandwhite 0.0174 0.0313 0.5550 0.5792 1.5860
## t.btystdvariance -0.0167 0.0235 -0.7090 0.4787 1.3595

Problem 3(d)

On the basis of this table, and what you know about the definitions of the variables, would you eliminate any
variables in your model? Why or why not?

e Since none of them are individually significant, all have moderately large wvif’s, and they
are approximately summarized by btystdave, I would eliminate the siz students’ ratings
t.beautyf2upper, t.beautyflowerdiv, t.beautyfupperdiv, t.beautym2upper, t.beautymlowerdiv
and t.beautymupperdiv.

e FEven though t.profevaluation is highly significant with a low vif, I would probably remove it. In my
experience, evalation of the instructor and evaluation of the course are highly correlated, and so this
variable is probably soaking up variation in course evaluation that I’d like to see explained by other
variables in the model.

e The variables t.didevaluation, t.percentevaluating, and t.students are interesting: In un-
transformed form there is clear (nonlinear) relationship among these variables: percentevaluating =
100*didevaluation/students. Since t.percentevaluating has almost no practical effect on course
evaluation, I will eliminate that one, and see what the effect is.

o T would not get rid of btystave even though it has a sky-high vif and is only marginally significant: I'd
hope that removing the other variables above would allow us to see the effect of btystdave on course
evaluation.

In a “first pass”, this is all the farther I'd go; removing these variables is going to strongly affect the t statistics
and the vifs. If I refit the model without these variables, I get

Im.2 <- update(lm.1, . ~ . - t.beautyfupper - t.beautyflowerdiv - t.beautyfupperdiv -
t.beautymlupper - t.beautymlowerdiv - t.beautymupperdiv -
t.profevaluation - t.percentevaluating)

tab <- cbind(summary(lm.2)$coef, c(NA,vif(lm.2)))

round (tab, 4)

#t Estimate Std. Error t value Pr(>ltl) vif
## (Intercept) 4.1781 0.2056 20.3167 0.0000 NA
## tenured 0.0702 0.0735 0.9552 0.3400 2.5303
## minority -0.1584 0.0780 -2.0313 0.0428 1.3673
## age -0.0073 0.0032 -2.2880 0.0226 1.8399
## btystdave 0.0915 0.0338 2.7080 0.0070 1.3384
## t.didevaluation -1.5430 0.8365 -1.8446 0.0658 7.0660
## female -0.1825 0.0528 -3.4591 0.0006 1.2819
## formal 0.1426 0.0691 2.0635 0.0396 1.2507
## fulldept 0.1997 0.0842 2.3717 0.0181 1.2669
## lower 0.0181 0.0568 0.3189 0.7500 1.3633
## nonenglish -0.3116 0.1110 -2.8065 0.0052 1.3229
## onecredit 0.5339 0.1155 4.6245 0.0000 1.3827
## t.students 2.6575 0.9420 2.8210 0.0050 7.1209
## tenuretrack -0.1461 0.0818 -1.7874 0.0746 2.1684
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## blkandwhite 0.2023 0.0717 2.8225 0.0050 1.3589
## t.btystdvariance -0.0437 0.0528 -0.8281  0.4081 1.1185

Things are starting to come into focus:

e bytstdave is a significant predictor now

o Most of the predictors are significant or very nearly significant; the exceptions are tenured, lower and
t.btystdvariance. (I would probably try to remove these in a further round of variable selection. ..)

e The variables t.didevaluation and t.students still have somewhat high vifs, but both are significant
or nearly so. I might try to take one of these out (I think they are just collinear with each other: their
correlation is 0.92), or I might try to leave them in and see if the rather large effects they have are
“real”.

e The other variables have coefficients with signs that we might expect:

e}

o

minority instructors have somewhat lower course evaluations (Bmmomw = —0.1584)
each year older an instructor is, the course evaluation lowers a bit (Bage = —0.0073)
increasing beauty rating has a somewhat positive effect on course rating (ﬁbtystdave = —0.0915)

keeping in mind that t.didevaluation = 1/sqrt(didevaluation), the fewer students that eval-

uate the class, the lower the course rating (Bt,didemluation = —1.5430)

similarly, since t.students = 1/sqrt(students), the fewer students in the class, the higher the

course rating (Bt.students = 2.6575)

female instructors take a hit a bit larger than minority instructors in course evaluation (Bfemale =
—0.1825)

If the instructor dresses formally for their web photo, or if the department faculty all have web
photos, course evaluation increases enough to essentially offset the effect of being female or minority
(ﬁformal = 0.1426, ﬁfulldept = 01997)

If the instructor is not a native speaker of English, the course evaluation takes a hit that’s about
twice as big as the minority instructor hit (Bnonengtish = —0.3116)

One credit course get over a half-point advantage in course evaluation (Bonecredit =0.5339)

We have no idea what blkandwhite is, but it has a positive effect on course evaluation! (Bonecredit =
0.2023)

Of course, all the interpretations above sound like we are saying each predictor “causes” a change in
course evaluation, but we really don’t know about lurking variables, common causes, etc., so we can’t be
sure of “causes” here.

Problem 3(e)

Why might the methods used in parts (c) and (d) not be adequate for deciding which variables to keep, and
which ones to eliminate, in a regression model?

FEssentially, the question is, “what could go wrong with selecting variables on the basis of t-statistics and

vif’'s?”

There are a few potential difficulties with this approach:

1. Removing variables one-at-a-time can change other coefficients and t-statistics, so if you remove the
variables in one order based on t-statistics, and I remove them in another order, we could end up with
very different models.
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2. High vif’s do not mean that the model is invalid; they just mean that the estimated coefficients will be
hard to interpret. Removing variables on the basis of vif’s can remove important predictor variables
from a model

3. One-variable-at-a-time approaches are examples of “greedy” algorithms: since they do not consider all
variables at each step of variable selection, they can miss the very best models (forward selection with
BIC in Problem #2 is an example of this).

In the case of this problem, these dificulties are offset by “subject matter knowledge”: since we know a lot
about college or university life, we can make better guesses about what order to remove variables in, what
groups of variables to remove all at once, etc.

Just for kicks, I tried “all subsets” variable selection on the model fitted in part (c) here (except that I
took profevaluation out, because of its close relationship with courseevaluation). This approach uses no
subject matter knowledge (none of our knowledge about university life!), and replaces it with just mathematical
optimality:

all.subsets <- regsubsets(courseevaluation ~ . - t.profevaluation,
dim(beauty. trans)-1) # -1 for t.profevaluation

tmp <- summary(all.subsets)
attach (tmp)

p <- 1:dim(tmp$uwhich) [1]
n <- dim(beauty.trans) [1]

results <- data.frame(which,

age t.beautyf2upper t.beautyflowerdiv t.beautyfupperdiv t.beautym2upper t.beautymlow

detach()

oldwidth <- options()$width

options (. 200)

results

##  X.Intercept. tenured minority

## 1 TRUE  FALSE FALSE FALSE FALSE
## 2 TRUE  FALSE FALSE FALSE FALSE
## 3 TRUE  FALSE FALSE FALSE FALSE
## 4 TRUE FALSE FALSE FALSE FALSE
## 5 TRUE FALSE TRUE FALSE FALSE
## 6 TRUE  FALSE FALSE FALSE FALSE
## 7 TRUE  FALSE TRUE FALSE FALSE
## 8 TRUE  FALSE TRUE FALSE FALSE
## 9 TRUE  FALSE TRUE FALSE TRUE
## 10 TRUE  FALSE TRUE FALSE TRUE
## 11 TRUE  FALSE TRUE FALSE TRUE
## 12 TRUE  FALSE TRUE FALSE TRUE
## 13 TRUE TRUE TRUE TRUE TRUE
## 14 TRUE TRUE TRUE TRUE TRUE
## 15 TRUE TRUE TRUE TRUE TRUE
## 16 TRUE TRUE TRUE TRUE TRUE
## 17 TRUE TRUE TRUE TRUE TRUE
## 18 TRUE TRUE TRUE TRUE TRUE
## 19 TRUE TRUE TRUE TRUE TRUE
## 20 TRUE TRUE TRUE TRUE TRUE
## 21 TRUE TRUE TRUE TRUE TRUE
## 22 TRUE TRUE TRUE TRUE TRUE
## nonenglish onecredit t.percentevaluating t.students
## 1 FALSE TRUE FALSE FALSE
## 2 FALSE TRUE FALSE FALSE
## 3 FALSE TRUE FALSE FALSE
## 4 FALSE TRUE TRUE FALSE
## 5 FALSE TRUE TRUE FALSE
## 6 TRUE TRUE TRUE FALSE
w7 TRUE TRUE TRUE FALSE
## 8 TRUE TRUE TRUE FALSE
##* 9 TRUE TRUE TRUE FALSE
## 10 TRUE TRUE TRUE FALSE
## 11 TRUE TRUE TRUE FALSE
## 12 TRUE TRUE TRUE FALSE
## 13 TRUE TRUE TRUE FALSE
## 14 TRUE TRUE TRUE FALSE
## 15 TRUE TRUE TRUE FALSE
## 16 TRUE TRUE TRUE FALSE
## 17 TRUE TRUE TRUE FALSE
## 18 TRUE TRUE TRUE FALSE
## 19 TRUE TRUE TRUE FALSE
## 20 TRUE TRUE TRUE TRUE
## 21 TRUE TRUE TRUE TRUE
## 22 TRUE TRUE TRUE TRUE

minimize (results, "bic")

##
##
##
##

6

X.Intercept. tenured minority

n*log(rss)+log(n)*(p+2),

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE

tenuretrack blkandwhite t.btystdvariance

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

2287.
2268.
2254.

2245

2235.

2229

2229.
2233.
2236.
2238.
2243.
2247.
2251.
2255.
2259.
2264.
2270.
2275.
2281.
2287.

2293

2299.

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE

FALSE

381 2274.
701 2252.
834 2234.
.415 2220.
815 2206.
.402 2196.
766 2192.
035 2191.
075 2190.
882 2189.
019 2189.
324 2189.
593 2189.
547 2189.
621 2189.
658 2190.
045 2191.
607 2192.
385 2194.
338 2196.
.425 2198.
528 2200.

n*log (rss)+2*(p+2))

beauty. trans,

erdiv t.beautymupperdiv btystdave t.didevaluation female

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE

TRUE

TRUE

TRUE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
TRUE

formal fulldept

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE
FALSE
FALSE
FALSE
FALSE

lower
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

age t.beautyf2upper t.beautyflowerdiv t.beautyfupperdiv t.beautym2upper t.beautymlowerdiv t.beautymupperdiv btystdave t.didevaluation female formal fulldept lower
FALSE

TRUE FALSE  FALSE FALSE FALSE FALSE TRUE
nonenglish onecredit t.percentevaluating t.students tenuretrack blkandwhite t.btystdvariance
TRUE TRUE TRUE FALSE FALSE TRUE

6

minimize(results, "aic")

##
##

11

X.Intercept. tenured minority

TRUE

FALSE

TRUE

bic
FALSE 2229.402 2196.3

aic

FALSE

FALSE

FALSE

FALSE

TRUE

FALSE

FALSE FALSE

age t.beautyf2upper t.beautyflowerdiv t.beautyfupperdiv t.beautym2upper t.beautymlowerdiv t.beautymupperdiv btystdave t.didevaluation female formal fulldept lower

FALSE

TRUE

FALSE
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FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

FALSE

FALSE



## nonenglish onecredit t.percentevaluating t.students tenuretrack blkandwhite t.btystdvariance bic aic
## 11 TRUE TRUE TRUE FALSE TRUE TRUE FALSE 2243.019 2189.229
options(: oldwidth)

The best BIC model here is

courseevaluation ~ 1 + t.beautyfupperdiv + female + nonenglish + onecredit +
t.percentevaluating + blkandwhite

and the best AIC model is

courseevaluation ~ 1 + minority + t.beautyf2upper + t.beautyfupperdiv + t.beautym2upper +
t.didevaluation + female + nonenglish + onecredit + t.percentevaluating +
blkandwhite

This turns out to be a nice illustration of how mathematical optimality may not be what makes the most sense
substantively:

e FEach model tries to make a new “beauty” variable instead of taking btystdave. There isn’t really much
substantive sense to the beauty variables that the models pick out.

o The other variables in these models are a subset of the model from part (d). They are fine, but they also
seem to be missing significant predictors with intepretable coefficients.

If I were advising the university about what (besides teaching quality) affects course evaluation, I would not
want to miss some of the variables that the optimal AIC and BIC models miss!
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